1
|
Yang S, Jackson C, Karapetyan E, Dutta P, Kermah D, Wu Y, Wu Y, Schloss J, Vadgama JV. Roles of Protein Disulfide Isomerase in Breast Cancer. Cancers (Basel) 2022; 14:745. [PMID: 35159012 PMCID: PMC8833603 DOI: 10.3390/cancers14030745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023] Open
Abstract
Protein disulfide isomerase (PDI) is the endoplasmic reticulum (ER)'s most abundant and essential enzyme and serves as the primary catalyst for protein folding. Due to its apparent role in supporting the rapid proliferation of cancer cells, the selective blockade of PDI results in apoptosis through sustained activation of UPR pathways. The functions of PDI, especially in cancers, have been extensively studied over a decade, and recent research has explored the use of PDI inhibitors in the treatment of cancers but with focus areas of other cancers, such as brain or ovarian cancer. In this review, we discuss the roles of PDI members in breast cancer and PDI inhibitors used in breast cancer research. Additionally, a few PDI members may be suggested as potential molecular targets for highly metastatic breast cancers, such as TNBC, that require more attention in future research.
Collapse
Affiliation(s)
- Suhui Yang
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Chanel Jackson
- Post Baccalaureate Pre-Medical Program, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Eduard Karapetyan
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
| | - Dulcie Kermah
- Urban Health Institute, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| | - John Schloss
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (E.K.); (P.D.); (Y.W.); (Y.W.); (J.S.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, The University of California at Los Angeles, Los Angeles, CA 90059, USA
| |
Collapse
|
2
|
Improvement of cytotoxicity of mitoxantrone and daunorubicin by candidone, tephrosin, and bavachinin. Mol Biol Rep 2021; 48:7105-7111. [PMID: 34564803 DOI: 10.1007/s11033-021-06700-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Flavonoids have been demonstrated to have the ability of sensitizing cancer cells to chemotherapy and inverse multidrug resistance via various mechanisms, such as modulating of pumps. The therapeutic effect of candidone, tephrosin, and bavachinin in treatment of cancer, particularly to overcome multidrug resistance (MDR) is largely unknown. The capacity of these agents in sensitization of MDR cells is investigated in the current work. METHODS AND RESULTS We analyzed the impact of candidone, tephrosin, and bavachinin, as chemosensitizer on cell cytotoxicity, P-gp and ABCG2 mRNA expression level on two multidrug resistant cells, ABCG2 overexpressing human epithelial breast cancer cell line (MCF7/MX), and P-gp overexpressing human gastric adenocarcinoma cell line (EPG85.257RDB). The inhibitory concentration of 50% (IC50) of daunorubicin in EPG85.257RDB cells in combination with IC10 of Bavachinin, Tephrosin, and Candidone were 6159 ± 948, 4186 ± 665, 730 ± 258 nM, and this data in MCF7/MX cell were 1773 ± 534, 7160 ± 405 and 3340 ± 622 nM respectively. These three flavonoids dose-dependently decreased the viability of MCF7/MX and EPG85.257RDB and significantly (p < 0.05) decreased IC50 of daunorubicin and mitoxantrone except Tephrosin in MCF7/MX cells. Candidone and Bavachinin were the most potent chemosensitizer in EPG85.257RDB and MCF7/MX cells respectively. Flavonoids did not reduce mRNA expression of P-gp and ABCG2 after 72 h treatment, except Candidone in EPG85.257RDB and Bavachinin in MCF7/MX cells. CONCLUSIONS This effect is not time-dependent, and flavonoids have their own patterns that are cell-dependent. In general, tephrosin, candidone, and bavachinin had the potential of sensitizing MDR cells to mitoxantrone and daunorubicin.
Collapse
|
3
|
Enhancing the Therapeutic Efficacy of Daunorubicin and Mitoxantrone with Bavachinin, Candidone, and Tephrosin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3291737. [PMID: 31814840 PMCID: PMC6877970 DOI: 10.1155/2019/3291737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
The capability of flavonoids in sensitizing cancer cells was demonstrated in numerous works to chemotherapy and converse multidrug resistance by modulating efflux pumps and apoptosis mechanisms. Three flavonoids, namely, bavachinin, tephrosin, and candidone, have been recently introduced to cancer treatment research presenting various activities, such as antibacterial, immunomodulatory, cell death, and anticancer. Less information exists regarding the therapeutic significance of these flavonoids in cancer treatment, especially in overcoming multidrug resistance (MDR). Here, we tempted to investigate the potency of these agents in reversing MDR by analyzing their effects as chemosensitizers on cell cytotoxicity, P-gp and ABCG2 protein expression levels, and their function on two multidrug-resistant cell lines, P-gp-overexpressing human gastric adenocarcinoma cell line (EPG85.257RDB) and ABCG2-overexpressing human epithelial breast cancer cell line (MCF7/MX). The inhibitory concentration of 10% (IC10) of bavachinin, tephrosin, and candidone in EPG85.257RDB cells was 1588.7 ± 202.2, 264.8 ± 86.15, and 1338.6 ± 114.11 nM, respectively. Moreover, these values in MCF7/MX cell were 2406.4 ± 257.63, 38.8 ± 4.28, and 27.9 ± 5.59 nM, respectively. Expression levels of ABCG2 and P-gp were not significantly downregulated by these flavonoids. Maximum levels of daunorubicin and mitoxantrone accumulations and minimum rates of drug efflux in both cell lines were detected 48 hrs posttreatment with tephrosin and bavachinin, respectively. Chemosensitization to mitoxantrone and daunorubicin treatments was, respectively, achieved in MCF7/MX and EPG85.257RDB cells in response to IC10 of bavachinin and tephrosin, independently. These effects did not follow time-dependent manner, and each flavonoid had its cell-dependent patterns. Overall, bavachinin, tephrosin, and candidone showed potency to sensitize MDR cells to daunorubicin and mitoxantrone and could be considered as attractive MDR modulators for cancer treatment. However, their action was time and cell specific.
Collapse
|
4
|
Deng FL, Li L, Huang ZS. Role of breast cancer resistance protein in gastrointestinal tumors. Shijie Huaren Xiaohua Zazhi 2019; 27:395-401. [DOI: 10.11569/wcjd.v27.i6.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The breast cancer resistance protein, also known as ABCG2, is a member of the drug efflux membrane transporters. As a drug discharge pump, ABCG2 can reduce the concentration of intracellular drugs and protect cells from toxic substances. ABCG2 is not only able to protect normal cells, but also to influence the chemotherapy effect by making tumor cells resistant to various anti-cancer drugs. In order to provide a reference for the basic and clinical research of gastrointestinal tumors, we review the physiological function of ABCG2, factors affecting ABCG2 expression, and its relationship with gastrointestinal tumors.
Collapse
Affiliation(s)
- Feng-Lian Deng
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Li Li
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zan-Song Huang
- Guangxi Clinical Medical Research Center of Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China,Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
5
|
A rapid and sensitive UPLC–MS/MS method for determination of HZ08 in rat plasma and tissues: Application to a pharmacokinetic study of liposome injections. J Pharm Biomed Anal 2015; 102:246-52. [DOI: 10.1016/j.jpba.2014.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022]
|
6
|
Basseville A, Robey RW, Bahr JC, Bates SE. Breast Cancer Resistance Protein (BCRP) or ABCG2. DRUG TRANSPORTERS 2014:187-221. [DOI: 10.1002/9781118705308.ch11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Szakács G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R, Day BJ, Baubichon-Cortay H, Di Pietro A. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem Rev 2014; 114:5753-74. [PMID: 24758331 PMCID: PMC4059772 DOI: 10.1021/cr4006236] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Magyar tudósok körútja 2, Budapest 1117, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gauthier C, Ozvegy-Laczka C, Szakacs G, Sarkadi B, Di Pietro A. ABCG2 is not able to catalyze glutathione efflux and does not contribute to GSH-dependent collateral sensitivity. Front Pharmacol 2013; 4:138. [PMID: 24312054 PMCID: PMC3819521 DOI: 10.3389/fphar.2013.00138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/17/2013] [Indexed: 11/13/2022] Open
Abstract
ABCG2 is a key human ATP-binding cassette (ABC) transporter mediating cancer cell chemoresistance. In the case of ABCC1, another multidrug transporter, earlier findings documented that certain modulators greatly increase ABCC1-mediated glutathione (GSH) efflux and, upon depletion of intracellular GSH, induce "collateral sensitivity" leading to the apoptosis of multidrug resistant cells. Recently, it has been suggested that ABCG2 may mediate an active GSH transport. In order to explore if ABCG2-overexpressing cells may be similarly targeted, we first looked for the effects of ABCG2 expression on cellular GSH levels, and for an ABCG2-dependent GSH transport in HEK293 and MCF7 cells. We found that, while ABCG2 overexpression altered intracellular GSH levels in these transfected or drug-selected cells, ABCG2 inhibitors or transport modulators did not influence GSH efflux. We then performed direct measurements of drug-stimulated ATPase activity and (3)H-GSH transport in inside-out membrane vesicles of human ABC transporter-overexpressing Sf9 insect cells. Our results indicate that ABCG2-ATPase is not modulated by GSH and, in contrast to ABCC1, ABCG2 does not catalyze any significant GSH transport. Our data suggest no direct interaction between the ABCG2 transporter and GSH, although a long-term modulation of cellular GSH by ABCG2 cannot be excluded.
Collapse
Affiliation(s)
- Charlotte Gauthier
- Drug Resistance Mechanism and Modulation Group, Ligue 2013 Certified, Bases Moléculaires et Structurales des Systèmes Infectieux, UMR5086, Centre National de la Recherche Scientifique, Université de Lyon, Institut de Biologie et Chimie des Protéines, University of Lyon Lyon, France
| | | | | | | | | |
Collapse
|