1
|
Cao Y, Qin Y, Zhang W, Tian W, Ren Y, Ren J, Wang J, Wang M, Jiang J, Wang Z. Structural basis of the human negative elongation factor NELF-B/C/E ternary complex. Biochem Biophys Res Commun 2023; 677:155-161. [PMID: 37591184 DOI: 10.1016/j.bbrc.2023.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Negative elongation factor (NELF) is a four-subunit transcription elongation factor that mainly functions in maintaining the paused state of RNA polymerase II in eukaryotes. Upon binding to Pol II, NELF works synergistically with DRB sensitivity-inducing factor (DSIF) and inhibits transcription elongation of Pol II, which subsequently retains a stably paused state 20-60 base pairs downstream of the promoter. The promoter-proximal pausing of Pol II caused by NELF is a general mechanism of transcriptional regulation for most signal-responsive genes. To date, structural studies have significantly advanced our understanding of the molecular mechanisms of NELF. However, a high quality structural model clarifying the interaction details of this complex is still lacking. In this study, we solved the high resolution crystal structure of the NELF-B/C/E ternary complex. We observed detailed interactions between subunits and identified residues important for the association between NELF-B and NELF-E. Our work presents a precise model of the NELF complex, which will facilitate our understanding of its in vivo function.
Collapse
Affiliation(s)
- Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yan Qin
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Weidi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Wei Tian
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Yanpeng Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Jiahao Ren
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Junmeng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Meng Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China
| | - Junyi Jiang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing, 100875, China.
| |
Collapse
|
2
|
Zhang J, Hu Z, Chung HH, Tian Y, Lau KW, Ser Z, Lim YT, Sobota RM, Leong HF, Chen BJ, Yeo CJ, Tan SYX, Kang J, Tan DEK, Sou IF, McClurg UL, Lakshmanan M, Vaiyapuri TS, Raju A, Wong ESM, Tergaonkar V, Rajarethinam R, Pathak E, Tam WL, Tan EY, Tee WW. Dependency of NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis. Nat Commun 2023; 14:2439. [PMID: 37117180 PMCID: PMC10147683 DOI: 10.1038/s41467-023-38132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Cancer cells undergo transcriptional reprogramming to drive tumor progression and metastasis. Using cancer cell lines and patient-derived tumor organoids, we demonstrate that loss of the negative elongation factor (NELF) complex inhibits breast cancer development through downregulating epithelial-mesenchymal transition (EMT) and stemness-associated genes. Quantitative multiplexed Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins (qPLEX-RIME) further reveals a significant rewiring of NELF-E-associated chromatin partners as a function of EMT and a co-option of NELF-E with the key EMT transcription factor SLUG. Accordingly, loss of NELF-E leads to impaired SLUG binding on chromatin. Through integrative transcriptomic and genomic analyses, we identify the histone acetyltransferase, KAT2B, as a key functional target of NELF-E-SLUG. Genetic and pharmacological inactivation of KAT2B ameliorate the expression of EMT markers, phenocopying NELF ablation. Elevated expression of NELF-E and KAT2B is associated with poorer prognosis in breast cancer patients, highlighting the clinical relevance of our findings. Taken together, we uncover a crucial role of the NELF-E-SLUG-KAT2B epigenetic axis in breast cancer carcinogenesis.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore
| | - Zhenhua Hu
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwa Hwa Chung
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210004, Nanjing, People's Republic of China
| | - Kah Weng Lau
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
| | - Zheng Ser
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Hwei Fen Leong
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Benjamin Jieming Chen
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Clarisse Jingyi Yeo
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jian Kang
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Dennis Eng Kiat Tan
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Ieng Fong Sou
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Urszula Lucja McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Thamil Selvan Vaiyapuri
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Anandhkumar Raju
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Esther Sook Miin Wong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Vinay Tergaonkar
- Department of Pathology, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Elina Pathak
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
| | - Wai Leong Tam
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Republic of Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Drive, Genome, Singapore, 138672, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore
| | - Ern Yu Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of General Surgery, Tan Tock Seng Hospital, Singapore, 308433, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Republic of Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Republic of Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
3
|
Magee N, Ahamed F, Eppler N, Jones E, Ghosh P, He L, Zhang Y. Hepatic transcriptome profiling reveals early signatures associated with disease transition from non-alcoholic steatosis to steatohepatitis. LIVER RESEARCH 2022; 6:238-250. [PMID: 36864891 PMCID: PMC9977163 DOI: 10.1016/j.livres.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and aim Non-alcoholic fatty liver disease (NAFLD) is becoming a leading cause of chronic liver disease worldwide. The molecular events that influence disease progression from non-alcoholic fatty liver (NAFL) to aggressive non-alcoholic steatohepatitis (NASH) remain incompletely understood, leading to lack of mechanism-based targeted treatment options for NASH. This study aims to identify early signatures associated with disease progression from NAFL to NASH in mice and humans. Materials and methods Male C57BL/6J mice were fed a high-fat, -cholesterol, and - fructose (HFCF) diet for up to 9 months. The extent of steatosis, inflammation, and fibrosis was evaluated in liver tissues. Total RNA sequencing (RNA-seq) was conducted to determine liver transcriptomic changes. Results After being fed the HFCF diet, mice sequentially developed steatosis, early steatohepatitis, steatohepatitis with fibrosis, and eventually spontaneous liver tumor. Hepatic RNA-seq revealed that the key signatures during steatosis progression to early steatohepatitis were pathways related to extracellular matrix organization and immune responses such as T cell migration, arginine biosynthesis, C-type lectin receptor signaling, and cytokine-cytokine receptor interaction. Genes regulated by transcription factors forkhead box M1 (FOXM1) and negative elongation factor complex member E (NELFE) were significantly altered during disease progression. This phenomenon was also observed in patients with NASH. Conclusions In summary, we identified early signatures associated with disease progression from NAFL to early NASH in a mouse model that recapitulated key metabolic, histologic, and transcriptomic changes seen in humans. The findings from our study may shed light on the development of novel preventative, diagnostic, and therapeutic strategies for NASH.
Collapse
Affiliation(s)
- Nancy Magee
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Forkan Ahamed
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Natalie Eppler
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Elizabeth Jones
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Priyanka Ghosh
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lily He
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Liver Center, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
4
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
5
|
Wu ZH, Huang HM, Yang DL. Integrated analysis of the functions and prognostic values of RNA binding proteins in hepatocellular carcinoma. BMC Gastroenterol 2021; 21:265. [PMID: 34130650 PMCID: PMC8204501 DOI: 10.1186/s12876-021-01843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common malignant tumors worldwide, ranks as the fifth most common cancer and has been the second most frequent cause of cancer-related death. RNA binding proteins (RBPs) are proteins that interact with different classes of RNA and are commonly detected in cells. Methods We used RNA sequencing data from TCGA to display dysfunctional RBPs microenvironments and provide potential useful biomarkers for HCC diagnosis and prognosis. Results 330 differently expressed RBPs (208 upregulated and 122 downregulated) were identified. KEGG were mainly enriched in RNA degradation, Influenza A, Hepatitis C, RIG-I-like receptor signaling pathway, Herpes simplex virus 1 infection and RNA transport. CBioPortal results demonstrated that these genes were altered in 50 samples out of 357 HCC patients (14%) and the amplification of BRCA1 was the largest frequent copy-number alteration. Conclusion Based on the online database, we identified novel RBPs markers for the prognosis of hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-021-01843-0.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Ming Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dong-Liang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Yu S, Li L, Cai H, He B, Gao Y, Li Y. Overexpression of NELFE contributes to gastric cancer progression via Wnt/β-catenin signaling-mediated activation of CSNK2B expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:54. [PMID: 33526068 PMCID: PMC7851912 DOI: 10.1186/s13046-021-01848-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
Background Accumulating evidence has highlighted the importance of negative elongation factor complex member E (NELFE) in tumorigenesis. However, the relationship between NELFE and gastric cancer (GC) remains unclear. This study aimed to explore the expression pattern and specific function of NELFE in GC. Methods NELFE expression was evaluated by immunohistochemistry and qRT-PCR in GC tissues, respectively. Cell proliferation, migration and invasion were measured by CCK-8, colony formation, transwell assays, and nude mice model. Bioinformatics analysis was performed to search potential target genes of NELFE, and a Cignal Finder 10-Pathway Reporter Array was used to explore potential signaling pathways regulated by NELFE. Dual-luciferase reporter assays, qRT-PCR and western blotting were conducted to verify their regulatory relationship. The expression correlations among NELFE, β-catenin and CSNK2B were further explored by immunohistochemistry on consecutive resections. Results NELFE was significantly overexpressed in GC tissues both in protein and mRNA level and negatively correlated with the prognosis of GC patients. Gain- and loss-of-function experiments showed that NELFE potentiated GC cell proliferation and metastasis in vitro and in vivo. CSNK2B was identified as a downstream effector of NELFE. Wnt/β-catenin signaling may mediate the regulation of CSNK2B by NELFE. In addition, NELFE, β-catenin and CSNK2B were all remarkably upregulated in tumor tissues compared with adjacent normal tissues, and their expression levels in GC were positively correlated with each other. Conclusion Our findings reveal a new NELFE-Wnt/β-catenin-CSNK2B axis to promote GC progression and provide new candidate targets against this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01848-3.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Bin He
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
7
|
Machour FE, Ayoub N. Transcriptional Regulation at DSBs: Mechanisms and Consequences. Trends Genet 2020; 36:981-997. [PMID: 32001024 DOI: 10.1016/j.tig.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Defective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II) mediated by negative elongation factor (NELF), and histone code editing by CDYL1 and histone deacetylases (HDACs) that catalyze H3K27me3 and erase lysine crotonylation, respectively. Here, we highlight major advances in understanding the mechanisms underlying transcriptional silencing at DSBs, and discuss its functional implications on repair. Furthermore, we discuss consequential links between DSB-silencing factors and carcinogenesis and discuss the potential of exploiting them for targeted cancer therapy.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
8
|
Zhou D, Lai M, Luo A, Yu CY. An RNA Metabolism and Surveillance Quartet in the Major Histocompatibility Complex. Cells 2019; 8:E1008. [PMID: 31480283 PMCID: PMC6769589 DOI: 10.3390/cells8091008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
At the central region of the mammalian major histocompatibility complex (MHC) is a complement gene cluster that codes for constituents of complement C3 convertases (C2, factor B and C4). Complement activation drives the humoral effector functions for immune response. Sandwiched between the genes for serine proteinase factor B and anchor protein C4 are four less known but critically important genes coding for essential functions related to metabolism and surveillance of RNA during the transcriptional and translational processes of gene expression. These four genes are NELF-E (RD), SKIV2L (SKI2W), DXO (DOM3Z) and STK19 (RP1 or G11) and dubbed as NSDK. NELF-E is the subunit E of negative elongation factor responsible for promoter proximal pause of transcription. SKIV2L is the RNA helicase for cytoplasmic exosomes responsible for degradation of de-polyadenylated mRNA and viral RNA. DXO is a powerful enzyme with pyro-phosphohydrolase activity towards 5' triphosphorylated RNA, decapping and exoribonuclease activities of faulty nuclear RNA molecules. STK19 is a nuclear kinase that phosphorylates RNA-binding proteins during transcription. STK19 is also involved in DNA repair during active transcription and in nuclear signal transduction. The genetic, biochemical and functional properties for NSDK in the MHC largely stay as a secret for many immunologists. Here we briefly review the roles of (a) NELF-E on transcriptional pausing; (b) SKIV2L on turnover of deadenylated or expired RNA 3'→5' through the Ski-exosome complex, and modulation of inflammatory response initiated by retinoic acid-inducible gene 1-like receptor (RLR) sensing of viral infections; (c) DXO on quality control of RNA integrity through recognition of 5' caps and destruction of faulty adducts in 5'→3' fashion; and (d) STK19 on nuclear protein phosphorylations. There is compelling evidence that a dysregulation or a deficiency of a NSDK gene would cause a malignant, immunologic or digestive disease.
Collapse
Affiliation(s)
- Danlei Zhou
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
| | - Michalea Lai
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Chack-Yung Yu
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
9
|
Dang H, Takai A, Forgues M, Pomyen Y, Mou H, Xue W, Ray D, Ha KCH, Morris QD, Hughes TR, Wang XW. Oncogenic Activation of the RNA Binding Protein NELFE and MYC Signaling in Hepatocellular Carcinoma. Cancer Cell 2017; 32:101-114.e8. [PMID: 28697339 PMCID: PMC5539779 DOI: 10.1016/j.ccell.2017.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
Global transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling.
Collapse
Affiliation(s)
- Hien Dang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Atsushi Takai
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yotsowat Pomyen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin C H Ha
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Quaid D Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
El Zeneini E, Kamel S, El-Meteini M, Amleh A. Knockdown of COBRA1 decreases the proliferation and migration of hepatocellular carcinoma cells. Oncol Rep 2017; 37:1896-1906. [PMID: 28112367 DOI: 10.3892/or.2017.5390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Cofactor of BRCA1 (COBRA1) is one of the four subunits that make up the negative elongation factor (NELF) complex that is involved in the stalling of RNA polymerase II early during transcription elongation. As such, it regulates the expression of a substantial number of genes involved in cell cycle control, cellular metabolism and DNA repair. With no DNA binding domain, its capacity to modulate gene expression occurs via its ability to interact with different transcription factors. In the field of cancer, its role is not yet fully understood. In this study, we demonstrate the frequent overexpression of COBRA1 along with the remaining NELF subunits in hepatocellular carcinoma (HCC) tissues relative to non-cancerous liver tissues. To elucidate its biological significance in HCC, RNA interference was utilized to silence COBRA1 expression in the HCC cell line, HepG2. Interestingly, COBRA1 knockdown resulted in a significant decrease in cell proliferation and migration, accompanied by a concomitant reduction in the expression of the proliferation marker, Ki-67. Survivin, a proto-oncogene that is commonly upregulated in almost all human malignancies including HCC, was also significantly downregulated following COBRA1 silencing. This suggests that it might be one of the mechanisms by which COBRA1 mediates its role in HCC. Taken together, our data findings collectively highlight an important role for COBRA1 in supporting HCC proliferation and migration.
Collapse
Affiliation(s)
- Eman El Zeneini
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Sarah Kamel
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud El-Meteini
- HPB and Liver Transplant Surgical Department, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt
| | - Asma Amleh
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
11
|
Zhang YA, Liu HN, Zhu JM, Zhang DY, Shen XZ, Liu TT. RNA binding protein Nova1 promotes tumor growth in vivo and its potential mechanism as an oncogene may due to its interaction with GABA A Receptor-γ2. J Biomed Sci 2016; 23:71. [PMID: 27733149 PMCID: PMC5062898 DOI: 10.1186/s12929-016-0288-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022] Open
Abstract
Background The mechanism of Nova1’s role in hepatocellular carcinoma has not been delineated. Also its interaction with GABAA receptor γ2 in HCC is unveiled. This study is aimed to make it clear the distribution, prognostic value of GABAARγ2 in human hepatocellular carcinoma. And its role in HCC tumorigenesis under the regulation of its alternative splicing factor Nova1. Methods Immunohistochemistry staining was used to investigate the distribution and clinical significance of GABAARγ2 protein expression in hepatocellular carcinoma. In vivo tumorigenticity test was conducted in nude mice by regulation the expression of Nova1. Later, western blot and co-immunoprecipitation were carried out to verify the interaction between Nova1 and GABAARγ2 in HCC tissue. Results Immunohistochemical staining showed GABAARγ2 expression in HCC. Survival analysis showed intratumoral GABAARγ2 was an independent prognostic factor for overall survival (OS) and disease free survival (DFS). Up-regulation of Nova1 expression promotes subcutaneous HCC growth in nude mice and western blot showed the ectopic expression of Nova-1 restro-regulates the expression of GABAARγ2 and GABA. Protein level interaction of GABAARγ2 and Nova-1 was evidenced by co-immunoprecipitation. Conclusions Nova1 interacts with GABAARγ2 not only in CNS but also in HCC. Nova1’s potential mechanism as an oncogene may due to its interaction with GABAA Rγ2. A better understanding of the mechanism of Nova1 for HCC progression provides a novel target for an optimal immunotherapy against this fatal malignancy.
Collapse
Affiliation(s)
- Yi-An Zhang
- Department of Hematology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China
| | - Hai-Ning Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China
| | - Ji-Min Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China
| | - Dan-Ying Zhang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China.,Key Laboratory of Medical Molecule Virology, Ministry of Education and Health, Shanghai Institute of Liver Diseases, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Zhongshan Hospital, No.180 Fenglin Road Xuhui District, Shanghai, China.
| |
Collapse
|