1
|
Yasir M, Park J, Han ET, Park WS, Han JH, Kwon YS, Lee HJ, Hassan M, Kloczkowski A, Chun W. Exploration of Flavonoids as Lead Compounds against Ewing Sarcoma through Molecular Docking, Pharmacogenomics Analysis, and Molecular Dynamics Simulations. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010414. [PMID: 36615603 PMCID: PMC9823950 DOI: 10.3390/molecules28010414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma (ES) is a highly malignant carcinoma prevalent in children and most frequent in the second decade of life. It mostly occurs due to t(11;22) (q24;q12) translocation. This translocation encodes the oncogenic fusion protein EWS/FLI (Friend leukemia integration 1 transcription factor), which acts as an aberrant transcription factor to deregulate target genes essential for cancer. Traditionally, flavonoids from plants have been investigated against viral and cancerous diseases and have shown some promising results to combat these disorders. In the current study, representative flavonoid compounds from various subclasses are selected and used to disrupt the RNA-binding motif of EWS, which is required for EWS/FLI fusion. By blocking the RNA-binding motif of EWS, it might be possible to combat ES. Therefore, molecular docking experiments validated the binding interaction patterns and structural behaviors of screened flavonoid compounds within the active region of the Ewing sarcoma protein (EWS). Furthermore, pharmacogenomics analysis was used to investigate potential drug interactions with Ewing sarcoma-associated genes. Finally, molecular dynamics simulations were used to investigate the stability of the best selected docked complexes. Taken together, daidzein, kaempferol, and genistein exhibited a result comparable to ifosfamide in the proposed in silico study and can be further analyzed as possible candidate compounds in biological in vitro studies against ES.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Hee-Jae Lee
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea
- Correspondence: ; Tel.: +82-33-250-8853
| |
Collapse
|
2
|
Li M, Qi L, Xu JB, Zhong LY, Chan S, Chen SN, Shao XR, Zheng LY, Dong ZX, Fang TL, Mai ZY, Li J, Zheng Y, Zhang XD. Methylation of the Promoter Region of the Tight Junction Protein-1 by DNMT1 Induces EMT-like Features in Multiple Myeloma. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:197-207. [PMID: 33251332 PMCID: PMC7666313 DOI: 10.1016/j.omto.2020.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/07/2020] [Indexed: 11/19/2022]
Abstract
The molecular alterations that initiate the development of multiple myeloma (MM) are not fully understood. Our results revealed that TJP1 was downregulated in MM and positively related to the overall survival of MM patients in The Cancer Genome Atlas (TCGA) database and patient samples. In parallel, cell adhesion capacity representing MM metastasis was decreased in MM patients compared with healthy samples, together with the significantly activated epithelial-to-mesenchymal transition (EMT) transcriptional-like patterns of MM cells. Further analyses demonstrated that TJP1 negatively regulated EMT and consequently positively regulated cell adhesion in MM from TCGA database and MM1s cells. Furthermore, the methylation level of each CpG site on the TJP1 promoter was negatively correlated with TJP1 expression levels. Quantitative real-time PCR and western blot assays demonstrated that methylase DNMT1 regulated the methylation of TJP1. Finally, treatment with a combination of the MM clinical medicine bortezomib, methylation inhibitor, or TJP1 overexpression significantly suppressed the viability and progression of tumor cells of MM orthotopic models. In summary, our results indicate that DNMT1 promotes the methylation of TJP1 promoter, thereby decreasing its expression and regulating the development of EMT-inhibited MM cell adhesion. Therefore, methylation of TJP1 is a potential therapeutic agent to prevent the progression of MM disease.
Collapse
Affiliation(s)
- Miao Li
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Lin Qi
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
- Corresponding author: Lin Qi, Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jing-Bo Xu
- Department of Hematology, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Li-Ye Zhong
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Szehoi Chan
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Shu-Na Chen
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Xin-Rong Shao
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Li-Yuan Zheng
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhao-Xia Dong
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian-Liang Fang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Zhi-Ying Mai
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Yongjiang Zheng
- Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Corresponding author: Yongjiang Zheng, Department of Hematology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Xing-Ding Zhang
- Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
- Corresponding author: Xing-Ding Zhang, Department of Pharmacology, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|
4
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
5
|
Gonzalez-Mariscal L, Miranda J, Ortega-Olvera JM, Gallego-Gutierrez H, Raya-Sandino A, Vargas-Sierra O. Zonula Occludens Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Gao XZ, Zhao WG, Wang GN, Cui MY, Zhang YR, Li WC. Inhibitor of DNA binding 4 functions as a tumor suppressor and is targetable by 5-aza-2'-deoxycytosine with potential therapeutic significance in Burkitt's lymphoma. Mol Med Rep 2015; 13:1269-74. [PMID: 26648013 DOI: 10.3892/mmr.2015.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 10/23/2015] [Indexed: 11/05/2022] Open
Abstract
Epigenetic gene silencing due to promoter methylation is observed in human neoplasia, including lymphoma and certain cancer types. One important target for gene methylation analysis in non-Hodgkin lymphoma (NHL) is inhibitor of DNA binding 4 (ID4). The present study aimed to investigate the gene methylation status of ID4, the expression of ID4 protein and the effect of demethylating agent 5-aza-2'-deoxycytosine (CdR) in the Raji human Burkitt's lymphoma cell line in vitro. Following assessment of the inhibition of Raji cell growth by various concentrations of CdR, the effects of CdR on the expression of ID4 protein were assessed using the immunocytochemical streptavidin-peroxidase method and semi-quantitative analysis, while apoptosis and cell cycle were determined by flow cytometry. The ID4 gene methylation status of Raji cells was tested using methylation-specific polymerase chain reaction analysis. ID4 was methylated and its protein expression was low in the control group, while ID4 was partly or completely demethylated and its protein expression was upregulated in Raji cells treated with CdR. In addition, CdR induced apoptosis and cell cycle arrest in Raji cells in a dose- and time-dependent manner. These results demonstrated that ID4 is hypermethylated and its protein expression is low in Burkitt's lymphoma cells, while CdR reversed the abnormal DNA methylation and induced re-expression of ID4 protein. Hypermethylation of ID4 promotes the proliferation of Burkitt's lymphoma cells; ID4 may function as a tumor suppressor and can be targeted with demethylating compounds such as CdR for the treatment of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Xian-Zheng Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wu-Gan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Guan-Nan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Mei-Ying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yang-Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
7
|
Nesmiyanov PP, Tolkachev BE, Strygin AV. ZO-1 expression shows prognostic value in chronic B cell leukemia. Immunobiology 2015; 221:6-11. [PMID: 26306999 DOI: 10.1016/j.imbio.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 01/10/2023]
Abstract
Connexin-mediated gap junctions are vital for tumor cell function. Intracellular pathways of connexin signaling use Zonula Occludens protein-1 (ZO-1) as an intermediate. This report describes the ZO-1 and connexin 43 (Cx43) expression pattern in lymphocytes from chronic B-cell leukemia (B-CLL) patients. The ZO-1 and Cx43 expression in the B cells of 113 B-CLL patients was identified. Western blot and flow cytometry were used to determine protein expression. Results indicated that ZO-1 and Cx43 expression was reduced and correlated negatively with CD38 and Zap-70 expression. Inhibition of intercellular communication with anti-Cx43 antibodies, 1-octanol, or carbenoxolone resulted in induced cell apoptosis. These data suggest that ZO-1, along with CD38 and Zap-70, plays a role in cell cycle regulation in B-CLL and may be used as a prognostic marker in B-CLL monitoring.
Collapse
Affiliation(s)
- Pavel P Nesmiyanov
- Fundamental Medicine and Biology Department, Volgograd State Medical University, Volgograd, Russia; Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Russia.
| | - Boris E Tolkachev
- Fundamental Medicine and Biology Department, Volgograd State Medical University, Volgograd, Russia; Department of Hematology, Volgograd Regional Clinical Oncology Dispensary No.1, Volgograd, Russia
| | - Andrey V Strygin
- Fundamental Medicine and Biology Department, Volgograd State Medical University, Volgograd, Russia; Volgograd Medical Science Center, Pharmacology Department, Laboratory for Genomics and Proteomics, Volgograd, Russia
| |
Collapse
|
8
|
Nerschbach V, Eberle N, Joetzke AE, Hoeinghaus R, Hungerbuehler S, Mischke R, Nolte I, Betz D. Splenic and hepatic ultrasound and cytology in canine lymphoma: effects of findings on stage migration and assessment of prognosis. Vet Comp Oncol 2014; 14 Suppl 1:82-94. [DOI: 10.1111/vco.12127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/21/2014] [Accepted: 10/19/2014] [Indexed: 12/18/2022]
Affiliation(s)
- V. Nerschbach
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - N. Eberle
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - A. E. Joetzke
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - R. Hoeinghaus
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - S. Hungerbuehler
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - R. Mischke
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - I. Nolte
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| | - D. Betz
- Small Animal Hospital of the University of Veterinary Medicine; Hannover Germany
| |
Collapse
|