1
|
Deng L, Zhao L, Liu L, Huang H. Systemic investigation of inetetamab in combination with small molecules to treat HER2-overexpressing breast and gastric cancers. Open Life Sci 2023; 18:20220535. [PMID: 36694697 PMCID: PMC9835198 DOI: 10.1515/biol-2022-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2023] Open
Abstract
Most patients with metastatic breast cancer or gastric cancer who are treated with trastuzumab, an anti-HER2 monoclonal antibody, become refractory to the drug within a year after the initiation of treatment. Although the combination of trastuzumab with pertuzumab produced synergetic effects in the treatment of HER2-overexpressing cancers, not all patients with HER2 overexpression benefited from the trastuzumab plus pertuzumab combination. To improve the clinical benefits of trastuzumab, we systemically investigated the combination of inetetamab (Cipterbin), an analog of trastuzumab, with a variety of small molecules, including tyrosine kinase inhibitors (TKIs) and chemotherapeutic agents in vivo. We showed that pan-TKIs-induced synergistic antitumor effects with inetetamab in the treatment of these two types of cancers and that adding chemotherapeutic agents to the existing TKI plus anti-HER2 monoclonal antibody combination strategies induced additional inhibitory effects, suggesting that such combination strategies may be choices for the treatment of these two tumors. Thus, combination therapies targeting distinct and broad pathways that are essential for tumor growth and survival can be effective for treating metastatic breast cancers and gastric cancers.
Collapse
Affiliation(s)
- Lan Deng
- R&D Department, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd, a 3SBio Inc. Company, 399 Libing Road, Shanghai, 201203, China
| | - Le Zhao
- R&D Department, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd, a 3SBio Inc. Company, 399 Libing Road, Shanghai, 201203, China
| | - Lifen Liu
- R&D Department, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd, a 3SBio Inc. Company, 399 Libing Road, Shanghai, 201203, China
| | - Haomin Huang
- R&D Department, Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd, a 3SBio Inc. Company, 399 Libing Road, Shanghai, 201203, China
| |
Collapse
|
2
|
Mukherjee T, Behl T, Sehgal A, Bhatia S, Singh H, Bungau S. Exploring the molecular role of endostatin in diabetic neuropathy. Mol Biol Rep 2021; 48:1819-1836. [PMID: 33559819 DOI: 10.1007/s11033-021-06205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
For over a decade, diabetic neuropathy has exhibited great emergence in diabetic patients. Though there are numerous impediments in understanding the underlying pathology it is not that enough to conclude. Initially, there was no intricate protocol for diagnosis as its symptoms mimic most of the neurodegenerative disorders and demyelinating diseases. Continuous research on this, reveals many pathological correlates which are also detectable clinically. The most important pathologic manifestation is imbalanced angiogenesis/neo-vascularization. This review is completely focused on established pathogenesis and anti-angiogenic agents which are physiological signal molecules by the origin. Those agents can also be used externally to inhibit those pathogenic pathways. Pathologically DN demonstrates the misbalanced expression of many knotty factors like VEGF, FGF2, TGFb, NF-kb, TNF-a, MMP, TIMP, and many minor factors. Their pathway towards the incidence of DN is quite interrelated. Many anti-angiogenic agents inhibit neovascularization to many extents, but out of them predominantly inhibition of angiogenic activity is shared by endostatin which is now in clinical trial phase II. It inhibits almost all angiogenic factors and it is possible because they share interrelated pathogenesis towards imbalanced angiogenesis. Endostatin is a physiological signal molecule produced by the proteolytic cleavage of collagen XVIII. It has also a broad research profile in the field of medical research and further investigation can show promising therapeutic effects for benefit of mankind.
Collapse
Affiliation(s)
- Tuhin Mukherjee
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India.,Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Shu Y, Weng S, Zheng S. Metronomic chemotherapy in non-small cell lung cancer. Oncol Lett 2020; 20:307. [PMID: 33093916 DOI: 10.3892/ol.2020.12170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/15/2020] [Indexed: 12/17/2022] Open
Abstract
Metronomic chemotherapy (MCT) is defined as the rhythmic chemotherapy of low-dose cytotoxic drugs with short or no drug-free breaks over prolonged periods. MCT affects tumor cells and the tumor microenvironment. Particularly, the low-dose schedule impairs the repair process of endothelial cells, resulting in an anti-angiogenesis effect. By stimulating the immune system to eliminate tumor cells, MCT induces immunological activation. Furthermore, combined with targeted therapy, anti-angiogenic drugs enhance the efficacy of MCT. The present review is an overview of phase I, II and III clinical trials focusing on the efficacy, toxicity and mechanism of MCT in patients with non-small cell lung cancer (NSCLC). Furthermore, the prospects of MCT in NSCLC have been discussed. The present review indicated that MCT is an efficacious treatment for selected patients with NSCLC, with acceptable systemic side effects and economic viability for public health.
Collapse
Affiliation(s)
- Yefei Shu
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Shanshan Weng
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Song Zheng
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China.,Department of Medical Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
4
|
Mainetti LE, Rico MJ, Kaufman CD, Grillo MC, Guercetti J, Baglioni MV, Del Giúdice A, Capitani MC, Fusini M, Rozados VR, Scharovsky OG. Losartan improves the therapeutic effect of metronomic cyclophosphamide in triple negative mammary cancer models. Oncotarget 2020; 11:3048-3060. [PMID: 32850009 PMCID: PMC7429183 DOI: 10.18632/oncotarget.27694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Metronomic chemotherapy refers to the minimum biologically effective doses of a chemotherapy agent given as a continuous regimen without extended rest periods. Drug repurposing is defined as the use of an already known drug for a new medical indication, different from the original one. In oncology the combination of these two therapeutic approaches is called "Metronomics". The aim of this work is to evaluate the therapeutic effect of cyclophosphamide in a metronomic schedule in combination with the repurposed drug losartan in two genetically different mice models of triple negative breast cancer. Our findings showed that adding losartan to metronomic cyclophosphamide significantly improved the therapeutic outcome. In both models the combined treatment increased the mice's survival without sings of toxicity. Moreover, we elucidated some of the mechanisms of action involved, which include a decrease of intratumor hypoxia, stimulation of the immune response and remodeling of the tumor microenvironment. The remarkable therapeutic effect, the lack of toxicity, the low cost of the drugs and its oral administration, strongly suggest its translation to the clinical setting in the near future.
Collapse
Affiliation(s)
- Leandro E. Mainetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-first authors
| | - María José Rico
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-first authors
| | - Cintia Daniela Kaufman
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Monica Carolina Grillo
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julian Guercetti
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Virginia Baglioni
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Antonela Del Giúdice
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Maria Celeste Capitani
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matias Fusini
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Viviana Rosa Rozados
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- These authors contributed equally and are co-senior authors
| | - O. Graciela Scharovsky
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Metronomics Global Health Initiative, Marseille, France
- These authors contributed equally and are co-senior authors
| |
Collapse
|
5
|
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2018; 234:8636-8646. [PMID: 30515798 DOI: 10.1002/jcp.27850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Yu X, Zhang L, Chen J. Effectiveness of Treatment with Endostatin in Combination with Emcitabine, Carboplatin, and Gemcitabine in Patients with Advanced Non-small Cell Lung Cancer: A Retrospective Study. Open Med (Wars) 2018; 13:142-147. [PMID: 29696151 PMCID: PMC5914085 DOI: 10.1515/med-2018-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/12/2018] [Indexed: 11/25/2022] Open
Abstract
This study investigated the clinical efficacy, safety and tolerance of endostatin combined with gemcitabine and carboplatin for patients with advanced nonsmall cell lung cancer (NSCLC). From January 2010 to January 2014, 49 patients with advanced NSCLC were retrospectively evaluated; we defined 2 subgroups: a combination group (chemotherapy + anti-angiogenic therapy) and a chemotherapy group (chemotherapy only). The cases in the chemotherapy group received treatment with gemcitabine and carboplatin only, whereas the cases in the combination group received endostatin in combination with gemcitabine and carboplatin. The patients received 2 cycles of treatment (21 days/cycle). The clinical efficacy and adverse events were observed and compared. The disease control rate in the combination group was significantly higher compared with the chemotherapy group (P < 0.05). When comparing the cases of squamous carcinoma, the disease control rate in the combination group was significantly higher than the chemotherapy group (P < 0.05). Moreover, the progression free survival in the combination group was higher than that for the chemotherapy group, with a statistically significant difference (P < 0.05). The combination of endostatin with chemotherapeutic agents is improve to the survival of patients with advanced NSCLC favorably; the adverse events of this regimen are well tolerated.
Collapse
Affiliation(s)
- Xun Yu
- Department of Thoracic Medicine, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lemeng Zhang
- Department of Thoracic Medicine, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jianhua Chen
- Department of Thoracic Medicine, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China
| |
Collapse
|
7
|
Bramante S, Koski A, Liikanen I, Vassilev L, Oksanen M, Siurala M, Heiskanen R, Hakonen T, Joensuu T, Kanerva A, Pesonen S, Hemminki A. Oncolytic virotherapy for treatment of breast cancer, including triple-negative breast cancer. Oncoimmunology 2015; 5:e1078057. [PMID: 27057453 DOI: 10.1080/2162402x.2015.1078057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022] Open
Abstract
Breast cancer is a heterogeneous disease, characterized by several distinct biological subtypes, among which triple-negative breast cancer (TNBC) is one associated with a poor prognosis. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules to boost virus triggered antitumoral immune responses. Cyclophosphamide (CP) is a chemotherapy drug that is associated with cytotoxicity and immunosuppression at higher doses, whereas immunostimulatory and anti-angiogenic properties are observed at low continuous dosage. Therefore, the combination of oncolytic immuno-virotherapy with low-dose CP is an appealing approach. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a TNBC cell line and in vivo in an orthotopic xenograft mouse model, in combination with low-dose CP or its main active metabolite 4-hydroperoxycyclophosphamide (4-HP-CP). Furthermore, we summarized the breast cancer-specific human data on this virus from the Advanced Therapy Access Program (ATAP). Low-dose CP increased the efficacy of Ad5/3-D24-GMCSF in vitro and in a TNBC mouse model. In ATAP, treatments appeared safe and well-tolerated. Thirteen out of 16 breast cancer patients treated were evaluable for possible benefits with modified RECIST 1.1 criteria: 1 patient had a minor response, 2 had stable disease (SD), and 10 had progressive disease (PD). One patient is alive at 1,771 d after treatment. Ad5/3-D24-GMCSF in combination with low-dose CP showed promising efficacy in preclinical studies and possible antitumor activity in breast cancer patients refractory to other forms of therapy. This preliminary data supports continuing the clinical development of oncolytic adenoviruses for treatment of breast cancer, including TNBC.
Collapse
Affiliation(s)
- Simona Bramante
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group , Helsinki, Finland
| | - Anniina Koski
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group , Helsinki, Finland
| | - Ilkka Liikanen
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group , Helsinki, Finland
| | | | - Minna Oksanen
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group , Helsinki, Finland
| | - Mikko Siurala
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group, Helsinki, Finland; TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | | | | | - Anna Kanerva
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group, Helsinki, Finland; Helsinki University Central Hospital, Department of Obstetrics and Gynecology, Helsinki, Finland
| | - Sari Pesonen
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group, Helsinki, Finland; Oncos Therapeutics Ltd., Helsinki, Finland
| | - Akseli Hemminki
- University of Helsinki, Faculty of Medicine, Department of Pathology, Cancer Gene Therapy Group, Helsinki, Finland; TILT Biotherapeutics Ltd., Helsinki, Finland; Helsinki University Central Hospital, Department of Oncology, Helsinki, Finland
| |
Collapse
|
8
|
Bramante S, Kaufmann JK, Veckman V, Liikanen I, Nettelbeck DM, Hemminki O, Vassilev L, Cerullo V, Oksanen M, Heiskanen R, Joensuu T, Kanerva A, Pesonen S, Matikainen S, Vähä-Koskela M, Koski A, Hemminki A. Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: Results in vitro, in rodents and in humans. Int J Cancer 2015; 137:1775-83. [PMID: 25821063 DOI: 10.1002/ijc.29536] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/20/2015] [Indexed: 12/26/2022]
Abstract
Metastatic melanoma is refractory to irradiation and chemotherapy, but amenable to immunological approaches such as immune-checkpoint-inhibiting antibodies or adoptive cell therapies. Oncolytic virus replication is an immunogenic phenomenon, and viruses can be armed with immunostimulatory molecules. Therefore, oncolytic immuno-virotherapy of malignant melanoma is an appealing approach, which was recently validated by a positive phase 3 trial. We investigated the potency of oncolytic adenovirus Ad5/3-D24-GMCSF on a panel of melanoma cell lines and animal models, and summarized the melanoma-specific human data from the Advanced Therapy Access Program (ATAP). The virus effectively eradicated human melanoma cells in vitro and subcutaneous SK-MEL-28 melanoma xenografts in nude mice when combined with low-dose cyclophosphamide. Furthermore, virally-expressed granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulated the differentiation of human monocytes into macrophages. In contrast to human cells, RPMI 1846 hamster melanoma cells exhibited no response to oncolytic viruses and the chimeric 5/3 fiber failed to increase the efficacy of transduction, suggesting limited utility of the hamster model in the context of viruses with this capsid. In ATAP, treatments appeared safe and well-tolerated. Four out of nine melanoma patients treated were evaluable for possible therapy benefit with modified RECIST criteria: one patient had minor response, two had stable disease, and one had progressive disease. Two patients were alive at 559 and 2,149 days after treatment. Ad5/3-D24-GMCSF showed promising efficacy in preclinical studies and possible antitumor activity in melanoma patients refractory to other forms of therapy. This data supports continuing the clinical development of oncolytic adenoviruses for treatment of malignant melanoma.
Collapse
Affiliation(s)
- Simona Bramante
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | - Johanna K Kaufmann
- Oncolytic Adenovirus Group, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Ville Veckman
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a, Helsinki, Finland
| | - Ilkka Liikanen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | - Dirk M Nettelbeck
- Oncolytic Adenovirus Group, German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]), Heidelberg, Germany
| | - Otto Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | | | - Vincenzo Cerullo
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland.,Laboratory of Immunovirotherapy, Division of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Helsinki, Finland
| | - Minna Oksanen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | | | | | - Anna Kanerva
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Sari Pesonen
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | - Sampsa Matikainen
- Unit of Systems Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 a, Helsinki, Finland
| | - Markus Vähä-Koskela
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | - Anniina Koski
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Department of Pathology and Transplantation Laboratory and Haartman Institute, University of Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland
| |
Collapse
|
9
|
Feng LL, Liu BX, Zhong JY, Sun LB, Yu HS. Effect of grape procyanidins on tumor angiogenesis in liver cancer xenograft models. Asian Pac J Cancer Prev 2014; 15:737-41. [PMID: 24568488 DOI: 10.7314/apjcp.2014.15.2.737] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years a wide variety of flavonoids or polyphenolic substances have been reported to possess substantial anti-carcinogenic and antimutagenic activities. Grape proanthocyanidins (GPC) are considered as good examples for which there is evidence of potential roles as anti-carcinogenic agents. METHODS A xenograft model was established using H22 cells subcutaneously injected into mice and used to assess different concentrations of grape proanthocyanidins (GPC) and Endostar. Treatments were maintained for 10 days, then levels of vascular endothelial growth factor (VEGF) and microvessel density (MVD) were examined by immunohistochemistry, while VEGF mRNA was determined by real-time PCR in tumor tissue. RESULTS The expression of MVD and VEGF decreased gradually as the concentration of GPC increased.There was a significant positive correlation between MVD and VEGF. CONCLUSIONS These results suggest that GPC restrains the growth of tumor, possibly by inhibiting tumour angiogenesis.
Collapse
Affiliation(s)
- Li-Li Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, China E-mail :
| | | | | | | | | |
Collapse
|
10
|
Li M, Tang Z, Lin J, Zhang Y, Lv S, Song W, Huang Y, Chen X. Synergistic antitumor effects of doxorubicin-loaded carboxymethyl cellulose nanoparticle in combination with endostar for effective treatment of non-small-cell lung cancer. Adv Healthc Mater 2014; 3:1877-88. [PMID: 24846434 DOI: 10.1002/adhm.201400108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/30/2014] [Indexed: 01/09/2023]
Abstract
The multi-modal combination therapy is proved powerful and successful to enhance the antitumor efficacy in clinics as compared with single therapy modes. In this study, the potential of combining chemotherapy with antiangiogenic therapy for the treatment of non-small-cell lung cancer is explored. Towards this aim, OEGylated carboxymethyl cellulose-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane (CMC-ME2MO) is prepared by treating CMC with ME2MO in the alkaline aqueous solution, and used to efficiently carry doxorubicin (DOX) with high drug-loading content (16.64%) and encapsulation efficiency (99.78%). As compared to free DOX, the resulting nanoparticles show not only the favorable stability in vitro but also the prolonged blood circulation, improved safety and tolerability, optimized biodistribution, reduced systemic toxicity, and enhanced antitumor efficacy in vivo, indicates a potential utility in cancer chemotherapy. Furthermore, the combination of the DOX-loaded polysaccharide nanoparticles and antiangiogenic drug endostar provides synergistic effects of chemotherapy and antiangiogenic therapy, which shows the highest efficiency in tumor suppression. The combination approach of the DOX-containing nanomedicine and endostar for efficient treatment of non-small-cell lung cancer is first proposed to demonstrate the synergistic therapeutic effect. This synergistic combination proves to be a promising therapeutic regimen in cancer therapy and holds great potential for clinical application.
Collapse
Affiliation(s)
- Mingqiang Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Jian Lin
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Yu Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
11
|
Yang Q, Zhang F, Ding Y, Huang J, Chen S, Wu Q, Wang Z, Wang Z, Chen C. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer. Br J Cancer 2014; 110:1288-97. [PMID: 24448360 PMCID: PMC3950870 DOI: 10.1038/bjc.2014.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/09/2013] [Accepted: 12/19/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND CXC chemokine receptor 4 (CXCR4) and its ligand stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) have important roles in promoting tumour growth and metastasis. Therefore, targeting CXCR4 could be a promising strategy for treatment of human cancer. METHODS To achieve this goal, we developed a highly purified recombination polypeptide (GST-NT21MP), which is a synthetic 21-mer peptide antagonist of CXCR4 (NT21MP) derived from the viral macrophage inflammatory protein II by fermentation technology, affinity chromatography and fast protein liquid chromatography. In this study, we used multiple methods such as MTT assay, FACS, invasion assay, RT-PCR and western blot to explore the efficacy and mechanism by which GST-NT21MP inhibits cell growth, migration and invasion of breast cancer in vitro and in vivo. RESULTS We found that blockade of CXCR4 pathway by GST-NT21MP decreased SDF-1-induced cell growth, adhesion and migration capacities in breast cancer cells. Moreover, GST-NT21MP significantly retarded pulmonary metastasis in vivo. Furthermore, GST-NT21MP-mediated antitumour activity was found to be associated with reduced phosphorylated Src, Akt, FAK and ERK1/2 as well as decreased Bcl-2. CONCLUSIONS Our results suggest that GST-NT21MP could be a potential anticancer agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Q Yang
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - F Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - Y Ding
- Branch of Tumour of the Center Hospital of Bengbu, Anhui 233000, China
| | - J Huang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - S Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| | - Q Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Z Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Anhui 233000, China
| | - Z Wang
- 1] Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2] Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China
| | - C Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China
| |
Collapse
|
12
|
Tumor dynamics in response to antiangiogenic therapy with oral metronomic topotecan and pazopanib in neuroblastoma xenografts. Transl Oncol 2013; 6:493-503. [PMID: 23908692 DOI: 10.1593/tlo.13286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/24/2013] [Accepted: 05/28/2013] [Indexed: 12/18/2022] Open
Abstract
Metronomic chemotherapy, combined with targeted antiangiogenic drugs, has demonstrated significant anticancer efficacy in various studies. Though, tumors do acquire resistance. Here, we have investigated the effect of prolonged therapy with oral metronomic topotecan and pazopanib on tumor behavior in a neuroblastoma mouse xenograft model. SK-N-BE(2) xenograft-bearing mice were treated with either of the following regimens (daily, orally): vehicle (control), 150 mg/kg pazopanib, 1.0 mg/kg topotecan, and combination of topotecan and pazopanib. Planned durations of treatment for each regimen were 28, 56, and 80 days or until the end point, after which animals were sacrificed. We found that only combination-treated animals survived until 80 days. Combination halted tumor growth for up to 50 days, after which gradual growth was observed. Unlike single agents, all three durations of combination significantly lowered microvessel densities compared to the control. However, the tumors treated with the combination for 56 and 80 days had higher pericyte coverage compared to control and those treated for 28 days. The proliferative and mitotic indices of combination-treated tumors were higher after 28 days of treatment and comparable after 56 days and 80 days of treatment compared to control. Immunohistochemistry, Western blot, and real-time polymerase chain reaction revealed that combination treatment increased the hypoxia and angiogenic expression. Immunohistochemistry for Glut-1 and hexokinase II expression revealed a metabolic switch toward elevated glycolysis in the combination-treated tumors. We conclude that prolonged combination therapy with metronomic topotecan and pazopanib demonstrates sustained antiangiogenic activity but also incurs resistance potentially mediated by elevated glycolysis.
Collapse
|
13
|
Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant. Tumour Biol 2013; 34:1399-408. [DOI: 10.1007/s13277-012-0616-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
|
14
|
Current World Literature. Curr Opin Oncol 2013; 25:205-208. [DOI: 10.1097/cco.0b013e32835ec49f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|