1
|
Yang MH, Jung SH, Um JY, Kumar AP, Sethi G, Ahn KS. Daidzin targets epithelial-to-mesenchymal transition process by attenuating manganese superoxide dismutase expression and PI3K/Akt/mTOR activation in tumor cells. Life Sci 2022; 295:120395. [PMID: 35181309 DOI: 10.1016/j.lfs.2022.120395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose their polarity and gain invasive properties to transform into mesenchymal cells. A few recent studies have reported that manganese superoxide dismutase (MnSOD) can effectively modulate EMT phenotype by influencing cellular redox environment via altering the intracellular ratio between O2- and H2O2. Daidzin (DDZ), a naturally occurring isoflavone isolated from Pueraria lobate (Fabaceae), has numerous pharmacologic effects including anti-cholesterol, anti-angiocardiopathy, anti-cancer. However, the potential inhibitory impact of DDZ on cancer metastasis and specifically on the EMT process has not been evaluated. We aimed to evaluate the possible relationship between MnSOD and EMT as well as influence of DDZ on these two processes in colon and prostate carcinoma cells. MAIN METHODS Cell viability was measured by MTT and real time cell analysis (RTCA) assay. Protein expression level of EMT markers and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. Expression of EMT markers in cells was observed by immunocytochemistry. Cell invasion and migrations were evaluated by wound healing assay and Boyden chamber assay. KEY FINDINGS DDZ can block EMT accompanied with down-regulation of MnSOD, fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, twist, and Snail, and up-regulation of occludin and E-cadherin in both unstimulated and TGFβ-induced cells. In addition, DDZ exposure also attenuated cell proliferation, invasion, and metastasis by reversing the EMT process in SNU-C2A, DU145, and PC-3 cells. DDZ treatment also modulated activation of PI3K/Akt/mTOR signaling cascades in DU145 cells. Moreover, an overexpression of MnSOD or silencing of MnSOD expression modulated EMT-related proteins, PI3K/Akt/mTOR activation and invasive activity. SIGNIFICANCE This is first finding on the DDZ in regulating MnSOD and EMT process by targeting PI3K/Akt/mTOR pathway in both colorectal and prostate cancer cell lines. Our data indicated that DDZ might act as a potent suppressor of EMT by affecting MnSOD expression in tumor cells.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Hoon Jung
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int J Mol Sci 2019; 20:ijms20102466. [PMID: 31109060 PMCID: PMC6566886 DOI: 10.3390/ijms20102466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
There is strong association between inflammatory processes and their main metabolic mediators, such as leptin, adiponectin secretion, and low/high-density lipoproteins, with the cancer risk and aggressive behavior of solid tumors. In this scenario, cancer cells (CCs) and cancer stem cells (CSCs) have important roles. These cellular populations, which come from differentiated cells and progenitor stem cells, have increased metabolic requirements when it comes to maintaining or expanding the tumors, and they serve as links to some inflammatory mediators. Although the molecular mechanisms that are involved in these associations remain unclear, the two following cellular pathways have been suggested: 1) the mesenchymal-epithelial transition (MET) process, which permits the differentiation of adult stem cells throughout the acquisition of cell polarity and the adhesion to epithelia, as well to new cellular lineages (CSCs); and, 2) a reverse process, termed the epithelial-mesenchymal transition (EMT), where, in pathophysiological conditions (tissue injury, inflammatory process, and oxidative stress), the differentiated cells can acquire a multipotent stem cell-like phenotype. The molecular mechanisms that regulate both EMT and MET are complex and poorly understood. Especially, in the thyroid gland, little is known regarding MET/EMT and the role of CCs or CSCs, providing an exciting, new area of knowledge to be investigated. This article reviews the progress to date in research on the role of inflammatory mediators and metabolic reprogramming during the carcinogenesis process of the thyroid gland and the EMT pathways.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Rosa Corcoy
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Antonio Moral
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Departament de Cirugia, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
4
|
Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, Chatelut E, Marquet P, Samadi M, Roché H, Poirot M, Silvente-Poirot S. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. J Steroid Biochem Mol Biol 2017; 169:210-218. [PMID: 27343991 DOI: 10.1016/j.jsbmb.2016.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
Abstract
Accumulating evidence indicates that cholesterol oxygenation products, also known as oxysterols (OS), are involved in breast cancer (BC) promotion. The impact of Tam, as well as aromatase inhibitors (AI), an alternative BC endocrine therapy (ET), on OS metabolism in patients is currently unknown. We conducted a prospective clinical study in BC patients receiving Tam (n=15) or AI (n=14) in adjuvant or in metastatic settings. The primary end point was the feasibility of detecting and quantifying 11 different OS in the circulation of patients before and after 28days of treatment with Tam or AI. Key secondary end points were the measurements of variations in the concentrations of OS according to differences between patients and treatments. OS profiling in the serum of patients was determined by gas chromatography coupled to mass spectrometry. OS profiling was conducted in all patients both at baseline and during treatment regimens. An important inter-individual variability was observed for each OS. Interestingly 5,6β-epoxycholesterol relative concentrations significantly increased in the entire population (p=0.0109), while no increase in Cholestane-triol (CT) levels was measured. Interestingly, we found that, in contrast to AI, Tam therapy significantly decreased blood levels of 24-hydroxycholesterol (24-HC), 7α-HC and 25-HC (a tumor promoter) (p=0.0007, p=0.0231 and p=0.0231, respectively), whereas 4β-HC levels increased (p=0.0010). Interestingly, levels of 27-HC (a tumor promoter) significantly increased in response to AI (p=0.0342), but not Tam treatment. According to these results, specific OS are promising candidate markers of Tam and AI efficacy. Thus, further clinical investigations are needed to confirm the use of oxysterols as biomarkers of both prognosis and/or the efficacy of ET.
Collapse
Affiliation(s)
- Florence Dalenc
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France.
| | - Luiggi Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Thomas Filleron
- Department of Biostatistics, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Chiara Zerbinati
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maud Voisin
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France; Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France
| | - Cécile Arellano
- Institut Claudius-Regaud, IUCT-Oncopole and EA4553 University of Toulouse III Paul-Sabatier, Toulouse, France
| | - Etienne Chatelut
- Institut Claudius-Regaud, IUCT-Oncopole and EA4553 University of Toulouse III Paul-Sabatier, Toulouse, France
| | - Pierre Marquet
- CHU Limoges, University of Limoges, U850 INSERM, Limoges, France
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Département de Chimie, University of Lorraine, Metz, France
| | - Henri Roché
- Department of Medical Oncology, Institut Claudius Regaud, IUCT-Oncopole, Toulouse, France
| | - Marc Poirot
- Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France.
| | - Sandrine Silvente-Poirot
- Inserm UMR 1037, Team "Cholesterol metabolism and therapeutic innovations", Cancer Research Center of Toulouse, Toulouse, France; University of Toulouse III, Toulouse France
| |
Collapse
|
5
|
Loo SY, Hirpara JL, Pandey V, Tan TZ, Yap CT, Lobie PE, Thiery JP, Goh BC, Pervaiz S, Clément MV, Kumar AP. Manganese Superoxide Dismutase Expression Regulates the Switch Between an Epithelial and a Mesenchymal-Like Phenotype in Breast Carcinoma. Antioxid Redox Signal 2016; 25:283-99. [PMID: 27400860 PMCID: PMC4991580 DOI: 10.1089/ars.2015.6524] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Epithelial-mesenchymal transition (EMT) is characterized by the acquisition of invasive fibroblast-like morphology by epithelial cells that are highly polarized. EMT is recognized as a crucial mechanism in cancer progression and metastasis. In this study, we sought to assess the involvement of manganese superoxide dismutase (MnSOD) during the switch between epithelial-like and mesenchymal-like phenotypes in breast carcinoma. RESULTS Analysis of breast carcinomas from The Cancer Genome Atlas database revealed strong positive correlation between tumors' EMT score and the expression of MnSOD. This positive correlation between MnSOD and EMT score was significant and consistent across all breast cancer subtypes. Similarly, a positive correlation of EMT score and MnSOD expression was observed in established cell lines derived from breast cancers exhibiting phenotypes ranging from the most epithelial to the most mesenchymal. Interestingly, using phenotypically distinct breast cancer cell lines, we provide evidence that constitutively high or induced expression of MnSOD promotes the EMT-like phenotype by way of a redox milieu predominantly driven by hydrogen peroxide (H2O2). Conversely, gene knockdown of MnSOD results in the reversal of EMT to a mesenchymal-epithelial transition (MET)-like program, which appears to be a function of superoxide (O2(-•))-directed signaling. INNOVATION AND CONCLUSION These data underscore the involvement of MnSOD in regulating the switch between the EMT and MET-associated phenotype by influencing cellular redox environment via its effect on the intracellular ratio between O2(-•) and H2O2. Strategies to manipulate MnSOD expression and/or the cellular redox milieu vis-a-vis O2(-•):H2O2 could have potential therapeutic implications. Antioxid. Redox Signal. 25, 283-299.
Collapse
Affiliation(s)
- Ser Yue Loo
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,2 Genome Institute of Singapore , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jayshree L Hirpara
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Vijay Pandey
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| | - Tuan Zea Tan
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| | - Celestial T Yap
- 4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore
| | - Peter E Lobie
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,6 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jean Paul Thiery
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Boon Cher Goh
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,7 Department of Haematology-Oncology, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,8 Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University , Perth, Australia .,9 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Marie-Véronique Clément
- 3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,9 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore
| | - Alan Prem Kumar
- 1 Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,8 Curtin Health Innovation Research Institute, School of Biomedical Sciences, Curtin University , Perth, Australia .,10 Department of Biological Sciences, University of North Texas , Denton, Texas
| |
Collapse
|
6
|
Raza S, Meyer M, Schommer J, Hammer KDP, Guo B, Ghribi O. 27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Med Oncol 2016; 33:12. [PMID: 26732475 DOI: 10.1007/s12032-015-0725-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Although the causes of prostate cancer (PCa) and benign prostatic hyperplasia (BPH) are not known, the role of oxidative stress, aging, and diet are suspected to increase the incidence of prostate complications. The cholesterol oxidation derivative (oxysterol) 27-hydroxycholesterol (27-OHC) is the most prevalent cholesterol metabolite in the blood. As aging, oxidative stress, and hypercholesterolemia are associated with increased risk of PCa and BPH, and because 27-OHC levels are also increased with aging, hypercholesterolemia, and oxidative stress, determining the role of 27-OHC in the progression of PCas and BPH is warranted. In this study, we determined the effect of 27-OHC in human prostate epithelial cells RWPE-1. We found that 27-OHC stimulates proliferation and increases androgen receptor (AR) transcriptional activity. 27-OHC also increased prostate-specific antigen expression and enhanced AR binding to the androgen response element compared to controls. Silencing AR expression with siRNA markedly reduced the 27-OHC-induced proliferation. Furthermore, 27-OHC blocked docetaxel-induced apoptosis. Altogether, our results suggest that 27-OHC may play an important role in PCa and BPH progression by promoting proliferation and suppressing apoptosis.
Collapse
Affiliation(s)
- Shaneabbas Raza
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND, 58202, USA
| | - Megan Meyer
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND, 58202, USA
| | - Jared Schommer
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND, 58202, USA
| | - Kimberly D P Hammer
- Department of Veteran Affairs, Fargo VA Health Care System, Fargo, ND, 58102, USA
| | - Bin Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Othman Ghribi
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND, 58202, USA.
| |
Collapse
|