1
|
Yoshimoto M, Tokuda A, Eguchi A, Nozawa Y, Mori T, Yaginuma Y. Alterations of UHRF family Expression and was regulated by High Risk Type HPV16 in Uterine Cervical Cancer. Exp Cell Res 2024; 437:114018. [PMID: 38556072 DOI: 10.1016/j.yexcr.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1), and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. In this study, we analyzed the UHRF family expression in cervical cancers, and it's regulation by human papillomavirus (HPV). Western blotting was performed to analyze protein expression in cervical cancer cell lines. Immunohistochemical analysis were used to investigate the expression of UHRF family and MIB-1 in cervical cancer tissues. Transfection were done for analyze the relationship between UHRF family and HPVs. We showed that NIRF expression was decreased and ICBP90 expression was increased in cervical cancers compared to normal counterparts. Western blotting also showed that NIRF expression was quite low levels, but ICBP90 was high in human cervical cancer cell lines. Interestingly, ICBP90 was up regulated by high risk type HPV16 E6 and E7, but not low-risk type HPV11. On the other hand, NIRF was down regulated by high risk type HPV16 E6 but not by E7. Low risk type HPV11 E6 did not affect the NIRF expression at all. We propose that ICBP90 overexpression, and reduced NIRF expression, found in cervical cancers, is an important event of a cervical carcinogenesis, and especially ICBP90 may offer a proliferating marker and therapeutic target for treating uterine cervical cancers.
Collapse
Affiliation(s)
- Masafumi Yoshimoto
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aoi Tokuda
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Eguchi
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Nozawa
- Department of Pathology, Shirakawa Kosei General Hospital, Shirakawa, Japan
| | - Tsutomu Mori
- Department of Human Lifesciences, Fukushima Medical University School of Nursing, Fukushima, Japan
| | - Yuji Yaginuma
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Sano T, Ueda K, Minakawa K, Mori T, Hashimoto Y, Koseki H, Takeishi Y, Ikeda K, Ikezoe T. Impaired Repopulating Ability of Uhrf2-/- Hematopoietic Progenitor Cells in Mice. Genes (Basel) 2023; 14:1531. [PMID: 37628583 PMCID: PMC10454722 DOI: 10.3390/genes14081531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
UHRF proteins catalyze the ubiquitination of target proteins and are involved in regulating gene expression. Some studies reported a reduced expression of UHRF2 in acute leukemia cells, but the role of UHRF2 in hematopoiesis remains unknown. Here, we generated Uhrf2-/- mice to clarify the role of UHRF2 deletion in hematopoiesis. Compared to Uhrf2+/+ mice, Uhrf2-/- mice showed no differences in complete blood counts, as well as bone marrow (BM) findings and spleen weights. Proportions of cells in progenitor fractions in BM were comparable between Uhrf2+/+ mice and Uhrf2-/- mice. However, in competitive repopulation assays with BM transplants (BMT), the proportions of Uhrf2-/- cells were decreased relative to Uhrf2+/+ cells in all lineages. After the second BMT, Uhrf2-/- neutrophils were few, while 20-30% of Uhrf2-/- T cells and B cells were still detected. RNA sequencing showed downregulation of some genes associated with stem-cell function in Uhrf2-/- hematopoietic stem/progenitor cells (HSPCs). Interestingly, trimethylated histone H3 lysine 9 was increased in Uhrf2-/- HSPCs in a cleavage under targets and tagmentation assay. While UHRF2 deletion did not cause hematologic malignancy or confer a growth advantage of HSPCs, our results suggest that UHRF2 may play a role in the regulation of hematopoiesis.
Collapse
Affiliation(s)
- Takahiro Sano
- Department of Hematology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiji Minakawa
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tsutomu Mori
- Department of Human Life Sciences; Fukushima Medical University School of Nursing, Fukushima 960-1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Wako 351-0198, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
3
|
Wu SC, Kim A, Gu Y, Martinez DI, Zocchi L, Chen CC, Lopez J, Salcido K, Singh S, Wu J, Nael A, Benavente CA. UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression. Oncogenesis 2022; 11:51. [PMID: 36068209 PMCID: PMC9448786 DOI: 10.1038/s41389-022-00430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.
Collapse
Affiliation(s)
- Stephanie C Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Daniel I Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Claire C Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jocelyne Lopez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Kelsey Salcido
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Sarah Singh
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Ali Nael
- Department of Pathology, University of California, Irvine, CA, 92697, USA
- Department of Pathology, Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Hong YJ, Park J, Hahm JY, Kim SH, Lee DH, Park KS, Seo SB. Regulation of UHRF1 acetylation by TIP60 is important for colon cancer cell proliferation. Genes Genomics 2022; 44:1353-1361. [PMID: 35951156 PMCID: PMC9569301 DOI: 10.1007/s13258-022-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
Background Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is upregulated in colon cancer cells and associated with silencing tumor suppressor genes (TSGs) to promote colon cancer cell proliferation. Objective To investigate epigenetic modification of UHRF1 by TIP60. Whether UHRF1 acetylation by TIP60 can induce cell proliferation in colon cancer cells. Methods Acetylation sites of UHRF1 by TIP60 was predicted by ASEB (Acetylation Set Enrichment Based) method and identified by immunoprecipitation assay using anti-pan-acetyl lysine antibody and in vitro acetylation assay. Based on this method, UHRF1 acetylation-deficient mimic 4KR (K644R, K646R, K648R, K650R) mutant was generated to investigate effects of UHRF1 acetylation by TIP60. shRNA system was used to generate stable knockdown cell line of UHRF1. With transient transfection of UHRF1 WT and 4KR, the effects of UHRF1 4KR mutant on Jun dimerization protein 2 (JDP2) gene expression, cell proliferation and cell cycle were investigated by RT-qPCR and FACS analysis in shUHRF1 colon cancer cell line. Results Downregulation of TIP60-mediated UHRF1 acetylation is correlated with suppressed cell cycle progression. Acetylation-deficient mimic of UHRF1 showed poor cell growth through increased expression of JDP2 gene. Conclusions Acetylation of UHRF1 4K residues by TIP60 is important for colon cancer cell growth. Furthermore, upregulated JDP2 expression by acetylation-deficient mutant of UHRF1 might be an important epigenetic target for colon cancer cell proliferation.
Collapse
Affiliation(s)
- Ye Joo Hong
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, South Korea
| | - Junyoung Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, South Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, South Korea
| | - Song Hyun Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, South Korea
| | - Dong Ho Lee
- Da Vinci College of General Education, Chung-Ang University, 06974, Seoul, South Korea
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, 22908, Charlottesville, VA, USA
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, 06974, Seoul, South Korea.
| |
Collapse
|
5
|
Awal MA, Nur SM, Al Khalaf AK, Rehan M, Ahmad A, Hosawi SBI, Choudhry H, Khan MI. Structural-Guided Identification of Small Molecule Inhibitor of UHRF1 Methyltransferase Activity. Front Genet 2022; 13:928884. [PMID: 35991572 PMCID: PMC9382028 DOI: 10.3389/fgene.2022.928884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-like containing plant homeodomain Ring Finger 1 (UHRF1) protein is recognized as a cell-cycle-regulated multidomain protein. UHRF1 importantly manifests the maintenance of DNA methylation mediated by the interaction between its SRA (SET and RING associated) domain and DNA methyltransferase-1 (DNMT1)-like epigenetic modulators. However, overexpression of UHRF1 epigenetically responds to the aberrant global methylation and promotes tumorigenesis. To date, no potential molecular inhibitor has been studied against the SRA domain. Therefore, this study focused on identifying the active natural drug-like candidates against the SRA domain. A comprehensive set of in silico approaches including molecular docking, molecular dynamics (MD) simulation, and toxicity analysis was performed to identify potential candidates. A dataset of 709 natural compounds was screened through molecular docking where chicoric acid and nystose have been found showing higher binding affinities to the SRA domain. The MD simulations also showed the protein ligand interaction stability of and in silico toxicity analysis has also showed chicoric acid as a safe and nontoxic drug. In addition, chicoric acid possessed a longer interaction time and higher LD50 of 5000 mg/kg. Moreover, the global methylation level (%5 mC) has been assessed after chicoric acid treatment was in the colorectal cancer cell line (HCT116) at different doses. The result showed that 7.5 µM chicoric acid treatment reduced methylation levels significantly. Thus, the study found chicoric acid can become a possible epidrug-like inhibitor against the SRA domain of UHRF1 protein.
Collapse
Affiliation(s)
- Md Abdul Awal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali Khalaf Al Khalaf
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Salman Bakr I. Hosawi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092779. [PMID: 35566130 PMCID: PMC9101516 DOI: 10.3390/molecules27092779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/12/2023]
Abstract
Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.
Collapse
|
7
|
Liu WH, Miner RE, Albaugh BN, Ananiev GE, Wildman SA, Denu JM. Discovery and Mechanism of Small Molecule Inhibitors Selective for the Chromatin-Binding Domains of Oncogenic UHRF1. Biochemistry 2022; 61:354-366. [PMID: 35143176 PMCID: PMC9190237 DOI: 10.1021/acs.biochem.1c00698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromatin abnormalities are common hallmarks of cancer cells, which exhibit alterations in DNA methylation profiles that can silence tumor suppressor genes. These epigenetic patterns are partly established and maintained by UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1), which senses existing methylation states through multiple reader domains, and reinforces the modifications through recruitment of DNA methyltransferases. Small molecule inhibitors of UHRF1 would be important tools to illuminate molecular functions, yet no compounds capable of blocking UHRF1-histone binding in the context of the full-length protein exist. Here, we report the discovery and mechanism of action of compounds that selectively inhibit the UHRF1-histone interaction with low micromolar potency. Biochemical analyses reveal that these molecules are the first inhibitors to target the PHD finger of UHRF1, specifically disrupting histone H3 arginine 2 interactions with the PHD finger. Importantly, this unique inhibition mechanism is sufficient to displace binding of full-length UHRF1 with histones in vitro and in cells. Together, our study provides insight into the critical role of the PHD finger in driving histone interactions, and demonstrates that targeting this domain through a specific binding pocket is a tractable strategy for UHRF1-histone inhibition.
Collapse
Affiliation(s)
- Wallace H. Liu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Robert E. Miner
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Brittany N. Albaugh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Gene E. Ananiev
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Scott A. Wildman
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John M. Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA,To whom correspondence should be addressed: , Phone: 608-316-4341
| |
Collapse
|
8
|
Al-Eidan A, Wang Y, Skipp P, Ewing RM. The USP7 protein interaction network and its roles in tumorigenesis. Genes Dis 2022; 9:41-50. [PMID: 35005106 PMCID: PMC8720671 DOI: 10.1016/j.gendis.2020.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-specific protease (USP7), also known as Herpesvirus-associated ubiquitin-specific protease (HAUSP), is a deubiquitinase. There has been significant recent attention on USP7 following the discovery that USP7 is a key regulator of the p53-MDM2 pathway. The USP7 protein is 130 kDa in size and has multiple domains which bind to a diverse set of proteins. These interactions mediate key developmental and homeostatic processes including the cell cycle, immune response, and modulation of transcription factor and epigenetic regulator activity and localization. USP7 also promotes carcinogenesis through aberrant activation of the Wnt signalling pathway and stabilization of HIF-1α. These findings have shown that USP7 may induce tumour progression and be a therapeutic target. Together with interest in developing USP7 as a target, several studies have defined new protein interactions and the regulatory networks within which USP7 functions. In this review, we focus on the protein interactions of USP7 that are most important for its cancer-associated roles.
Collapse
Affiliation(s)
- Ahood Al-Eidan
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Department of Biology, College of Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - Yihua Wang
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rob M. Ewing
- School of Biological Sciences, B85 Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
9
|
UNOKI M, SASAKI H. The UHRF protein family in epigenetics, development, and carcinogenesis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:401-415. [PMID: 36216533 PMCID: PMC9614205 DOI: 10.2183/pjab.98.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/14/2022] [Indexed: 05/31/2023]
Abstract
The UHRF protein family consists of multidomain regulatory proteins that sense modification status of DNA and/or proteins and catalyze the ubiquitylation of target proteins. Through their functional domains, they interact with other molecules and serve as a hub for regulatory networks of several important biological processes, including maintenance of DNA methylation and DNA damage repair. The UHRF family is conserved in vertebrates and plants but is missing from fungi and many nonvertebrate animals. Mammals commonly have UHRF1 and UHRF2, but, despite their high structural similarity, the two paralogues appear to have distinct functions. Furthermore, UHRF1 and UHRF2 show different expression patterns and different outcomes in gene knockout experiments. In this review, we summarize the current knowledge on the molecular function of the UHRF family in various biological pathways and discuss their roles in epigenetics, development, gametogenesis, and carcinogenesis, with a focus on the mammalian UHRF proteins.
Collapse
Affiliation(s)
- Motoko UNOKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki SASAKI
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Ginnard SM, Winkler AE, Mellado Fritz C, Bluhm T, Kemmer R, Gilliam M, Butkevich N, Abdrabbo S, Bricker K, Feiler J, Miller I, Zoerman J, El-Mohri Z, Khuansanguan P, Basch M, Petzold T, Kostoff M, Konopka S, Kociba B, Gillis T, Heyl DL, Trievel RC, Albaugh BN. Molecular investigation of the tandem Tudor domain and plant homeodomain histone binding domains of the epigenetic regulator UHRF2. Proteins 2021; 90:835-847. [PMID: 34766381 DOI: 10.1002/prot.26278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 11/12/2022]
Abstract
Ubiquitin-like containing PHD and ring finger (UHRF)1 and UHRF2 are multidomain epigenetic proteins that play a critical role in bridging crosstalk between histone modifications and DNA methylation. Both proteins contain two histone reader domains, called tandem Tudor domain (TTD) and plant homeodomain (PHD), which read the modification status on histone H3 to regulate DNA methylation and gene expression. To shed light on the mechanism of histone binding by UHRF2, we have undergone a detailed molecular investigation with the TTD, PHD and TTD-PHD domains and compared the binding activity to its UHRF1 counterpart. We found that unlike UHRF1 where the PHD is the primary binding contributor, the TTD of UHRF2 has modestly higher affinity toward the H3 tail, while the PHD has a weaker binding interaction. We also demonstrated that like UHRF1, the aromatic amino acids within the TTD are important for binding to H3K9me3 and a conserved aspartic acid within the PHD forms an ionic interaction with R2 of H3. However, while the aromatic amino acids in the TTD of UHRF1 contribute to selectivity, the analogous residues in UHRF2 contribute to both selectivity and affinity. We also discovered that the PHD of UHRF2 contains a distinct asparagine in the H3R2 binding pocket that lowers the binding affinity of the PHD by reducing a potential electrostatic interaction with the H3 tail. Furthermore, we demonstrate the PHD and TTD of UHRF2 cooperate to interact with the H3 tail and that dual domain engagement with the H3 tail relies on specific amino acids. Lastly, our data indicate that the unique stretch region in the TTD of UHRF2 can decrease the melting temperature of the TTD-PHD and represents a disordered region. Thus, these subtle but important mechanistic differences are potential avenues for selectively targeting the histone binding interactions of UHRF1 and UHRF2 with small molecules.
Collapse
Affiliation(s)
- Shane M Ginnard
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Alyssa E Winkler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | | | - Tatum Bluhm
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Ray Kemmer
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Marisa Gilliam
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Nick Butkevich
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sara Abdrabbo
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Kaitlyn Bricker
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Justin Feiler
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Isaak Miller
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Jenna Zoerman
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Zeineb El-Mohri
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Panida Khuansanguan
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Madyson Basch
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Timothy Petzold
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Matthew Kostoff
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Sean Konopka
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Brendon Kociba
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Thomas Gillis
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Deborah L Heyl
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany N Albaugh
- Department of Chemistry, Eastern Michigan University, Ypsilanti, Michigan, USA
| |
Collapse
|
11
|
A Fast Ubiquitination of UHRF1 Oncogene Is a Unique Feature and a Common Mechanism of Thymoquinone in Cancer Cells. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Downregulation of the ubiquitin-like containing PHD and ring finger 1 (UHRF1) oncogene in cancer cells in response to natural anticancer drugs, including thymoquinone (TQ), is a key event that induces apoptosis. TQ can induce UHRF1 autoubiquitination via the E3 ligase activity of its RING domain, most likely through the downregulation of herpes virus-associated ubiquitin-specific protease (HAUSP). In this study, we evaluated whether HAUSP downregulation and fast ubiquitination of UHRF1 are prerequisites for UHRF1 degradation in response to TQ in cancer cells and whether doxorubicin can mimic the effects of TQ on UHRF1 ubiquitination. RNA sequencing was performed to investigate differentially expressed genes in TQ-treated Jurkat cells. The protein expression of UHRF1, HAUSP and Bcl-2 was detected by means of Western blot analysis. The proliferation of human colon cancer (HCT-116) and Jurkat cells was analyzed via the WST-1 assay. RNA sequencing data revealed that TQ significantly decreased HAUSP expression. TQ triggered UHRF1 to undergo rapid ubiquitination as the first step in its degradation and the inhibition of its cell proliferation. TQ-induced UHRF1 ubiquitination is associated with HAUSP downregulation. Like TQ, doxorubicin induced a similar dose- and time-dependent downregulation of UHRF1 in cancer cells, but UHRF1 did not undergo ubiquitination as detected in response to TQ. Furthermore, TQ decreased Bcl-2 expression without triggering its ubiquitination. A fast UHRF1 ubiquitination is an indispensable event for its degradation in response to TQ but not for its responses to doxorubicin. TQ appears to trigger ubiquitination of UHRF1 but not of the Bcl-2 oncogene, thereby identifying UHRF1 as a specific target of TQ for cancer therapy.
Collapse
|
12
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Chen X. An Update on the Potential Roles of E2F Family Members in Colorectal Cancer. Cancer Manag Res 2021; 13:5509-5521. [PMID: 34276228 PMCID: PMC8277564 DOI: 10.2147/cmar.s320193] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide, and thus, optimised diagnosis and treatments are imperative. E2F transcription factors (E2Fs) are a family of transcription factors consisting of eight genes, contributing to the oncogenesis and development of CRC. Importantly, E2Fs control not only the cell cycle but also apoptosis, senescence, DNA damage response, and drug resistance by interacting with multiple signaling pathways. However, the specific functions and intricate machinery of these eight E2Fs in human CRC remain unclear in many respects. Evidence on E2Fs and CRC has been scattered on the related regulatory genes, microRNAs (miRNAs), and competing endogenous RNAs (ceRNAs). Accordingly, some drugs targeting E2Fs have been transferred from preclinical to clinical application. Herein, we have systemically reviewed the current literature on the roles of various E2Fs in CRC with the purpose of providing possible clinical implications for patient diagnosis and prognosis and future treatment strategy design, thereby furthering the understanding of the E2Fs.
Collapse
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| |
Collapse
|
13
|
Park IG, Jeon M, Kim H, Lee JM. Coordinated methyl readers: Functional communications in cancer. Semin Cancer Biol 2021; 83:88-99. [PMID: 33753223 DOI: 10.1016/j.semcancer.2021.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 01/28/2023]
Abstract
Methylation is a major post-translational modification (PTM) generated by methyltransferase on target proteins; it is recognized by the epigenetic reader to expand the functional diversity of proteins. Methylation can occur on specific lysine or arginine residues localized within regulatory domains in both histone and nonhistone proteins, thereby allowing distinguished properties of the targeted protein. Methylated residues are recognized by chromodomain, malignant brain tumor (MBT), Tudor, plant homeodomain (PHD), PWWP, WD-40, ADD, and ankyrin repeats by an induced-fit mechanism. Methylation-dependent activities regulate distinct aspects of target protein function and are largely reliant on methyl readers of histone and nonhistone proteins in various diseases. Methylation of nonhistone proteins that are recognized by methyl readers facilitates the degradation of unwanted proteins, as well as the stabilization of necessary proteins. Unlike nonhistone substrates, which are mainly monomethylated by methyltransferase, histones are di- or trimethylated by the same methyltransferases and then connected to other critical regulators by methyl readers. These fine-tuned controls by methyl readers are significant for the progression or inhibition of diseases, including cancers. Here, current knowledge and our perspectives about regulating protein function by methyl readers are summarized. We also propose that expanded research on the strong crosstalk mechanisms between methylation and other PTMs via methyl readers would augment therapeutic research in cancer.
Collapse
Affiliation(s)
- Il-Geun Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsol Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunkyung Kim
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
14
|
Perego MC, Morrell BC, Zhang L, Schütz LF, Spicer LJ. Developmental and hormonal regulation of ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 gene expression in ovarian granulosa and theca cells of cattle. J Anim Sci 2020; 98:5866609. [PMID: 32614952 DOI: 10.1093/jas/skaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Ubiquitin-like with plant homeodomain and really interesting new gene finger domains 1 (UHRF1) is a multi-domain nuclear protein that plays an important role in epigenetics and tumorigenesis, but its role in normal ovarian follicle development remains unknown. Thus, the present study evaluated if UHRF1 mRNA abundance in bovine follicular cells is developmentally and hormonally regulated, and if changes in UHRF1 are associated with changes in DNA methylation in follicular cells. Abundance of UHRF1 mRNA was greater in granulosa cells (GC) and theca cells (TC) from small (<6 mm) than large (≥8 mm) follicles and was greater in small-follicle GC than TC. In GC and TC, fibroblast growth factor 9 (FGF9) treatment increased (P < 0.05) UHRF1 expression by 2-fold. Also, luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1) increased (P < 0.05) UHRF1 expression in TC by 2-fold, and forskolin (an adenylate cyclase inducer) alone or combined with IGF1 increased (P < 0.05) UHRF1 expression by 3-fold. An E2F transcription factor inhibitor (E2Fi) decreased (P < 0.05) UHRF1 expression by 44% in TC and by 99% in GC. Estradiol, progesterone, and dibutyryl-cAMP decreased (P < 0.05) UHRF1 mRNA abundance in GC. Treatment of GC with follicle-stimulating hormone (FSH) alone had no effect but when combined with IGF1 enhanced the UHRF1 mRNA abundance by 2.7-fold. Beauvericin (a mycotoxin) completely inhibited the FSH plus IGF1-induced UHRF1 expression in small-follicle GC. Treatments that increased UHRF1 mRNA (i.e., FGF9) in GC tended to decrease (by 63%; P < 0.10) global DNA methylation, and those that decreased UHRF1 mRNA (i.e., E2Fi) in GC tended to increase (by 2.4-fold; P < 0.10) global DNA methylation. Collectively, these results suggest that UHRF1 expression in both GC and TC is developmentally and hormonally regulated, and that UHRF1 may play a role in follicular growth and development as well as be involved in ovarian epigenetic processes.
Collapse
Affiliation(s)
| | - Breanne C Morrell
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| | | | | | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
15
|
Hu B, Xian Z, Zou Q, Zhang D, Su D, Yao J, Ren D. CircFAT1 Suppresses Colorectal Cancer Development Through Regulating miR-520b/ UHRF1 Axis or miR-302c-3p/ UHRF1 Axis. Cancer Biother Radiopharm 2020; 36:45-57. [PMID: 32379550 DOI: 10.1089/cbr.2019.3291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: It was reported that circular RNAs (circRNAs) exerted important functions in various human cancers. However, the function of circFAT1 was less known. The purpose of this study was to reveal the functional mechanism of circFAT1 in colorectal cancer (CRC). Materials and Methods: Quantitative real-time polymerase chain reaction and Western blot assay were used to detect the levels of genes. Cell proliferation ability was assessed by 3-(4, 5-dimethyl-2-thiazoyl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to investigate cell apoptosis rate. The glucose consumption and lactate production were determined using related kits. Furthermore, the interaction between circFAT1 or ubiquitin-like PHD and RING finger domain-containing protein 1 (UHRF1) and miR-520b or miR-302c-3p was predicted by starbase3.0, and then confirmed by the dual-luciferase reporter assay. Besides, xenograft experiment was performed to analyze the effect of circFAT1 on tumor growth in vivo. Results: The levels of circFAT1 and UHRF1 were increased, as well as the levels of miR-520b and miR-302c-3p were decreased in CRC tissues and cells. CircFAT1 knockdown suppressed cell proliferation, cycle, and glycolysis as well as induced apoptosis. Interestingly, circFAT1 was a sponge of miR-520b and miR-302c-3p, and miR-520b and miR-302c-3p could target UHRF1. Both miR-520b overexpression and miR-302c-3p overexpression inhibited CRC cell growth. Furthermore, both miR-520b knockdown and miR-302c-3p depletion weakened the effect of circFAT1 knockdown on the growth of CRC cells. Besides, circFAT1 depletion repressed tumor growth in vivo. Conclusion: The authors' findings suggested that circFAT1 upregulated UHRF1 to affect CRC cell proliferation, apoptosis, and glycolysis through targeting miR-520b and miR-302c-3p, providing theoretical basis for the treatment of CRC.
Collapse
Affiliation(s)
- Bang Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenyu Xian
- Graceland Medical Center, and The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan Su
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiayin Yao
- Department of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Nikbakht H, Jessa S, Sukhai MA, Arseneault M, Zhang T, Letourneau L, Thomas M, Bourgey M, Roehrl MHA, Eveleigh R, Chen EX, Krzyzanowska M, Moore MJ, Giesler A, Yu C, Bedard PL, Kamel-Reid S, Majewski J, Siu LL, Riazalhosseini Y, Graham DM. Latency and interval therapy affect the evolution in metastatic colorectal cancer. Sci Rep 2020; 10:581. [PMID: 31953485 PMCID: PMC6969060 DOI: 10.1038/s41598-020-57476-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
While comparison of primary tumor and metastases has highlighted genomic heterogeneity in colorectal cancer (CRC), previous studies have focused on a single metastatic site or limited genomic testing. Combining data from whole exome and ultra-deep targeted sequencing, we explored possible evolutionary trajectories beyond the status of these mutations, particularly among patient-matched metastatic tumors. Our findings confirm the persistence of known clinically-relevant mutations (e.g., those of RAS family of oncogenes) in CRC primary and metastases, yet reveal that latency and interval systemic therapy affect the course of evolutionary events within metastatic lesions. Specifically, our analysis of patient-matched primary and multiple metastatic lesions, developed over time, showed a similar genetic composition for liver metastatic tumors, which were 21-months apart. This genetic makeup was different from those identified in lung metastases developed before manifestation of the second liver metastasis. These results underscore the role of latency in the evolutionary path of metastatic CRC and may have implications for future treatment options.
Collapse
Affiliation(s)
- Hamid Nikbakht
- Department of Human Genetics, McGill University, Montreal, Québec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Selin Jessa
- Department of Human Genetics, McGill University, Montreal, Québec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | | | - Madeleine Arseneault
- Department of Human Genetics, McGill University, Montreal, Québec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Tong Zhang
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Louis Letourneau
- McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Mariam Thomas
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mathieu Bourgey
- McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Michael H A Roehrl
- UHN Program in BioSpecimen Sciences, Toronto General Hospital, Toronto, Ontario, Canada.,Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada
| | - Robert Eveleigh
- McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Eric X Chen
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Amanda Giesler
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Celeste Yu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Québec, Canada.,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, Québec, Canada. .,McGill University and Génome Québec Innovation Centre, Montreal, Québec, Canada.
| | - Donna M Graham
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Lin Y, Chen Z, Zheng Y, Liu Y, Gao J, Lin S, Chen S. MiR-506 Targets UHRF1 to Inhibit Colorectal Cancer Proliferation and Invasion via the KISS1/PI3K/NF-κ B Signaling Axis. Front Cell Dev Biol 2019; 7:266. [PMID: 31803739 PMCID: PMC6873823 DOI: 10.3389/fcell.2019.00266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background The UHRF1 gene is an epigenetic modification factor that mediates tumor suppressor gene silencing in a variety of cancers. Related studies have reported that UHRF1 can inhibit the expression of the KISS1 gene. However, the regulatory mechanism underlying UHRF1 expression in colorectal cancer (CRC) is still unclear. The aim of this study was to gain a better understanding of the regulation of UHRF1 expression in CRC and to determine whether it regulates the mechanism by which KISS1 promotes CRC metastasis. Methods In the present study, the levels of miR-506, UHRF1 and KISS1 expression in CRC tissues and in human CRC cell lines were studied using quantitative real-time PCR (qRT-PCR) and Western blotting. Cell proliferation, migration, and invasion assays are used to detect cell proliferation, migration, and invasion. A dual-luciferase reporter system was used to confirm the target gene of miR-506. Results This study found that UHRF1 protein is highly expressed in CRC tissues and negatively correlated with KISS1 protein expression. UHRF1 overexpression activates the PI3K/NF-κB signaling pathway by inhibiting the mRNA expression levels of pathway mediators. Bioinformatics analysis and luciferase reporter gene assays confirmed that miR-506 targets UHRF1. Conclusion This study identified the regulation of UHRF1 expression in CRC and the mechanism of CRC metastasis. UHRF1 may be a new potential target molecule for future CRC metastasis treatment.
Collapse
Affiliation(s)
- Yilin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhihua Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yisu Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ji Gao
- School of Nursing, Fujian Medical University, Fuzhou, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Vaughan RM, Rothbart SB, Dickson BM. The finger loop of the SRA domain in the E3 ligase UHRF1 is a regulator of ubiquitin targeting and is required for the maintenance of DNA methylation. J Biol Chem 2019; 294:15724-15732. [PMID: 31481468 PMCID: PMC6816099 DOI: 10.1074/jbc.ra119.010160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/29/2019] [Indexed: 01/06/2023] Open
Abstract
The Su(var)3–9, enhancer of zeste, and trithorax (SET) and really interesting new gene (RING) finger–associated (SRA) protein domain is conserved across bacteria and eukaryota and coordinates extrahelical or “flipped” DNA bases. A functional SRA domain is required for ubiquitin-like with PHD and RING finger domains 1 (UHRF1) E3 ubiquitin ligase activity toward histone H3, a mechanism for recruiting the DNA methylation maintenance enzyme DNA methyltransferase 1 (DNMT1). The SRA domain supports UHRF1 oncogenic activity in colon cancer cells, highlighting that UHRF1 SRA antagonism could be a cancer therapeutic strategy. Here we used molecular dynamics simulations, DNA binding assays, in vitro ubiquitination reactions, and DNA methylation analysis to identify the SRA finger loop as a regulator of UHRF1 ubiquitin targeting and DNA methylation maintenance. A chimeric UHRF1 (finger swap) with diminished E3 ligase activity toward nucleosomal histones, despite tighter binding to unmodified or asymmetric or symmetrically methylated DNA, uncouples DNA affinity from regulation of E3 ligase activity. Our model suggests that SRA domains sample DNA bases through flipping in the presence or absence of a cytosine modification and that specific interactions of the SRA finger loop with DNA are required for downstream host protein function. Our findings provide insight into allosteric regulation of UHRF1 E3 ligase activity, suggesting that UHRF1's SRA finger loop regulates its conformation and function.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Bradley M Dickson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
19
|
Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, Zorrieh Zahra A, Forouzanfar N, Arabameri H, Tavallaie M. miR-9: From function to therapeutic potential in cancer. J Cell Physiol 2019; 234:14651-14665. [PMID: 30693512 DOI: 10.1002/jcp.28210] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Malignant neoplasms are regarded as the main cause of death around the world; hence, many research studies were conducted to further perceive molecular mechanisms, treatment, and cancer prognosis. Cancer is known as a major factor for health-related problems in the world. The main challenges associated with these diseases are prompt diagnosis, disease remission classification and treatment status forecast. Therefore, progressing in such areas by developing new and optimized methods with the help of minimally invasive biological markers such as circular microRNAs (miRNAs) can be considered important. miRNA interactions with target genes have specified their role in development, apoptosis, differentiation, and proliferation and also, confirm direct miRNA function in cancer. Different miRNAs expression levels in various types of malignant neoplasms have been observed to be associated with prognosis of various carcinomas. miR-9 seems to implement opposite practices in different tissues or under various cancer incidences by influencing different genes. Aberrant miR-9 levels have been observed in many cancer types. Therefore, we intended to investigate the precise role of miR-9 in patients with malignant neoplasms. To this end, in this study, we attempted to examine different studies to clarify the overall role of miR-9 as a prognostic marker in several human tumors. The presented data in this study can help us to find the novel therapeutic avenues for treatment of human cancers.
Collapse
Affiliation(s)
- Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ali Mohammadi
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | | | - Sara Ghavidel
- Department Cell and Molecular Biology, Tonekabon Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Kadkhoda
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Atieh Zorrieh Zahra
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Narjes Forouzanfar
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arabameri
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| |
Collapse
|
20
|
Niinuma T, Kitajima H, Kai M, Yamamoto E, Yorozu A, Ishiguro K, Sasaki H, Sudo G, Toyota M, Hatahira T, Maruyama R, Tokino T, Nakase H, Sugai T, Suzuki H. UHRF1 depletion and HDAC inhibition reactivate epigenetically silenced genes in colorectal cancer cells. Clin Epigenetics 2019; 11:70. [PMID: 31064417 PMCID: PMC6505222 DOI: 10.1186/s13148-019-0668-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ubiquitin-like protein containing PHD and RING finger domains 1 (UHRF1) is a major regulator of epigenetic mechanisms and is overexpressed in various human malignancies. In this study, we examined the involvement of UHRF1 in aberrant DNA methylation and gene silencing in colorectal cancer (CRC). RESULTS CRC cell lines were transiently transfected with siRNAs targeting UHRF1, after which DNA methylation was analyzed using dot blots, bisulfite pyrosequencing, and Infinium HumanMethylation450 BeadChip assays. Gene expression was analyzed using RT-PCR and gene expression microarrays. Depletion of UHRF1 rapidly induced genome-wide DNA demethylation in CRC cells. Infinium BeadChip assays and bisulfite pyrosequencing revealed significant demethylation across entire genomic regions, including CpG islands, gene bodies, intergenic regions, and repetitive elements. Despite the substantial demethylation, however, UHRF1 depletion only minimally reversed CpG island hypermethylation-associated gene silencing. By contrast, the combination of UHRF1 depletion and histone deacetylase (HDAC) inhibition reactivated the silenced genes and strongly suppressed CRC cell proliferation. The combination of UHRF1 depletion and HDAC inhibition also induced marked changes in the gene expression profiles such that cell cycle-related genes were strikingly downregulated. CONCLUSIONS Our results suggest that (i) maintenance of DNA methylation in CRC cells is highly dependent on UHRF1; (ii) UHRF1 depletion rapidly induces DNA demethylation, though it is insufficient to fully reactivate the silenced genes; and (iii) dual targeting of UHRF1 and HDAC may be an effective new therapeutic strategy.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Sasaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomo Hatahira
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
21
|
Noda M, Okayama H, Kofunato Y, Chida S, Saito K, Tada T, Ashizawa M, Nakajima T, Aoto K, Kikuchi T, Sakamoto W, Endo H, Fujita S, Saito M, Momma T, Ohki S, Kono K. Prognostic role of FUT8 expression in relation to p53 status in stage II and III colorectal cancer. PLoS One 2018; 13:e0200315. [PMID: 29975776 PMCID: PMC6033451 DOI: 10.1371/journal.pone.0200315] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022] Open
Abstract
The expression of fucosyltransferase 8, an enzyme responsible for core fucosylation encoded by FUT8, influences tumor biology and correlates with patient prognosis in several solid cancers. We hypothesized that p53 alteration modifies prognostic associations of FUT8 expression in colorectal cancer (CRC), since FUT8 has recently been identified as a direct transcriptional target of wild-type p53. Utilizing multiple datasets of microarray and RNA sequence of CRC, FUT8 mRNA was found to be highly expressed in wild-type p53 tumors (n = 382) compared to those of mutant p53 (n = 437). Prognostic values of FUT8 expression in conjunction with the p53 status for disease-free survival (DFS) were analyzed using two independent cohorts of stage II and III CRC after curative surgery, including the immunohistochemistry (IHC) cohort (n = 123) and the microarray cohort (n = 357). In both cohorts, neither FUT8 expression nor the p53 status was associated with DFS. Strikingly, positive expression of FUT8 protein was significantly associated with better DFS only in tumors with negative p53, while it had no prognostic impact in tumors with positive p53 in the IHC cohort. Although not statistically significant, a similar prognostic trend was observed in the microarray cohort when patients were stratified by the p53 status. Our results suggest that the prognostic values of FUT8 expression on DFS may be modified by the p53 status, and the expression of FUT8 protein can be a prognostic biomarker for patients with stage II and III CRC.
Collapse
Affiliation(s)
- Masaru Noda
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yasuhide Kofunato
- Department of Hepato-Biliary-Pancreatic and Transplant Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shun Chida
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takeshi Tada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mai Ashizawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takahiro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keita Aoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomohiro Kikuchi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisahito Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
22
|
Corona E, Wang L, Ko D, Patel CJ. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility. PLoS One 2018; 13:e0196676. [PMID: 29799843 PMCID: PMC5969750 DOI: 10.1371/journal.pone.0196676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023] Open
Abstract
Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.
Collapse
Affiliation(s)
- Erik Corona
- Department of Biomedical Informatics, RTI International, Durham, NC, United States of America
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- Department of Medicine, Duke University Medical Center, Durham, NC, United States of America
| | - Chirag J. Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
23
|
Patnaik D, Estève PO, Pradhan S. Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 2018; 9:26243-26258. [PMID: 29899856 PMCID: PMC5995235 DOI: 10.18632/oncotarget.25425] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-like containing PHD Ring Finger 1 (UHRF1) is a multi-domain protein with a methyl-DNA binding SRA (SET and RING-associated) domain, required for maintenance DNA methylation mediated by DNMT1. Primarily expressed in proliferating cells, UHRF1 is a cell-cycle regulated protein that is required for S phase entry. Furthermore, UHRF1 participates in transcriptional gene regulation by connecting DNA methylation to histone modifications. Upregulation of UHRF1 may serve as a biomarker for a variety of cancers; including breast, gastric, prostate, lung and colorectal carcinoma. To this end, overexpression of UHRF1 promotes cancer metastasis by triggering aberrant patterns of DNA methylation, and subsequently, silencing tumor suppressor genes. Various small molecule effectors of UHRF1 have been reported in the literature, although the mechanism of action may not be fully characterized. Small molecules that potentially bind to the SRA domain may affect the ability of UHRF1 to bind hemimethylated DNA; thereby reducing aberrant DNA methylation. Therefore, in a subset of cancers, small molecule UHRF1 inhibitors may restore normal gene expression and serve as useful anti-cancer therapeutics.
Collapse
|
24
|
FOXM1 contributes to taxane resistance by regulating UHRF1-controlled cancer cell stemness. Cell Death Dis 2018; 9:562. [PMID: 29752436 PMCID: PMC5948215 DOI: 10.1038/s41419-018-0631-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/22/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
Therapy-induced expansion of cancer stem cells (CSCs) has been identified as one of the most critical factors contributing to therapeutic resistance, but the mechanisms of this adaptation are not fully understood. UHRF1 is a key epigenetic regulator responsible for therapeutic resistance, and controls the self-renewal of stem cells. In the present study, taxane-resistant cancer cells were established and stem-like cancer cells were expanded. UHRF1 was overexpressed in the taxane-resistant cancer cells, which maintained CSC characteristics. UHRF1 depletion overcame taxane resistance in vitro and in vivo. Additionally, FOXM1 has been reported to play a role in therapeutic resistance and the self-renewal of CSCs. FOXM1 and UHRF1 are highly correlated in prostate cancer tissues and cells, FOXM1 regulates CSCs by regulating uhrf1 gene transcription in an E2F-independent manner, and FOXM1 protein directly binds to the FKH motifs at the uhrf1 gene promoter. This present study clarified a novel mechanism by which FOXM1 controls CSCs and taxane resistance through a UHRF1-mediated signaling pathway, and validated FOXM1 and UHRF1 as two potential therapeutic targets to overcome taxane resistance.
Collapse
|
25
|
Abstract
The morbidity and mortality of lung cancer in Xuanwei, China, are the highest in the world. This study attempts to identify differentially expressed genes (DEGs) related to lung adenocarcinoma in Xuanwei. The expression profiles of eight paired lung adenocarcinoma tissues and corresponding nontumor tissues were acquired by microarrays. Functional annotations of DEGs were carried out by bioinformatics analysis. The results of the microarrays were further verified by real-time quantitative PCR (RTq-PCR). A total of 5290 genes were classified as DEGs in lung adenocarcinoma in Xuanwei; 3325 genes were upregulated and 1965 genes were downregulated, whereas the expression of the other 11 970 genes did not change. These DEGs are involved in a wide range of cancer-related processes, which include cell division, cell adhesion, cell proliferation, and DNA replication, and in many pathways such as the p53 signaling pathway, the MAPK pathway, the Jak-STAT signaling pathway, the hedgehog signaling pathway, and the non-small-cell lung cancer pathway. The tendency of changes in the expression of 12 selected DEGs (five downregulated genes, PIK3R1, RARB, HGF, MAPK11, and SESN1, and seven upregulated genes, PAK1, E2F1, CCNE1, EGF, CDC25A, PTTG1, and UHRF1) in RTq-PCR was consistent with the expression profiling data. Expression of PAK1 was significantly increased in the low differentiation group (P=0.031), whereas expression of HGF was significantly decreased in the low differentiation group (P=0.045). RARB and MAPK11 were significantly increased in the nonsmoker group (P=0.033 and 0.040, respectively). A large number of DEGs in lung adenocarcinoma in Xuanwei have been detected, which may enable us to understand the pathogenesis and lay an important foundation for the prevention and treatment of lung adenocarcinoma in Xuanwei.
Collapse
|
26
|
Choudhry H, Zamzami MA, Omran Z, Wu W, Mousli M, Bronner C, Alhosin M. Targeting microRNA/UHRF1 pathways as a novel strategy for cancer therapy. Oncol Lett 2017; 15:3-10. [PMID: 29285183 PMCID: PMC5738699 DOI: 10.3892/ol.2017.7290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ubiquitin-like containing plant homeodomain and RING finger domains 1 (UHRF1) is an anti-apoptotic protein involved in the silencing of several tumor suppressor genes (TSGs) through epigenetic modifications including DNA methylation and histone post-translational alterations, and also epigenetic-independent mechanisms. UHRF1 overexpression is observed in a number of solid tumors and hematological malignancies, and is considered a primary mechanism in inhibiting apoptosis. UHRF1 exerts its inhibitory activity on TSGs by binding to functional domains and therefore influences several epigenetic actors including DNA methyltransferase, histone deacetylase 1, histone acetyltransferase Tat-interacting protein 60 and histone methyltransferases G9a and Suv39H1. UHRF1 is considered to control a large macromolecular protein complex termed epigenetic code replication machinery, in order to maintain epigenetic silencing of TSGs during cell division, thus enabling cancer cells to escape apoptosis. MicroRNAs (miRNAs) are able to regulate the expression of its target gene by functioning as either an oncogene or a tumor suppressor. In the present review, the role of tumor suppressive miRNAs in the regulation of UHRF1, and the importance of targeting the microRNA/UHRF1 pathways in order to induce the reactivation of silenced TSGs and subsequent apoptosis are discussed.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Marc Mousli
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, 67401 Illkirch Cedex, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), National Institute of Health and Medical Research U964, National Center for Scientific Research UMR7104, University of Strasbourg, 67404 Illkirch Cedex, France
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Ashraf W, Ibrahim A, Alhosin M, Zaayter L, Ouararhni K, Papin C, Ahmad T, Hamiche A, Mély Y, Bronner C, Mousli M. The epigenetic integrator UHRF1: on the road to become a universal biomarker for cancer. Oncotarget 2017; 8:51946-51962. [PMID: 28881702 PMCID: PMC5584303 DOI: 10.18632/oncotarget.17393] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/02/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the deadliest diseases in the world causing record number of mortalities in both developed and undeveloped countries. Despite a lot of advances and breakthroughs in the field of oncology still, it is very hard to diagnose and treat the cancers at early stages. Here in this review we analyze the potential of Ubiquitin-like containing PHD and Ring Finger domain 1 (UHRF1) as a universal biomarker for cancers. UHRF1 is an important epigenetic regulator maintaining DNA methylation and histone code in the cell. It is highly expressed in a variety of cancers and is a well-known oncogene that can disrupt the epigenetic code and override the senescence machinery. Many studies have validated UHRF1 as a powerful diagnostic and prognostic tool to differentially diagnose cancer, predict the therapeutic response and assess the risk of tumor progression and recurrence. Highly sensitive, non-invasive and cost effective approaches are therefore needed to assess the level of UHRF1 in patients, which can be deployed in diagnostic laboratories to detect cancer and monitor disease progression.
Collapse
Affiliation(s)
- Waseem Ashraf
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Abdulkhaleg Ibrahim
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer Metabolism and Epigenetic Unit, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Centre for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Liliyana Zaayter
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Khalid Ouararhni
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Christophe Papin
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tanveer Ahmad
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Ali Hamiche
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Yves Mély
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| | - Christian Bronner
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Marc Mousli
- Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch, France
| |
Collapse
|
28
|
Majewska M, Lewandowska U. The chemopreventive and anticancer potential against colorectal cancer of polyphenol-rich fruit extracts. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1307388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
29
|
Sidhu H, Capalash N. UHRF1: The key regulator of epigenetics and molecular target for cancer therapeutics. Tumour Biol 2017; 39:1010428317692205. [PMID: 28218043 DOI: 10.1177/1010428317692205] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UHRF1 is a master regulator of epigenome as it coordinates DNA methylation and histone modifications. Compelling evidence suggests a strong link between UHRF1 overexpression and tumorigenesis, substantiating its ability to act as a potential biomarker for cancer diagnosis and prognosis. UHRF1 also mediates repair of damaged DNA that makes cancer cells resistant toward cytocidal drugs. Hence, understanding the molecular mechanism of UHRF1 regulation would help in developing cancer therapeutics. Natural compounds have shown applicability to downregulate UHRF1 leading to growth arrest and apoptosis in cancer cells.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Liu X, Ou H, Xiang L, Li X, Huang Y, Yang D. Elevated UHRF1 expression contributes to poor prognosis by promoting cell proliferation and metastasis in hepatocellular carcinoma. Oncotarget 2017; 8:10510-10522. [PMID: 28060737 PMCID: PMC5354676 DOI: 10.18632/oncotarget.14446] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/12/2016] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-like with plant homeodomain and ring finger domains, 1 (UHRF1) is overexpressed in a variety of tumor tissues and is negatively correlated with prognosis of patients with cancers, yet so far, a comprehensive study of UHRF1 in hepatocellular carcinoma (HCC) has not been conducted. The present study was designed to explore the expression of UHRF1, associated clinical implications, and its possible functions in HCC. Reverse transcription-polymerase chain reaction and immunohistochemical staining were used to detect UHRF1 expression in HCC specimens including cancerous and noncancerous tissues. Associations of UHRF1 expression with demographic and clinicopathologic features in HCC were analyzed, and the effects of RNA interference of UHRF1 on cell proliferation, cell cycle, apoptosis, and migration were investigated in vitro and in vivo. UHRF1 mRNA and protein expression were both upregulated and negatively correlated with prognosis in HCC patients. Furthermore, inhibition of proliferation, migration, invasion, and epithelial-mesenchymal transition progression were observed in vitro and in vivo after UHRF1 knockdown, moreover, G2/M arrest was detected in HCC cells. In conclusion, elevated UHRF1 expression contributes to poor prognosis by promoting cell proliferation and metastasis in HCC.
Collapse
Affiliation(s)
- Xincheng Liu
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Xianghong Li
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| |
Collapse
|
31
|
Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov 2016; 2:16007. [PMID: 27462454 PMCID: PMC4849474 DOI: 10.1038/celldisc.2016.7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022] Open
Abstract
Global DNA hypomethylation is a most common epigenetic alteration in cancer, but the mechanism remains elusive. Previous studies demonstrate that UHRF1 but not UHRF2 is required for mediating DNA maintenance methylation by DNMT1. Here we report unexpectedly a conserved function for UHRF1 and UHRF2: inhibiting de novo DNA methylation by functioning as E3 ligases promoting DNMT3A degradation. UHRF1/2 are frequently overexpressed in cancers and we present evidence that UHRF1/2 overexpression downregulates DNMT3A proteins and consequently leads to DNA hypomethylation. Abrogating this negative regulation on DNMT3A or overexpression of DNMT3A leads to increased DNA methylation and impaired tumor growth. We propose a working model that UHRF1/2 safeguards the fidelity of DNA methylation and suggests that UHRF1/2 overexpression is likely a causal factor for widespread DNA hypomethylation in cancer via suppressing DNMT3A.
Collapse
|
32
|
Soleimani A, Ghanadi K, Noormohammadi Z, Irani S. The correlation between miR-146a C/G polymorphism and UHRF1 gene expression level in gastric tumor. J Dig Dis 2016; 17:169-74. [PMID: 26896831 DOI: 10.1111/1751-2980.12329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the association between the polymorphism of miR-146a and The ubiquitin-like with PHD and ring-finger domains 1 (UHRF1) expression in patients with gastric cancer. METHODS MiR-146a rs2910164 was genotyped in 130 patients with gastric cancer and 130 cancer-free individuals using polymerase chain reaction (PCR)-restriction fragment length polymorphism. UHRF1 expression was analyzed in 22 gastric cancer tissues and their adjacent normal tissues using quantitative real-time PCR. RESULTS No significant differences in genotype distributions of miR-146a rs2910164 were found between cases and controls, but we observed that grade II tumors were more frequently detected in patients with CG/CC genotype compared to those with CC genotype. UHRF1 expressions in cancerous tissues were significantly higher than in noncancerous tissues (1.89-fold). Patients with CC genotype showed a significant increase in UHRF1 expression in comparison to the carriers of GG/CG genotype. A higher UHRF1 expression was associated with cancer stage IV and grade III (P<0.05). CONCLUSION The overexpression of UHRF1 was correlated with the stage and grade of gastric cancer and is associated with the genotype distribution of rs2910164.
Collapse
Affiliation(s)
- Azam Soleimani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kourosh Ghanadi
- Razi Herbal Medicines Research Center and Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
33
|
Zhong JL, Huang CZ. Ubiquitin proteasome system research in gastrointestinal cancer. World J Gastrointest Oncol 2016; 8:198-206. [PMID: 26909134 PMCID: PMC4753170 DOI: 10.4251/wjgo.v8.i2.198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/25/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is important for the degradation of proteins in eukaryotic cells. It is involved in nearly every cellular process and plays an important role in maintaining body homeostasis. An increasing body of evidence has linked alterations in the UPS to gastrointestinal malignancies, including esophageal, gastric and colorectal cancers. Here, we summarize the current literature detailing the involvement of the UPS in gastrointestinal cancer, highlighting its role in tumor occurrence and development, providing information for therapeutic targets research and anti-gastrointestinal tumor drug design.
Collapse
|
34
|
Ma J, Peng J, Mo R, Ma S, Wang J, Zang L, Li W, Fan J. Ubiquitin E3 ligase UHRF1 regulates p53 ubiquitination and p53-dependent cell apoptosis in clear cell Renal Cell Carcinoma. Biochem Biophys Res Commun 2015; 464:147-53. [PMID: 26102039 DOI: 10.1016/j.bbrc.2015.06.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 02/04/2023]
Abstract
Ubiquitin-like with PHD and RING finger domain 1 (UHRF1) is a multi-domain ubiquitin E3 ligase that plays critical roles in regulation of DNA methylation and histone ubiquitination. In this study, we found UHRF1 is frequently overexpressed in human clear cell Renal Cell Carcinoma (ccRCC) tissues both at mRNA and protein levels. We showed that UHRF1 directly interacts with p53 both in vivo and in vitro. A new domain (PD) in UHRF1 was required for interaction with p53. We found that UHRF1 down-regulates p53 transactivation activity which was depends on the ubiquitin E3 ligase function. UHRF1 can promote non-degradative ubiquitination of p53, suppress p53 pathway activation and p53-dependent apoptosis in ccRCC cells. Together, our study suggests that UHRF1, which overexpressed ccRCC, may act as a p53 regulator, suppress p53 pathway activation and help ccRCC cells to escape from p53-dependent apoptosis.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Jingtao Peng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Ren Mo
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China; Department of Urology, Inner Mongolia Autonomous Region Peoples Hospital, Hohhot 010017, Inner Mongolia, China
| | - Shaofei Ma
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Jing Wang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Lijuan Zang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China.
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China.
| |
Collapse
|
35
|
Zhu M, Xu Y, Ge M, Gui Z, Yan F. Regulation of UHRF1 by microRNA-9 modulates colorectal cancer cell proliferation and apoptosis. Cancer Sci 2015; 106:833-9. [PMID: 25940709 PMCID: PMC4520634 DOI: 10.1111/cas.12689] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/11/2015] [Accepted: 04/27/2015] [Indexed: 12/31/2022] Open
Abstract
The UHRF1 protein is pivotal for DNA methylation and heterochromatin formation, leading to decreased expressions of tumor suppressor genes and contributing to tumorigenesis. However, the factors that modulate UHRF1 expression in colorectal cancer (CRC) remain unclear. Here we showed that, compared with corresponding normal tissues, UHRF1 was upregulated and microRNA-9 (miR-9) was downregulated in CRC tissues. The expression of UHRF1 was inversely correlated with overall survival rates of patients with CRC. Overexpression of miR-9 in CRC cell lines significantly attenuated CRC cell proliferation and promoted cell apoptosis. The expression of UHRF1 was markedly reduced in pre-miR-9 transfected CRC cells. Using luciferase reporter assay, we confirmed that miR-9 was a direct upstream regulator of UHRF1. Finally, analysis of miR-9 and UHRF1 levels in human CRC tissues revealed that expression of miR-9 was inversely correlated with UHRF1 expression. Collectively, our results offer in vitro validation of the concept that miR-9 could repress the expression of UHRF1, and function as a tumor-suppressive microRNA in CRC. It may serve as a prognostic and therapeutic marker for CRC.
Collapse
Affiliation(s)
- Mingchen Zhu
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China.,Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yijun Xu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengyuan Ge
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| | - Zhen Gui
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Nanjing Medical University Cancer Hospital, Nanjing, China
| |
Collapse
|
36
|
Krifa M, Leloup L, Ghedira K, Mousli M, Chekir-Ghedira L. Luteolin Induces Apoptosis in BE Colorectal Cancer Cells by Downregulating Calpain, UHRF1, and DNMT1 Expressions. Nutr Cancer 2014; 66:1220-7. [DOI: 10.1080/01635581.2014.951729] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Gao S, Hsieh CL, Zhou J, Shemshedini L. Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells. PLoS One 2013; 8:e78766. [PMID: 24236047 PMCID: PMC3827277 DOI: 10.1371/journal.pone.0078766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022] Open
Abstract
The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Chen-Lin Hsieh
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jun Zhou
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Dai C, Shi D, Gu W. Negative regulation of the acetyltransferase TIP60-p53 interplay by UHRF1 (ubiquitin-like with PHD and RING finger domains 1). J Biol Chem 2013; 288:19581-92. [PMID: 23677994 PMCID: PMC3707659 DOI: 10.1074/jbc.m113.476606] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/14/2013] [Indexed: 11/06/2022] Open
Abstract
Numerous studies indicate the importance of acetylation in p53-mediated stress responses upon DNA damage. We and others previously showed that TIP60 (Tat-interacting protein of 60 kDa)-mediated acetylation of p53 at K120 is crucial for p53-dependent apoptotic responses. Nevertheless, it remains unclear how TIP60-mediated effects on p53 are dynamically regulated in vivo. Here, we report that UHRF1 (ubiquitin-like with PHD and RING finger domains 1) interacts with TIP60 both in vitro and in vivo and induces degradation-independent ubiquitination of TIP60. Moreover, UHRF1 expression markedly suppresses the ability of TIP60 to acetylate p53. In contrast, RNAi-mediated knockdown of UHRF1 increases the endogenous levels of p53 acetylation at K120 and p53-mediated apoptosis is significantly enhanced in UHRF1-depleted cells. To elucidate the mechanisms of this regulation, we found that the interaction between TIP60 and p53 is severely inhibited in the presence of UHRF1, suggesting that UHRF1 modulates TIP60-mediated functions in both K120 acetylation-dependent and -independent manners. Consistent with this notion, UHRF1 knockdown promotes activation of p21 and PUMA but not MDM2. These findings demonstrate that UHRF1 is a critical negative regulator of TIP60 and suggest that UHRF1-mediated effects on p53 may contribute, at least in part, to its role in tumorigenesis.
Collapse
Affiliation(s)
- Chao Dai
- From the Institute for Cancer Genetics
- Herbert Irving Comprehensive Cancer Center, and
- Department of Biological Sciences, Columbia University, New York, New York 10032
| | - Dingding Shi
- From the Institute for Cancer Genetics
- Herbert Irving Comprehensive Cancer Center, and
| | - Wei Gu
- From the Institute for Cancer Genetics
- Department of Pathology and Cell Biology
- Herbert Irving Comprehensive Cancer Center, and
| |
Collapse
|