1
|
Santi MD, Zhang M, Liu N, Viet CT, Xie T, Jensen DD, Amit M, Pan H, Ye Y. Repurposing EGFR Inhibitors for Oral Cancer Pain and Opioid Tolerance. Pharmaceuticals (Basel) 2023; 16:1558. [PMID: 38004424 PMCID: PMC10674507 DOI: 10.3390/ph16111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as non-opioid analgesics in oral cancer pain is promising and warrants further research.
Collapse
Affiliation(s)
- Maria Daniela Santi
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Naijiang Liu
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Chi T. Viet
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University, Loma Linda, CA 92350, USA;
| | - Tongxin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Dane D. Jensen
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.X.); (M.A.)
| | - Huilin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, NY 10010, USA; (M.D.S.); (M.Z.); (N.L.); (D.D.J.)
- Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY 10010, USA
| |
Collapse
|
2
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
3
|
Zhang L, Wang X. An Immune-Related Gene Signature Can Predict Clinical Outcomes and Immunotherapeutic Response in Oral Squamous Cell Carcinoma. Front Genet 2022; 13:870133. [PMID: 35860473 PMCID: PMC9289552 DOI: 10.3389/fgene.2022.870133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Immune landscape is a key feature that affects cancer progression, survival, and treatment response. Herein, this study sought to comprehensively characterize the immune-related genes (IRGs) in oral squamous cell carcinoma (OSCC) and conduct an immune-related risk score (IRS) model for prognosis and therapeutic response prediction.Methods: Transcriptome profiles and follow-up data of OSCC cohorts were curated from TCGA, GSE41613, and IMvigor210 datasets. An IRS model was established through univariate Cox, Random Survival Forest, and multivariate Cox analyses. Prognostic significance was evaluated with Kaplan–Meier curves, ROC, uni- and multivariate Cox, and subgroup analyses. A nomogram was conducted and assessed with C-index, ROC, calibration curves, and decision curve analyses. Immune cell infiltration and immune response were estimated with ESTIMATE and ssGSEA methods.Results: An IRS model was constructed for predicting the overall survival and disease-free survival of OSCC, containing MASP1, HBEGF, CCL22, CTSG, LBP, and PLAU. High-risk patients displayed undesirable prognosis, and the predictive efficacy of this model was more accurate than conventional clinicopathological indicators. Multivariate Cox analyses demonstrated that this model was an independent risk factor. The nomogram combining IRS, stage, and age possessed high clinical application values. The IRS was positively associated with a nonflamed tumor microenvironment. Moreover, this signature enabled to predict immunotherapeutic response and sensitivity to chemotherapeutic agents (methotrexate and paclitaxel).Conclusion: Collectively, our study developed a robust IRS model with machine learning method to stratify OSCC patients into subgroups with distinct prognosis and benefits from immunotherapy, which might assist identify biomarkers and targets for immunotherapeutic schemes.
Collapse
|
4
|
Fogg KC, Olson WR, Miller JN, Khan A, Renner C, Hale I, Weisman PS, Kreeger PK. Alternatively activated macrophage-derived secretome stimulates ovarian cancer spheroid spreading through a JAK2/STAT3 pathway. Cancer Lett 2019; 458:92-101. [PMID: 31129149 DOI: 10.1016/j.canlet.2019.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) metastasizes when tumor spheroids detach from the primary tumor and re-attach throughout the peritoneal cavity. Once the cancer cells have implanted in these new sites, the development of metastatic lesions is dependent on the disaggregation of cancer cells from the spheroids and subsequent expansion across the collagenous extracellular matrix (ECM). As HGSOC progresses an increase in alternatively activated macrophages (AAMs) in the surrounding ascites fluid has been observed and AAMs have been shown to enhance tumor invasion and growth in a wide range of cancers. We hypothesized that soluble factors from AAMs in the peritoneal microenvironment promote the disaggregation of ovarian cancer spheroids across the underlying ECM. We determined that co-culture with AAMs significantly increased HGSOC spheroid spreading across a collagen matrix. Multivariate modeling identified AAM-derived factors that correlated with enhanced spread of HGSOC spheroids and experimental validation showed that each individual cell line responded to a distinct AAM-derived factor (FLT3L, leptin, or HB-EGF). Despite this ligand-level heterogeneity, we determined that the AAM-derived factors utilized a common signaling pathway to induce spheroid spreading: JAK2/STAT3 activation followed by MMP-9 mediated spreading. Furthermore, immunostaining demonstrated that FLT3, LEPR, EGFR, and pSTAT3 were upregulated in metastases in HGSOC patients, with substantial patient-to-patient heterogeneity. These results suggest that inhibiting individual soluble factors will not inhibit AAM-induced effects across a broad group of patients; instead, the downstream JAK2/STAT3/MMP-9 pathway should be examined as potential therapeutic targets to slow metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Will R Olson
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jamison N Miller
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Aisha Khan
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Carine Renner
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Isaac Hale
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Paul S Weisman
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
5
|
HIF-1α, NOTCH1, ADAM12, and HB-EGF are overexpressed in mucoepidermoid carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 127:e8-e17. [PMID: 30415904 DOI: 10.1016/j.oooo.2018.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Intratumoral hypoxia (IH) occurs during cellular proliferation of malignant tumors. This phenomenon is characterized by a decrease in oxygen levels in the neoplastic microenvironment. Throughout this condition, the proteins HIF-1α, NOTCH1, ADAM12, and HB-EGF can be activated, triggering signaling pathways associated with tumor invasiveness through invadopodia formation. This study aimed to evaluate the immunostaining of HIF-1α, NOTCH1, ADAM12, and HBEGF in 19 cases of mucoepidermoid carcinoma (MEC) and 10 samples of salivary glands (control group). STUDY DESIGN The immunoperoxidase technique was employed to detect the proteins of interest. The Student t test was used to compare immunoexpression between MEC samples and the control group. RESULTS Protein immunostaining was statistically significantly higher in MEC samples than in the control group (P < .01), and the proteins were especially overexpressed in epidermoid cells of MEC. CONCLUSIONS We suggest that there is an association between the NOTCH1 signaling pathway activated by IH and the biologic behavior of MEC.
Collapse
|
6
|
Ishida K, Tomita H, Nakashima T, Hirata A, Tanaka T, Shibata T, Hara A. Current mouse models of oral squamous cell carcinoma: Genetic and chemically induced models. Oral Oncol 2018; 73:16-20. [PMID: 28939069 DOI: 10.1016/j.oraloncology.2017.07.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 01/11/2023]
Abstract
Oral squamous cell carcinoma (OSCC) patients have a low 5-year survival rate and poor prognosis. To improve survival and prognosis, the causes and processes involved in lesion development should be evaluated. For this purpose, the use of OSCC mouse models, such as chemically induced mouse models, genetically modified mouse models, and transplanted (xenograft) models, is crucial. These OSCC models exhibit both advantages and disadvantages when studying OSCC development and progression. Until a model resembling human OSCC is developed, both the advantages and disadvantages of each model should be carefully considered. In this review, we discuss OSCC mouse models and their use in cancer research worldwide.
Collapse
Affiliation(s)
- Kazuhisa Ishida
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takayuki Nakashima
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan; Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Takauji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu City, Gifu 500-8513, Japan
| | - Toshiyuki Shibata
- Department of Oral Maxillofacial Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
7
|
Yasui H, Ohnishi Y, Nakajima M, Nozaki M. Migration of oral squamous cell carcinoma cells are induced by HGF/c-Met signalling via lamellipodia and filopodia formation. Oncol Rep 2017; 37:3674-3680. [PMID: 28440510 DOI: 10.3892/or.2017.5587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/03/2017] [Indexed: 11/06/2022] Open
Abstract
The activation of receptor tyrosine kinases (RTKs) results in cellular effects including cell proliferation, survival, migration and invasion; RTKs also play an important role in tumourigenesis. It has been reported that EGFR signalling controls the migration of oral squamous cell carcinoma (OSCC) SAS and HSC3 cells but not of HSC4 cells, although the proliferation of HSC4 cells is regulated by EGF/EGFR. In the present study, we investigated the roles of EGFR and the c-Met signalling pathway in cell migration via filopodia and lamellipodia formation, which may be prerequisites for migration. To explore the role of c-Met in cell migration, we inhibited c-Met RTK activity using the c-Met inhibitor SU11274 and activated c-Met using hepatocyte growth factor (HGF) in three OSCC cell lines HSC4, SAS and Ca9-22 and investigated migration potency using a wound healing assay. We showed that inhibition of c-Met significantly suppressed, and activation of c-Met significantly promoted, the migration of OSCC cells. Additionally, the migration of SAS and Ca9-22 cells was inhibited by the EGFR inhibitors AG1478 and cetuximab and promoted by EGF treatment. Moreover, migration potency was correlated with lamellipodia formation. Furthermore, western blot analyses demonstrated that SU11274 decreased and HGF increased lamellipodin protein levels as well as phosphorylated c-Met levels. Collectively, we demonstrated that c-Met signalling induced lamellipodia formation by upregulating lamellipodin, thereby promoting the migration of OSCC cells.
Collapse
Affiliation(s)
- Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Nakajima
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Ohashi Y, Kumagai K, Miyata Y, Matsubara R, Kitaura K, Suzuki S, Hamada Y, Suzuki R. Overexpression of ErbB4 is an independent marker for lymph node metastasis in Japanese patients with oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:313-21. [DOI: 10.1016/j.oooo.2016.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/23/2016] [Accepted: 04/28/2016] [Indexed: 11/30/2022]
|
9
|
Lian C, Ruan L, Shang D, Wu Y, Lu Y, Lü P, Yang Y, Wei Y, Dong X, Ren D, Chen K, Liu H, Tu Z. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biother Radiopharm 2016; 31:85-90. [DOI: 10.1089/cbr.2015.1956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Caixia Lian
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lingling Ruan
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dongsheng Shang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanfang Wu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yongjin Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yuhua Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Yajun Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Xiaojing Dong
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Dewan Ren
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Jimenez L, Jayakar SK, Ow TJ, Segall JE. Mechanisms of Invasion in Head and Neck Cancer. Arch Pathol Lab Med 2015; 139:1334-48. [PMID: 26046491 DOI: 10.5858/arpa.2014-0498-ra] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT The highly invasive properties demonstrated by head and neck squamous cell carcinoma (HNSCC) are often associated with locoregional recurrence and lymph node metastasis in patients and is a key factor leading to an expected 5-year survival rate of approximately 50% for patients with advanced disease. It is important to understand the features and mediators of HNSCC invasion so that new treatment approaches can be developed. OBJECTIVES To provide an overview of the characteristics, mediators, and mechanisms of HNSCC invasion. DATA SOURCES A literature review of peer-reviewed articles in PubMed on HNSCC invasion. CONCLUSIONS Histologic features of HNSCC tumors can help predict prognosis and influence clinical treatment decisions. Cell surface receptors, signaling pathways, proteases, invadopodia function, epithelial-mesenchymal transition, microRNAs, and tumor microenvironment are all involved in the regulation of the invasive behavior of HNSCC cells. Identifying effective HNSCC invasion inhibitors has the potential to improve outcomes for patients by reducing the rate of spread and increasing responsiveness to chemoradiation.
Collapse
Affiliation(s)
| | | | | | - Jeffrey E Segall
- From the Departments of Pathology (Mss Jimenez and Jayakar, and Drs Ow and Segall) and Anatomy and Structural Biology (Mss Jimenez and Jayakar, and Dr Segall), Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
11
|
Wei LQ, Liang HT, Qin DC, Jin HF, Zhao Y, She MC. MiR-212 exerts suppressive effect on SKOV3 ovarian cancer cells through targeting HBEGF. Tumour Biol 2014; 35:12427-34. [PMID: 25201063 DOI: 10.1007/s13277-014-2560-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/26/2014] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) play critical roles in the development and progression of ovarian cancer. We found that miR-212 was significantly downregulated in serum and tissues from epithelial ovarian cancer (EOC) patients. Overexpression of miR-212 in ovarian cancer cells inhibited cell proliferation, migration, and invasion. Luciferase reporter assay confirmed HBEGF as a direct target of miR-212. Overexpression of miR-212 decreased HBEGF expression at both the protein and messenger RNA (mRNA) levels. Knockdown of HBEGF expression in SKOV3 cell line significantly inhibited cell growth, migration, and invasion. HBEGF mRNA level was upregulated in EOC tissues and inversely correlated with miR-212 expression in tissues. Upregulation of HBEGF could attenuate the effect induced by miR-212. These findings indicate that miR-212 displays a tumor-suppressive effect in human ovarian cancer. And miR-212 suppresses cell proliferation, migration, and invasion by targeting the HBEGF transcript, highlighting the therapeutic potential of miR-212 and HBEGF in epithelial ovarian cancer treatment.
Collapse
Affiliation(s)
- Li-Qiang Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450052, Henan, China
| | | | | | | | | | | |
Collapse
|
12
|
Kong DCH, Chew KYC, Tan EL, Khoo SP. The effect of epiregulin on epidermal growth factor receptor expression and proliferation of oral squamous cell carcinoma cell lines. Cancer Cell Int 2014; 14:65. [PMID: 25866477 PMCID: PMC4392732 DOI: 10.1186/1475-2867-14-65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Background Epiregulin (EPR) is a novel member of the epidermal growth factor (EGF) family. It has been shown to promote wound healing in oral epithelium, enhance proliferation of other epithelial tissues, and is involved in several epithelial-related malignancies such as colorectal, lung, and bladder carcinoma. More recently, EPR transcripts were found to be high in a study on archival oral squamous cell carcinoma (OSCC) specimens. This implies that EPR may be responsible for the progression of OSCC. The aim of this was to elucidate the effects of EPR on (i) cell morphological changes, (ii) cell proliferation and (iii) receptor expression of the H-series OSCC cell lines. Methods The clinicopathological origin and the expression of the epidermal growth factor receptor (EGFR) and ErbB4 receptors of the H-series cell lines were initially characterised. Based on these parameters, two of the H-series cell lines, namely H103 and H357 were selected for downstream experiments. The cell lines were treated with 1 ng/ml, 10 ng/ml, and 20 ng/ml of EPR for 24 and 48 hours in all subsequent experiments. Untreated cells acted as the control which was used for comparison with each treated group. The cell morphological changes, cell proliferation and receptor expression of the OSCC cell lines were evaluated using phase contrast microscopy, 5-bromo-2’-deoxy-uridine (BrdU) assays and flow cytometry respectively. The results were compared and analysed using the student t-test. Results There were no appreciable morphological changes in the cells regardless of the dose of EPR tested nor between the different timelines. There were no significant changes in cell proliferation after EPR treatment. As for the effect of EPR on receptor expression, 20 ng/ml of EPR significantly reduced the density of EGFR expression (p value = 0.049) in the H103 cell line after the 24-hour treatment. No other statistically significant changes were detected. Conclusions The results show that EPR had no effect on the morphology and proliferativity of OSCC cells. However, the significant decline in EGFR expression after EPR treatment suggests that EPR might play an important role in the regulation of EGFR expression and hence OSCC progression.
Collapse
Affiliation(s)
| | | | - Eng Lai Tan
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- School of Dentistry, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Hayes KE, Walk EL, Ammer AG, Kelley LC, Martin KH, Weed SA. Ableson kinases negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma by inhibiting an HB-EGF autocrine loop. Oncogene 2013; 32:4766-77. [PMID: 23146907 PMCID: PMC3896120 DOI: 10.1038/onc.2012.513] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/24/2012] [Accepted: 09/24/2012] [Indexed: 01/24/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a proclivity for locoregional invasion. HNSCC mediates invasion in part through invadopodia-based proteolysis of the extracellular matrix (ECM). Activation of Src, Erk1/2, Abl and Arg downstream of epidermal growth factor receptor (EGFR) modulates invadopodia activity through phosphorylation of the actin regulatory protein cortactin. In MDA-MB-231 breast cancer cells, Abl and Arg function downstream of Src to phosphorylate cortactin, promoting invadopodia ECM degradation activity and thus assigning a pro-invasive role for Ableson kinases. We report that Abl kinases have an opposite, negative regulatory role in HNSCC where they suppress invadopodia and tumor invasion. Impairment of Abl expression or Abl kinase activity with imatinib mesylate enhanced HNSCC matrix degradation and 3D collagen invasion, functions that were impaired in MDA-MB-231. HNSCC lines with elevated EGFR and Src activation did not contain increased Abl or Arg kinase activity, suggesting that Src could bypass Abl/Arg to phosphorylate cortactin and promote invadopodia ECM degradation. Src-transformed Abl(-/-)/Arg(-/-) fibroblasts produced ECM degrading invadopodia containing pY421 cortactin, indicating that Abl/Arg are dispensable for invadopodia function in this system. Imatinib-treated HNSCC cells had increased EGFR, Erk1/2 and Src activation, enhancing cortactin pY421 and pS405/418 required for invadopodia function. Imatinib stimulated shedding of the EGFR ligand heparin-binding EGF-like growth factor (HB-EGF) from HNSCC cells, where soluble HB-EGF enhanced invadopodia ECM degradation in HNSCC but not in MDA-MB-231. HNSCC cells treated with inhibitors of the EGFR-invadopodia pathway indicated that EGFR and Src are required for invadopodia function. Collectively, our results indicate that Abl kinases negatively regulate HNSCC invasive processes through suppression of an HB-EGF autocrine loop responsible for activating a EGFR-Src-cortactin cascade, in contrast to the invasion promoting functions of Abl kinases in breast and other cancer types. Our results provide mechanistic support for recent failed HNSCC clinical trials utilizing imatinib.
Collapse
Affiliation(s)
- Karen E. Hayes
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Elyse L. Walk
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Amanda Gatesman Ammer
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | | | - Karen H. Martin
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| | - Scott A. Weed
- Department of Neurobiology and Anatomy, Program in Cancer Cell Biology, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, West Virginia, 26506-9300, United States of America
| |
Collapse
|
14
|
Ota I, Higashiyama S, Masui T, Yane K, Hosoi H, Matsuura N. Heparin-binding EGF-like growth factor enhances the activity of invasion and metastasis in thyroid cancer cells. Oncol Rep 2013; 30:1593-600. [PMID: 23917679 PMCID: PMC3810215 DOI: 10.3892/or.2013.2659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022] Open
Abstract
Thyroid cancer sometimes contains poorly differentiated components, which have the potential of invasion and metastasis. We evaluated the possible roles of heparin-binding EGF-like growth factor (HB-EGF), a member of the epidermal growth factor (EGF) family, in cell growth and invasion of thyroid cancer cells, and demonstrated that HB-EGF is not only a potent mitogen but also a chemotactic factor in the thyroid cancer cells 8305C and SW579. The HB-EGF-mediated chemotaxis was inhibited by neutralizing antibody against the EGF receptor (EGFR/HER1/ErbB1) or tyrphostin AG1478, a specific inhibitor of the EGFR tyrosine kinase. The HB-EGF mRNA and protein expression was also analyzed using RT-PCR and immunofluorescence methods, respectively. In addition, in clinical immunohistochemical study, increased expression of HB-EGF and its receptors, HER1 and EGFR4 (HER4/ErbB4), was observed in thyroid carcinoma cells. Our findings suggest that HB-EGF acts as a potent paracrine and/or autocrine chemotactic factor as well as a mitogen that mediates HER1 and/or HER4 in the invasion and metastasis of thyroid carcinoma cells, including poorly differentiated papillary carcinomas or undifferentiated/anaplastic carcinomas. These data may aid in the development of novel therapeutic strategies for thyroid cancer.
Collapse
Affiliation(s)
- Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | | | |
Collapse
|