1
|
Jiang S, Yang X, Lin Y, Liu Y, Tran LJ, Zhang J, Qiu C, Ye F, Sun Z. Unveiling Anoikis-related genes: A breakthrough in the prognosis of bladder cancer. J Gene Med 2024; 26:e3651. [PMID: 38282152 DOI: 10.1002/jgm.3651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is a prevalent malignancy worldwide. Anoikis remains a new form of cell death. It is necessary to explore Anoikis-related genes in the prognosis of BLCA. METHODS We obtained RNA expression profiles from the The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases for dimensionality reduction analysis and isolated epithelial cells, T cells and fibroblasts for copy number variation analysis, pseudotime analysis and transcription factor analysis based on R package. We integrated machine-learning algorithms to develop the artificial intelligence-derived prognostic signature (AIDPS). RESULTS The performance of AIDPS with clinical indicators was stable and robust in predicting BLCA and showed better performance in every validation dataset compared to other models. Mendelian randomization analysis was conducted. Single nucleotide polymorphism (SNP) sites of rs3100578 (HK2) and rs66467677 (HSP90B1) exhibited significant correlation of bladder problem (not cancer) and bladder cancer, whereasSNP sites of rs3100578 (HK2) and rs947939 (BAD) had correlation between bladder stone and bladder cancer. The immune infiltration analysis of the TCGA-BLCA cohort was calculated via the ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) algorithm which contains stromal, immune and estimate scores. We also found significant differences in the IC50 values of Bortezomib_1191, Docetaxel_1007, Staurosporine_1034 and Rapamycin_1084 among the high- and low-risk groups. CONCLUSIONS In conclusion, these findings indicated Anoikis-related prognostic genes in BLCA and constructed an innovative machine-learning model of AIDPS with high prognostic value for BLCA.
Collapse
Affiliation(s)
- Shen Jiang
- Jilin Cancer Hospital, Changchun, Jilin, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiping Yang
- Jilin Cancer Hospital, Changchun, Jilin, China
| | - Yang Lin
- Jilin Cancer Hospital, Changchun, Jilin, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lisa Jia Tran
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jing Zhang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| | - Chengjun Qiu
- Department of Urology, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhou Sun
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Urology, The First People's Hospital of Jiangxia District, Wuhan, Hubei, China
| |
Collapse
|
2
|
Liu M, Sui L, Fang Z, Jiang WG, Ye L. Aberrant expression of bone morphogenetic proteins in the disease progression and metastasis of breast cancer. Front Oncol 2023; 13:1166955. [PMID: 37333824 PMCID: PMC10272747 DOI: 10.3389/fonc.2023.1166955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Bone morphogenetic proteins (BMPs) play crucial roles in the tumorigenesis and metastasis of cancers. Controversy remains about the exact implications of BMPs and their antagonists in breast cancer (BC), due to their diverse and complex biological functions and signalling. A comprehensive study of the whole family and their signalling in breast cancer is provoked. Methods Aberrant expression of BMP, BMP receptors and antagonists in primary tumours in breast cancer were analysed by using TCGA-BRCA and E-MTAB-6703 cohorts. Related biomarkers including ER, HER, proliferation, invasion, angiogenesis, lymphangiogenesis and bone metastasis were involved to identify the relationship with BMPs in breast cancer. Results The present study showed BMP8B was significantly increased in breast tumours, while BMP6 and ACVRL1 were decreased in breast cancer tissues. The expressions of BMP2, BMP6, TGFBR1 and GREM1 were significantly correlated with BC patients' poor overall survival. Aberrant expression of BMPs, together with BMP receptors, were explored in different subtypes of breast cancer according to ER, PR and HER2 status. Furthermore, higher levels of BMP2, BMP6 and GDF5 were revealed in triple negative breast cancer (TNBC) whilst BMP4, GDF15, ACVR1B, ACVR2B and BMPR1B were relatively higher in Luminal type BC. ACVR1B and BMPR1B were positively correlated with ERα but were inversely correlated with ERβ. High expression of GDF15, BMP4 and ACVR1B were associated with poorer overall survival in HER2 positive BC. BMPs also play dual roles in tumour growth and metastasis of BC. Conclusion A shift pattern of BMPs was showed in different subtypes of breast cancer suggesting a subtype specific involvement. It provokes more research to shed light on the exact role of these BMPs and receptors in the disease progression and distant metastasis through a regulation of proliferation, invasion and EMT.
Collapse
Affiliation(s)
- Ming Liu
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
- Department of Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Laijian Sui
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ziqian Fang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
3
|
Luo X, Wang G, Wang Y, Wang M, Tan Z, Luo M, Zhang L, Song Y, Jia Y, Zhou H, Qing C. Gibberellin derivative GA-13315 overcomes multidrug resistance in breast cancer by up-regulating BMP6 expression. Front Pharmacol 2022; 13:1059365. [PMID: 36532723 PMCID: PMC9748619 DOI: 10.3389/fphar.2022.1059365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 09/10/2024] Open
Abstract
Chemoresistance represents a major obstacle in breast cancer treatment. Bone morphogenetic protein 6 (BMP6) was reported to participate in the occurrence and development of various tumors. In the present study, the results of transcriptome sequencing, qRT-PCR and western blot analysis revealed that BMP6 was down-regulated in multidrug resistant MCF-7/Adr breast cancer cells and BMP6 overexpression sensitized MCF-7/Adr cells to chemotherapeutic drugs, indicating that BMP6 downregulation was involved in the mechanisms of multidrug resistance (MDR) of MCF-7/Adr breast cancer cells. GA-13315 (GA5) is a new tetracyclic diterpenoid selected from a series of gibberellin derivatives. Here, we found that GA5 exhibited more potent anti-tumor activity in multidrug resistant MCF-7/Adr breast cancer cells and xenografts, indicating that GA5 could overcome MDR. Mechanistically, GA5 increased BMP6 expression, and BPM6 knockdown partially reversed the inhibitory effect of GA5 on cell proliferation. Furthermore, we found that ERK phosphorylation and P-gp expression were increased in MCF-7/Adr cells when compared with MCF-7 cells. Either overexpression of BMP6 or treatment the cells with GA5 significantly decreased ERK phosphorylation and P-gp expression, indicating that GA5 reversed MDR of MCF-7/Adr cells by upregulating BMP6, thereby inhibiting the activation of ERK signaling pathway and reducing P-gp expression. Collectively, our present study demonstrated that the MDR of MCF-7/Adr cells was closely related to the low expression of BMP6, and revealed the molecular mechanisms by which GA5 overcame MDR in breast cancer, providing evidence in supporting the development of GA5 to be a promising agent for overcoming MDR in clinical cancer therapy in the future.
Collapse
Affiliation(s)
- Xianqiang Luo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- The Second People’s Hospital of Quzhou, Quzhou, China
| | - Guohui Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yuting Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Meichen Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Zhuomin Tan
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Min Luo
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Limei Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yan Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yinnong Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Hongyu Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chen Qing
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Sharma T, Kapoor A, Mandal CC. Duality of bone morphogenetic proteins in cancer: A comprehensive analysis. J Cell Physiol 2022; 237:3127-3163. [DOI: 10.1002/jcp.30785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Anmol Kapoor
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| | - Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences Central University of Rajasthan Ajmer Rajasthan India
| |
Collapse
|
5
|
Variation of PPARG Expression in Chemotherapy-Sensitive Patients of Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2021; 2021:5525091. [PMID: 34054937 PMCID: PMC8149230 DOI: 10.1155/2021/5525091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Our previous study showed that the upregulation of peroxisome proliferator-activated receptor gamma (PPARG) could promote chemosensitivity of hypopharyngeal squamous cell carcinoma (HSCC) in chemotherapeutic treatments. Here, we acquired two more independent expression data of PPARG to validate the expression levels of PPARG in chemotherapy-sensitive patients (CSP) and its individualized variations compared to chemotherapy-non-sensitive patients (CNSP). Our results showed that overall PPARG expression was mildly downregulated (log fold change = −0.55; p value = 0.42; overexpression in three CSPs and reduced expression in four CSPs), which was not consistent with previous results (log fold change = 0.50; p = 0.22; overexpression in nine CSPs and reduced expression in three CSPs). Both studies indicated that PPARG expression variation was significantly associated with the Tumor-Node-Metastasis (TNM) stage (p = 7.45e − 7 and 6.50e − 4, for the first and second studies, respectively), which was used as one of the predictors of chemosensitivity. The new dataset analysis revealed 51 genes with significant gene expression changes in CSPs (LFC > 1 or <-1; p value < 0.01), and two of them (TMEM45A and RBP1) demonstrated strong coexpression with PPARG (Pearson correlation coefficient > 0.6 or <-0.6). There were 21 significant genes in the data from the first study, with no significant association with PPARG and no overlap with the 51 genes revealed in this study. Our results support the connection between PPARG and chemosensitivity in HSCC tumor cells. However, significant PPARG variation exists in CSPs, which may be influenced by multiple factors, including the TNM stage.
Collapse
|
6
|
García Muro AM, García Ruvalcaba A, Rizo de la Torre LDC, Sánchez López JY. Role of the BMP6 protein in breast cancer and other types of cancer. Growth Factors 2021; 39:1-13. [PMID: 34706618 DOI: 10.1080/08977194.2021.1994964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The BMP6 protein (Bone Morphogenetic Protein 6) is part of the superfamily of transforming growth factor-beta (TGF-β) ligands, participates in iron homeostasis, inhibits invasion by increasing adhesions and cell-cell type interactions and induces angiogenesis directly on vascular endothelial cells. BMP6 is coded by a tumor suppressor gene whose subexpression is related to the development and cancer progression; during neoplastic processes, methylation is the main mechanism by which gene silencing occurs. This work presents a review on the role of BMP6 protein in breast cancer (BC) and other types of cancer. The studies carried out to date suggest the participation of the BMP6 protein in the epithelial-mesenchymal transition (EMT) phenotype, cell growth and proliferation; however, these processes are affected in a variable way in the different types of cancer, the methylated CpG sites in BMP6 gene promoter, as well as the interaction with other proteins could be the cause of such variation.
Collapse
Affiliation(s)
- Andrea Marlene García Muro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Azaria García Ruvalcaba
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Josefina Yoaly Sánchez López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
7
|
Pparg may Promote Chemosensitivity of Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2020; 2020:6452182. [PMID: 32373170 PMCID: PMC7193298 DOI: 10.1155/2020/6452182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022] Open
Abstract
The upregulation of peroxisome proliferator-activated receptor gamma (PPARG) has been shown to increase the chemosensitivity of several human cancers. This study is aimed at studying if PPARG sensitizes hypopharyngeal squamous cell carcinoma (HSCC) in chemotherapeutic treatments and at dissecting possible mechanisms of observed effects. We integrated large-scale literature data and HSCC gene expression data to identify regulatory pathways that link PPARG and chemosensitivity in HSCC. Expression levels of molecules within the PPARG regulatory pathways were compared in 21 patients that underwent chemotherapy for primary HSCC, including 12 chemotherapy-sensitive patients (CSP) and 9 chemotherapy-nonsensitive patients (CNSP). In the CPS group, expression levels of PPARG were higher than that in the CNSP group (log‐fold‐change = 0.50). Structured text mining identified two chemosensitivity-related regulatory pathways driven by PPARG. In the CSP group, expression levels for 7 chemosensitivity-promoting genes were increased, while for 13 chemosensitivity suppressing the gene expression levels were decreased. Our results support the chemosensitivity-promoting role of PPARG in HSCC tumor cells, most likely by affecting both cell proliferation and cell motility pathways.
Collapse
|
8
|
Brunner P, Hastar N, Kaehler C, Burdzinski W, Jatzlau J, Knaus P. AMOT130 drives BMP-SMAD signaling at the apical membrane in polarized cells. Mol Biol Cell 2019; 31:118-130. [PMID: 31800378 PMCID: PMC6960409 DOI: 10.1091/mbc.e19-03-0179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The large isoform of the transmembrane protein angiomotin (AMOT130) controls cell proliferation and migration of many cell types. AMOT130 associates to the actin cytoskeleton and regulates tight-junction maintenance and signaling often via endosomal uptake of polarity proteins at tight junctions. AMOT130 is highly polarized and present only at the apical side of polarized cells. Here we show that bone morphogenetic protein (BMP) growth factor signaling and AMOT function are interlinked in apical-basal polarized cells. BMP6 controls AMOT internalization and endosomal trafficking in epithelial cells. AMOT130 interacts with the BMP receptor BMPR2 and facilitates SMAD activation and target gene expression. We further demonstrate that this effect of AMOT on BMP-SMAD signaling is dependent on endocytosis and specific to the apical side of polarized epithelial and endothelial cells. Knockdown of AMOT reduces SMAD signaling only from the apical side of polarized cells, while basolateral BMP-SMAD signaling is unaffected. This allows for the first time interference with BMP signaling in a polarized manner and identifies AMOT130 as a novel BMP signaling regulator.
Collapse
Affiliation(s)
- Patrizia Brunner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin School of Integrative Oncology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Nurcan Hastar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christian Kaehler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
9
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
10
|
Arndt S, Karrer S, Hellerbrand C, Bosserhoff AK. Bone Morphogenetic Protein-6 Inhibits Fibrogenesis in Scleroderma Offering Treatment Options for Fibrotic Skin Disease. J Invest Dermatol 2019; 139:1914-1924.e6. [PMID: 30878675 DOI: 10.1016/j.jid.2019.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
BMP6 is known to be crucial for regulating embryonic skin development. This study assessed the role of BMP6 in dermal fibrosis. We detected that BMP6 is significantly increased in skin-derived fibroblasts of patients with localized scleroderma. Moreover, it was shown that BMP6 significantly impacts proliferation, migration, cytoskeletal organization, and collagen expression, as well as activity of the major pro-fibrogenic transcription factor AP-1 in dermal fibroblasts. The importance of BMP6 in dermal fibrosis was further confirmed in an in vivo model of dermal fibrosis in which BMP6-deficient mice showed significantly enhanced fibrosis compared with wild-type mice. Conversely, application of recombinant BMP6 significantly ameliorated dermal fibrosis in this preclinical bleomycin-induced sclerosis model, and herewith provided proof of concept for the successful treatment of this fibrotic skin disease.
Collapse
Affiliation(s)
- Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Center, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
11
|
Epithelial‑mesenchymal transition induced by bone morphogenetic protein 9 hinders cisplatin efficacy in ovarian cancer cells. Mol Med Rep 2019; 19:1501-1508. [PMID: 30628686 PMCID: PMC6390058 DOI: 10.3892/mmr.2019.9814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic protein 9 (BMP9) belongs to the transforming growth factor-β (TGF-β) superfamily, and has been reported to promote cancer cell proliferation and epithelial-mesenchymal transition (EMT). Cisplatin (DDP) is the first line treatment for ovarian cancer. However, initiation of EMT confers insensitivity to chemotherapy. The present study aimed to verify and examine the mechanisms underlying the effects of BMP9 on treatment with DDP for ovarian cancer. Prior to treatment with DDP, ovarian cancer cells were exposed to BMP9 for 3 days. Following this, cell viability, apoptosis rate and the extent of DNA damage were evaluated to compare the effects of DDP on BMP9-pretreated and non-pretreated ovarian cancer cells. In addition, EMT marker expression was evaluated by western blotting and immunofluorescence. The results demonstrated that BMP9 pretreatment inhibited the cytotoxicity of DDP on ovarian cancer cells. Additionally, BMP9-pretreated ovarian cancer cells had downregulated expression of the epithelial marker E-cadherin, which was accompanied by an upregulation of the mesenchymal markers N-cadherin, Snail, Slug, and Twist. Taken together, the findings of the present study indicated that BMP9 conferred resistance to DDP in ovarian cancer cells by inducing EMT. The present study provided valuable insight into the mechanisms of chemotherapy in ovarian cancer and highlighted the potential of BMP9 as a novel therapeutic target for improving cisplatin chemosensitivity.
Collapse
|
12
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
13
|
Li Y, Liu C, Tang K, Chen Y, Tian K, Feng Z, Chen J. Novel multi‑kinase inhibitor, T03 inhibits Taxol‑resistant breast cancer. Mol Med Rep 2017; 17:2373-2383. [PMID: 29207185 PMCID: PMC5783483 DOI: 10.3892/mmr.2017.8179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
Activation of kinase-associated signaling pathways is one of the leading causes of various malignant phenotypes in breast tumors. Strategies of drug discovery and development have investigated approaches to target the inhibition of protein kinase signaling. In the current study, the anti‑tumor activities of a novel multi‑kinase inhibitor, T03 were evaluated in breast cancer. T03 inhibited Taxol‑resistant breast cancer cell proliferation and induced cell cycle arrest and apoptosis in vitro and in vivo. The current results demonstrated that T03 downregulated c‑Raf, platelet‑derived growth factor receptor‑β and other kinases, thus inhibited Raf/mitogen‑activated protein kinase kinase/extracellular signal‑regulated kinase and Akt/mechanistic target of rapamycin survival pathways in MCF‑7 and MCF‑7/Taxol xenograft tumors. At a dose of 100 mg/kg, T03 inhibited tumor growth by 62.90 and 59.98% in tumor weight in MX‑1 and MX‑1/T xenograft models, respectively and by 62.60 and 60.22% in MCF‑7 and MCF‑7/T tumors, respectively. These data indicate that the novel multi‑kinase inhibitor, T03, may present as a potential compound to develop novel treatments against breast cancer and Taxol‑resistant breast tumors.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Chunxia Liu
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ke Tang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Yan Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Kang Tian
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zhiqiang Feng
- Department of Synthetic Medicinal Chemistry, Beijing Key Laboratory of Active Substance Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jindong Chen
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Zinovieva OL, Grineva EN, Prokofjeva MM, Karpov DS, Krasnov GS, Prassolov VS, Mashkova TD, Lisitsyn NA. Treatment with anti-cancer agents results in profound changes in lncRNA expression in colon cancer cells. Mol Biol 2017. [DOI: 10.1134/s0026893317050247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
16
|
Wang K, Sun X, Feng HL, Fei C, Zhang Y. DNALK2 inhibits the proliferation and invasiveness of breast cancer MDA-MB-231 cells through the Smad-dependent pathway. Oncol Rep 2016; 37:879-886. [DOI: 10.3892/or.2016.5343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
|
17
|
Li Y, Huang S, Li Y, Zhang W, He K, Zhao M, Lin H, Li D, Zhang H, Zheng Z, Huang C. Decreased expression of LncRNA SLC25A25-AS1 promotes proliferation, chemoresistance, and EMT in colorectal cancer cells. Tumour Biol 2016; 37:14205-14215. [PMID: 27553025 DOI: 10.1007/s13277-016-5254-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/15/2016] [Indexed: 12/28/2022] Open
Abstract
Increasing evidence suggests that long non-coding RNAs (lncRNAs) are aberrantly expressed in colorectal cancer (CRC); however, only few CRC-related lncRNAs have been characterized. In this study, we aimed to dig out potential dysregulated lncRNAs that are highly involved in CRC development. Using a lncRNA-mining approach, we performed lncRNA expression profiling in a large CRC cohort from Gene Expression Ominus (GEO), GSE39582 test series (N = 585). We identified 31 downregulated lncRNAs and 16 upregulated lncRNAs from the GSE39582 test series patients (566 tumor patients and 19 normal controls). The reliability of lncRNA expression profiles was further confirmed by RT-qPCR in carcinoma tissues and paired adjacent normal tissues from 30 CRC patients, also in the serum from 109 CRC patients, and 99 normal individuals. We demonstrated that the expression of SLC25A25-AS1, which has not been reported previously, was significantly decreased in both the tumor tissues (27 out of 30) and serum of CRC patients. SLC25A25-AS1 overexpression significantly inhibited proliferation and colony formation in colorectal cancer cell lines, and downregulation of SLC25A25-AS1 obviously enhanced chemoresistance and promoted EMT process in vitro associated with Erk and p38 signaling pathway activation. Therefore, SLC25A25-AS1 was determined to play a tumor suppressive role in CRC. Our results might provide a lncRNA-based target for CRC treatment.
Collapse
Affiliation(s)
- Yuan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shengkai Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weilong Zhang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kun He
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mei Zhao
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Hong Lin
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongdong Li
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Honggang Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Zhaoxu Zheng
- Department of Abdomen Surgery, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Changzhi Huang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
18
|
Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep 2016; 6:24968. [PMID: 27113436 PMCID: PMC4844967 DOI: 10.1038/srep24968] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family is known to play critical roles in cancer progression. While the dual role of TGF-β is well described, the function of bone morphogenetic proteins (BMPs) is unclear. In this study, we established the involvement of Smad6, a BMP-specific inhibitory Smad, in breast cancer cell invasion. We show that stable overexpression of Smad6 in breast cancer MCF10A M2 cells inhibits BMP signalling, thereby mitigating BMP6-induced suppression of mesenchymal marker expression. Using a zebrafish xenograft model, we demonstrate that overexpression of Smad6 potentiates invasion of MCF10A M2 cells and enhances the aggressiveness of breast cancer MDA-MB-231 cells in vivo, whereas a reversed phenotype is observed after Smad6 knockdown. Interestingly, BMP6 pre-treatment of MDA-MB-231 cells induced cluster formation at the invasive site in the zebrafish. BMP6 also stimulated cluster formation of MDA-MB-231 cells co-cultured on Human Microvascular Endothelial Cells (HMEC)-1 in vitro. Electron microscopy illustrated an induction of cell-cell contact by BMP6. The clinical relevance of our findings is highlighted by a correlation of high Smad6 expression with poor distant metastasis free survival in ER-negative cancer patients. Collectively, our data strongly indicates the involvement of Smad6 and BMP signalling in breast cancer cell invasion in vivo.
Collapse
|
19
|
Oh JH, Deasy JO. A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer. Brief Bioinform 2015. [PMID: 26220932 DOI: 10.1093/bib/bbv053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to the successful treatment of many human cancer types. Increasing evidence has revealed that chemoresistance involves many genes and multiple complex biological mechanisms including cancer stem cells, drug efflux mechanism, autophagy and epithelial-mesenchymal transition. Many studies have been conducted to investigate the possible molecular mechanisms of chemoresistance. However, understanding of the biological mechanisms in chemoresistance still remains limited. We surveyed the literature on chemoresistance-related genes and pathways of multiple cancer types. We then used a curated pathway database to investigate significant chemoresistance-related biological pathways. In addition, to investigate the importance of chemoresistance-related markers in protein-protein interaction networks identified using the curated database, we used a gene-ranking algorithm designed based on a graph-based scoring function in our previous study. Our comprehensive survey and analysis provide a systems biology-based overview of the underlying mechanisms of chemoresistance.
Collapse
|
20
|
Wellberg EA, Rudolph MC, Lewis AS, Padilla-Just N, Jedlicka P, Anderson SM. Modulation of tumor fatty acids, through overexpression or loss of thyroid hormone responsive protein spot 14 is associated with altered growth and metastasis. Breast Cancer Res 2014; 16:481. [PMID: 25472762 PMCID: PMC4303195 DOI: 10.1186/s13058-014-0481-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
Introduction Spot14 (S14), encoded by the THRSP gene, regulates de novo fatty acid synthesis in the liver, adipose, and lactating mammary gland. We recently showed that S14 stimulated fatty acid synthase (FASN) activity in vitro, and increased the synthesis of fatty acids in mammary epithelial cells in vivo. Elevated de novo fatty acid synthesis is a distinguishing feature of many solid tumors compared with adjacent normal tissue. This characteristic is thought to be acquired during tumor progression, as rapidly proliferating cells have a heightened requirement for membrane phospholipids. Further, overexpression of FASN is sufficient to stimulate cell proliferation. While many studies have focused on the FASN enzyme in cancer biology, few studies have addressed the roles of proteins that modify FASN activity, such as S14. Methods Tumor fatty acids were modulated using two mouse models, mouse mammary tumor virus (MMTV)-neu mice overexpressing S14 and MMTV-polyomavirus middle T antigen (PyMT) mice lacking S14, and associations between elevated or impaired fatty acid synthesis on tumor latency, growth, metastasis, and signaling pathways were investigated. We evaluated S14-dependent gene expression profiles in mouse tumors by microarray and used publicly available microarray datasets of human breast tumors. Results S14 overexpression in the MMTV-Neu transgenic model is associated with elevated medium-chain fatty acids, increased proliferation and a shorter tumor latency, but reduced tumor metastasis compared to controls. Loss of S14 in the MMTV-PyMT model decreased FASN activity and the synthesis of medium-chain fatty acids but did not alter tumor latency. Impaired fatty acid synthesis was associated with reduced solid tumor cell proliferation, the formation of cystic lesions in some animals, and decreased phosphorylation of Src and protein kinase B (Akt). Analysis of gene expression in these mouse and human tumors revealed a relationship between S14 status and the expression of genes associated with luminal epithelial differentiation. Conclusions This study demonstrates a potential role for S14 in regulating mammary tumor growth and fatty acid synthesis in vivo. Furthermore, these results suggest that modulating the amount of medium chain fatty acids, by changing the levels of S14, has the potential to impact malignant mammary tumor phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Wellberg
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Michael C Rudolph
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Current Address: Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Andrew S Lewis
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Nuria Padilla-Just
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA. .,Current Address: Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Paul Jedlicka
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Steven M Anderson
- Department of Pathology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA. .,Program in Cancer Biology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Liu G, Liu YJ, Lian WJ, Zhao ZW, Yi T, Zhou HY. Reduced BMP6 expression by DNA methylation contributes to EMT and drug resistance in breast cancer cells. Oncol Rep 2014; 32:581-8. [PMID: 24890613 DOI: 10.3892/or.2014.3224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/23/2014] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic protein 6 (BMP6) is an important regulator of cell growth, differentiation and apoptosis in various types of tumor. In breast cancer, it was considered as a tumor suppressor. Our previous study also confirmed that BMP6 was a critical regulator of breast cancer drug resistance. However, little is known about how its expression is regulated and its mechanisms in breast cancer drug resistance. In the present study, we assessed the DNA methylation regulation of BMP6 based on the presence of a large CpG island in the BMP6 gene promoter. Quantitative DNA methylation analyses showed a significantly increased DNA methylation level in the drug-resistant cell line MCF-7/ADR compared to their parental cells MCF-7. Moreover, the drug-resistant cell line MCF-7/ADR showed an EMT phenotype confirmed by morphology and the expression of EMT marker gene. MCF-7 cells transfected with BMP6-specific shRNA vector also showed an EMT phenotype. The MCF-7/ADR cells treated with the recombinant BMP6 proteins reversed their EMT phenotype. These data indicated that hypermethylation modifications contributed to the regulation of BMP6 and induced an EMT phenotype of breast cancer during the acquisition of drug resistance.
Collapse
Affiliation(s)
- Geng Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan-Jie Liu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Jing Lian
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhi-Wei Zhao
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yi
- Biotherapy Laboratory of Gynecological Oncology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
22
|
Du M, Su XM, Zhang T, Xing YJ. Aberrant promoter DNA methylation inhibits bone morphogenetic protein 2 expression and contributes to drug resistance in breast cancer. Mol Med Rep 2014; 10:1051-5. [PMID: 24866720 DOI: 10.3892/mmr.2014.2276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2) is a growth factor that is involved in the development and progression of various types of cancer. However, the epigenetic regulation of the expression of BMP2 and the association between BMP2 expression and drug resistance in breast cancer remains to be elucidated. The present study reported that the expression of BMP2 was significantly decreased in primary breast cancer samples and the MCF‑7/ADR breast cancer mulitdrug resistance cell line, which was closely associated with its promoter DNA methylation status. The expression of BMP2 in MCF‑7/ADR cells markedly increased when treated with 5‑Aza‑2'‑deoxycytidine. Knockdown of BMP2 by specific small interfering RNA enhanced the chemoresistance of the MCF‑7 breast cancer cell line. These findings indicated that epigenetic silencing of BMP2 in breast cancer may be involved in breast cancer progression and drug resistance, and provided a novel prognostic marker and therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Min Du
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Xiao-Mei Su
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Tao Zhang
- Department of Oncology, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| | - Yong-Jun Xing
- Affiliated Stomatological Hospital, PLA General Hospital of Chengdu Military Region, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
23
|
Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. ScientificWorldJournal 2014; 2014:260348. [PMID: 24550697 PMCID: PMC3914447 DOI: 10.1155/2014/260348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nina Kocevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|