1
|
Tammam MA, Pereira F, Skellam E, Bidula S, Ganesan A, El-Demerdash A. The cytochalasans: potent fungal natural products with application from bench to bedside. Nat Prod Rep 2025; 42:788-841. [PMID: 39989362 DOI: 10.1039/d4np00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Covering: 2000-2023Cytochalasans are a fascinating class of natural products that possess an intricate chemical structure with a diverse range of biological activities. They are known for their complex chemical architectures and are often isolated from various fungi. These compounds have attracted attention due to their potential pharmacological properties, including antimicrobial, antiviral, and anticancer effects. For decades, researchers have studied these molecules to better understand their mechanisms of action and to explore their potential applications in medicine and other fields. This review article aims to shed light over the period 2000-2023 on the structural diversities of 424 fungal derived cytochalasans, insights into their biosynthetic origins, pharmacokinetics and their promising therapeutic potential in drug discovery and development.
Collapse
Affiliation(s)
- Mohamed A Tammam
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Florbela Pereira
- LAQV REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, 2829516 Caparica, Portugal
| | - Elizabeth Skellam
- Department of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76201, USA
| | - Stefan Bidula
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - A Ganesan
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Amr El-Demerdash
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
- Division of Organic Chemistry, Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
- Department of Biochemistry and Metabolism, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
2
|
Das S, Banerjee A, Roy S, Mallick T, Maiti S, De P. Zwitterionic Polysulfobetaine Inhibits Cancer Cell Migration Owing to Actin Cytoskeleton Dynamics. ACS APPLIED BIO MATERIALS 2024; 7:144-153. [PMID: 38150303 DOI: 10.1021/acsabm.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell migration is an essential dynamic process for most living cells, mainly driven by the reorganization of actin cytoskeleton. To control actin dynamics, a molecular architecture that can serve as a nucleator has been designed by polymerizing sulfobetaine methacrylate. The synthesized zwitterionic polymer, poly(sulfobetaine methacrylate) (PZI), effectively nucleates the polymerization process of G-actin and substantially accelerates the rate of polymerization. Isothermal titration calorimetry (ITC) and bioinformatics analysis indicated binding between PZI and monomeric G-actin. Thus, in vitro actin dynamics was studied by dynamic light scattering (DLS), pyrene-actin polymerization assay, and total internal reflection fluorescence microscopy (TIRFM). Furthermore, a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophore-containing monomeric unit was incorporated into the sulfobetaine zwitterionic architecture to visualize the effect of polymer in the cellular environment. The BODIPY-containing zwitterionic sulfobetaine polymer (PZI-F) successfully penetrated the cell and remained in the lysosome with minimal cytotoxicity. Confocal microscopy revealed the influence of this polymer on the cellular actin cytoskeleton dynamics. The PZI-F polymer was successfully able to inhibit the collective migration of the human cervical cancer cell line (HeLa cell) and breast cancer cell line (MDA-MB-231 cell), as confirmed by a wound healing assay. Therefore, polyzwitterionic sulfobetaine could be explored as an inhibitor of cancer cell migration.
Collapse
Affiliation(s)
- Shubham Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Subhadip Roy
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tamanna Mallick
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sankar Maiti
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
3
|
Parthasarathy R, Sruthi D, Jayabaskaran C. Retracted: Isolation and purifications of an ambuic acid derivative compound from marine algal endophytic fungi Talaromyces flavus that induces apoptosis in MDA-MB-231 cancer cells. Chem Biol Drug Des 2023; 102:1308-1326. [PMID: 37246452 DOI: 10.1111/cbdd.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
In recent years, there has been a lot of buzz about the possibilities of marine microflora as a source of new therapeutic drugs. The strong anti-tumor potency of compounds found in marine resources reflects the ocean's enormous potential as a source of anticancer therapeutics. In this present investigation, an ambuic acid derivative anticancer compound was isolated from Talaromyces flavus, and its cytotoxicity and apoptosis induction potential were analyzed. T. flavus was identified through morphological and molecular analysis. The various organic solvent extracts of T. flavus grown on different growth mediums were evaluated for cytotoxicity on different cancer cell lines. The potent cytotoxicity was shown in the ethyl acetate extract of a fungal culture grown in the M1-D medium for 21 days. Furthermore, the anticancer compound was identified using preparative thin layer chromatography, followed by its purification in significant proportions using column chromatography. The spectroscopic and chromatographic analysis revealed that the structure of the purified molecules was an ambuic acid derivative. The ambuic acid derivative compound showed potent cytotoxicity on MDA-MB-231 (breast cancer cells) with an IC50 value of 26 μM and induced apoptosis in the MDA-MB-231 cells in a time-dependent and reactive oxygen species-independent manner.
Collapse
Affiliation(s)
| | - Damodaran Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Chelliah Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Surface morphology live-cell imaging reveals how macropinocytosis inhibitors affect membrane dynamics. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Cytochalasin B Treatment and Osmotic Pressure Enhance the Production of Extracellular Vesicles (EVs) with Improved Drug Loading Capacity. NANOMATERIALS 2021; 12:nano12010003. [PMID: 35009953 PMCID: PMC8746776 DOI: 10.3390/nano12010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have been highlighted as novel drug carriers due to their unique structural properties and intrinsic features, including high stability, biocompatibility, and cell-targeting properties. Although many efforts have been made to harness these features to develop a clinically effective EV-based therapeutic system, the clinical translation of EV-based nano-drugs is hindered by their low yield and loading capacity. Herein, we present an engineering strategy that enables upscaled EV production with increased loading capacity through the secretion of EVs from cells via cytochalasin-B (CB) treatment and reduction of EV intravesicular contents through hypo-osmotic stimulation. CB (10 µg/mL) promotes cells to extrude EVs, producing ~three-fold more particles than through natural EV secretion. When CB is induced in hypotonic conditions (223 mOsm/kg), the produced EVs (hypo-CIMVs) exhibit ~68% less intravesicular protein, giving 3.4-fold enhanced drug loading capacity compared to naturally secreted EVs. By loading doxorubicin (DOX) into hypo-CIMVs, we found that hypo-CIMVs efficiently deliver their drug cargos to their target and induce up to ~1.5-fold more cell death than the free DOX. Thus, our EV engineering offers the potential for leveraging EVs as an effective drug delivery vehicle for cancer treatment.
Collapse
|
6
|
Tropism of Extracellular Vesicles and Cell-Derived Nanovesicles to Normal and Cancer Cells: New Perspectives in Tumor-Targeted Nucleic Acid Delivery. Pharmaceutics 2021; 13:pharmaceutics13111911. [PMID: 34834326 PMCID: PMC8621453 DOI: 10.3390/pharmaceutics13111911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The main advantage of extracellular vesicles (EVs) as a drug carrier system is their low immunogenicity and internalization by mammalian cells. EVs are often considered a cell-specific delivery system, but the production of preparative amounts of EVs for therapeutic applications is challenging due to their laborious isolation and purification procedures. Alternatively, mimetic vesicles prepared from the cellular plasma membrane can be used in the same way as natural EVs. For example, a cytoskeleton-destabilizing agent, such as cytochalasin B, allows the preparation of membrane vesicles by a series of centrifugations. Here, we prepared cytochalasin-B-inducible nanovesicles (CINVs) of various cellular origins and studied their tropism in different mammalian cells. We observed that CINVs derived from human endometrial mesenchymal stem cells exhibited an enhanced affinity to epithelial cancer cells compared to myeloid, lymphoid or neuroblastoma cancer cells. The dendritic cell-derived CINVs were taken up by all studied cell lines with a similar efficiency that differed from the behavior of DC-derived EVs. The ability of cancer cells to internalize CINVs was mainly determined by the properties of recipient cells, and the cellular origin of CINVs was less important. In addition, receptor-mediated interactions were shown to be necessary for the efficient uptake of CINVs. We found that CINVs, derived from late apoptotic/necrotic cells (aCINVs) are internalized by in myelogenous (K562) 10-fold more efficiently than CINVs, and interact much less efficiently with melanocytic (B16) or epithelial (KB-3-1) cancer cells. Finally, we found that CINVs caused a temporal and reversible drop of the rate of cell division, which restored to the level of control cells with a 24 h delay.
Collapse
|
7
|
Liu W, Xie L, He YH, Wu ZY, Liu LX, Bai XF, Deng DX, Xu XE, Liao LD, Lin W, Heng JH, Xu X, Peng L, Huang QF, Li CY, Zhang ZD, Wang W, Zhang GR, Gao X, Wang SH, Li CQ, Xu LY, Liu W, Li EM. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting. Nat Commun 2021; 12:4961. [PMID: 34400640 PMCID: PMC8368010 DOI: 10.1038/s41467-021-25202-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer (EC) is a type of aggressive cancer without clinically relevant molecular subtypes, hindering the development of effective strategies for treatment. To define molecular subtypes of EC, we perform mass spectrometry-based proteomic and phosphoproteomics profiling of EC tumors and adjacent non-tumor tissues, revealing a catalog of proteins and phosphosites that are dysregulated in ECs. The EC cohort is stratified into two molecular subtypes-S1 and S2-based on proteomic analysis, with the S2 subtype characterized by the upregulation of spliceosomal and ribosomal proteins, and being more aggressive. Moreover, we identify a subtype signature composed of ELOA and SCAF4, and construct a subtype diagnostic and prognostic model. Potential drugs are predicted for treating patients of S2 subtype, and three candidate drugs are validated to inhibit EC. Taken together, our proteomic analysis define molecular subtypes of EC, thus providing a potential therapeutic outlook for improving disease outcomes in patients with EC.
Collapse
Affiliation(s)
- Wei Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, China
| | - Lei Xie
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Yao-Hui He
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Yong Wu
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, Guangdong, China
| | - Lu-Xin Liu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Xue-Feng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, China
| | - Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Wan Lin
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing-Hua Heng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Liu Peng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Cheng-Yu Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Da Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Wang
- College of Science, Heilongjiang Institute of Technology, Harbin, Heilongjiang, China
| | - Guo-Rui Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shao-Hong Wang
- Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, Guangdong, China
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, China
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China.
| | - En-Min Li
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, the Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
8
|
Kocsis Á, Pasztorek M, Rossmanith E, Djinovic Z, Mayr T, Spitz S, Zirath H, Ertl P, Fischer MB. Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B. J Biosci Bioeng 2021; 132:310-320. [PMID: 34175199 DOI: 10.1016/j.jbiosc.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022]
Abstract
Owing to their self-renewal and multi-lineage differentiation capability, mesenchymal stem cells (MSCs) hold enormous potential in regenerative medicine. A prerequisite for a successful MSC therapy is the rigorous investigation of their function after in vitro cultivation. Damages introduced to mitochondria during cultivation adversely affect MSCs function and can determine their fate. While it has been shown that microtubules and vimentin intermediate filaments are important for mitochondrial dynamics and active mitochondrial transport within the cytoplasm of MSCs, the role of filamentous actin in this process has not been fully understood yet. To gain a deeper understanding of the interdependence between mitochondrial function and the cytoskeleton, we applied cytochalasin B to disturb the filamentous actin-based cytoskeleton of MSCs. In this study we combined conventional functional assays with a state-of-the-art oxygen sensor-integrated microfluidic device to investigate mitochondrial function. We demonstrated that cytochalasin B treatment at a dose of 16 μM led to a decrease in cell viability with high mitochondrial membrane potential, increased oxygen consumption rate, disturbed fusion and fission balance, nuclear extrusion and perinuclear accumulation of mitochondria. Treatment of MSCs for 48 h ultimately led to nuclear fragmentation, and activation of the intrinsic pathway of apoptotic cell death. Importantly, we could show that mitochondrial function of MSCs can efficiently recover from the damage to the filamentous actin-based cytoskeleton over a period of 24 h. As a result of our study, a causative connection between the filamentous actin-based cytoskeleton and mitochondrial dynamics was demonstrated.
Collapse
Affiliation(s)
- Ágnes Kocsis
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Markus Pasztorek
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Eva Rossmanith
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria
| | - Zoran Djinovic
- ACMIT Gmbh (Austrian Center for Medical Innovation and Technology), Viktor Kaplan-Straße 2/1, Wiener Neustadt 2700, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9 / II + III, Graz 8010, Austria
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Helene Zirath
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Michael B Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, Krems an der Donau 3500, Austria; Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria.
| |
Collapse
|
9
|
Sahoo S, Subban K, Chelliah J. Diversity of Marine Macro-Algicolous Endophytic Fungi and Cytotoxic Potential of Biscogniauxia petrensis Metabolites Against Cancer Cell Lines. Front Microbiol 2021; 12:650177. [PMID: 34194402 PMCID: PMC8236939 DOI: 10.3389/fmicb.2021.650177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Hypersaline environments are known to support diverse fungal species from various orders. The production of secondary metabolites is one of the strategies that fungi adopt to thrive under such extreme environments, bringing up the stress tolerance response. Some such unique secondary metabolites also exhibit clinical significance. The increasing prevalence of drug resistance in cancer therapy demands further exploration of these novel bioactive compounds as cancer therapeutics. In the present study, a total of 31 endophytic fungi harboring inside red, green, and brown marine algae have been isolated and identified. The maximum likelihood analysis and diversity indices of fungal endophytes revealed the phylogenetic relationship and species richness. The genus Aspergillus was found to be the dominating fungus, followed by Cladosporium spp. All the isolated endophytic fungal extracts were tested for their cytotoxicity against HeLa and A431 cancer cell lines. Nine isolates were further analyzed for their cytotoxic activity from the culture filtrate and mycelia extract. Among these isolates, Biscogniauxia petrensis showed potential cytotoxicity with CC50 values of 18.04 and 24.85 μg/ml against HeLa and A431 cells, respectively. Furthermore, the media and solvent extraction optimization revealed the highest cytotoxic active compounds in ethyl acetate extract from the potato dextrose yeast extract broth medium. The compound-induced cell death via apoptosis was 50-60 and 45% when assayed using propidium iodide-live/dead and loss of mitochondrial membrane potential assay, respectively, in HeLa cells. Four bioactive fractions (bioassay-based) were obtained and analyzed using chromatography and spectroscopy. This study reports, for the first time, the cytotoxic activity of an endophytic fungal community that was isolated from marine macro-algae in the Rameswaram coastal region of Tamil Nadu, India. In addition, B. petrensis is a prominent apoptotic agent, which can be used in pharmaceutical applications as a therapeutic.
Collapse
|
10
|
Su X, Zhou H, Bao G, Wang J, Liu L, Zheng Q, Guo M, Zhang J. Nanomorphological and mechanical reconstruction of mesenchymal stem cells during early apoptosis detected by atomic force microscopy. Biol Open 2020; 9:bio048108. [PMID: 32086253 PMCID: PMC7132806 DOI: 10.1242/bio.048108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Stem cell apoptosis exists widely in embryonic development, tissue regeneration, repair, aging and pathophysiology of disease. The molecular mechanism of stem cell apoptosis has been extensively investigated. However, alterations in biomechanics and nanomorphology have rarely been studied. Therefore, an apoptosis model was established for bone marrow mesenchymal stem cells (BMSCs) and the reconstruction of the mechanical properties and nanomorphology of the cells were investigated in detail. Atomic force microscopy (AFM), scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), flow cytometry and Cell Counting Kit-8 analysis were applied to assess the cellular elasticity modulus, geometry, nanomorphology, cell surface ultrastructure, biological viability and early apoptotic signals (phosphatidylserine, PS). The results indicated that the cellular elastic modulus and volume significantly decreased, whereas the cell surface roughness obviously increased during the first 3 h of cytochalasin B (CB) treatment. Moreover, these alterations preceded the exposure of biological apoptotic signal PS. These findings suggested that cellular mechanical damage is connected with the apoptosis of BMSCs, and the alterations in mechanics and nanomorphology may be a sensitive index to detect alterations in cell viability during apoptosis. The results contribute to further understanding of apoptosis from the perspective of cell mechanics.
Collapse
Affiliation(s)
- Xuelian Su
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Haijing Zhou
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Guangjie Bao
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Jizeng Wang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou 730000, China
| | - Lin Liu
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Qian Zheng
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Manli Guo
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| | - Jinting Zhang
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Oral Diseases of Gansu, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
11
|
Soon CF, Sundra SA, Zainal N, Sefat F, Ahmad MK, Nayan N, Tee KS, Cheong SC. Development of a Microdilution Device with One-step Dilution of Cytochalasin-B for Treating ORL-48 Cancer Microtissues. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Czamara K, Karnas E, Majka Z, Wojcik T, Zuba-Surma EK, Baranska M, Kaczor A. Impact of cell cycle dynamics on pathology recognition: Raman imaging study. JOURNAL OF BIOPHOTONICS 2019; 12:e201800152. [PMID: 30294876 DOI: 10.1002/jbio.201800152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Confocal Raman imaging combined with fluorescence-activated cell sorting was used for in vitro studies of cell cultures to look at biochemical differences between the cells in different cell phases. To answer the question what is the impact of the cell cycle phase on discrimination of pathological cells, the combination of several factors was checked: a confluency of cell culture, the cell cycle dynamics and development of pathology. Confluency of 70% and 100% results in significant phenotypic cell changes that can be also diverse for different batches. In 100% confluency cultures, cells from various phases become phenotypically very similar and their recognition based on Raman spectra is not possible. For lower confluency, spectroscopic differences can be found between cell cycle phases (G0 /G1 , S and G2 /M) for control cells and cells incubated with tumor necrosis factor alpha (TNF-α), but when the mycotoxin cytochalasin B is used the Raman signatures of cell phases are not separable. Generally, this work shows that heterogeneity between control and inflamed cells can be bigger than heterogeneity between cell cycle phases, but it is related to several factors, and not always can be treated as a rule.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zuzanna Majka
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ewa K Zuba-Surma
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Su X, Zhang L, Kang H, Zhang B, Bao G, Wang J. Mechanical, nanomorphological and biological reconstruction of early‑stage apoptosis in HeLa cells induced by cytochalasin B. Oncol Rep 2018; 41:928-938. [PMID: 30535459 PMCID: PMC6313055 DOI: 10.3892/or.2018.6921] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/22/2018] [Indexed: 12/29/2022] Open
Abstract
There is a growing interest in the fact that mechanical signals may be as important as biological signals in evaluating cell viability. To investigate the alterations in biomechanics, nanomorphology and biological apoptotic signals during early apoptosis, an apoptosis model was established for cervical cancer HeLa cells induced by cytochalasin B (CB). The cellular mechanical properties, geometry, morphology and expression of key apoptotic proteins were systematically analyzed. The findings indicated a marked decline in cellular elastic modulus and volume and a considerable increase in surface roughness occurring prior to the activation of biological apoptosis signals (such as phosphatidylserine exposure or activation of CD95/Fas). Moreover, the depolymerization of filamentous actin aggravated the intracellular crowding degree, which induced the redistribution of different-sized protein molecules and protrusions across the cell membrane arising from excluded volume interactions. Statistical analysis revealed that the disassembly of the actin cytoskeleton was negatively correlated with the cellular elastic modulus and volume, but was positively correlated with surface roughness and CD95/Fas activation. The results of the present study suggest that compared with biological signals, mechanical and geometrical reconstruction is more sensitive during apoptosis and the increase in cell surface roughness arises from the redistribution of biophysical molecules. These results contribute to our in-depth understanding of the apoptosis mechanisms of cancer cells mediated by cytochalasin B.
Collapse
Affiliation(s)
- Xuelian Su
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ling Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong Kang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Baoping Zhang
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Guangjie Bao
- Key Laboratory of Stomatology of The State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P.R. China
| | - Jizeng Wang
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
14
|
Chang HT, Chou CT, Chen IS, Yu CC, Lu T, Hsu SS, Shieh P, Jan CR, Liang WZ. Mechanisms underlying effect of the mycotoxin cytochalasin B on induction of cytotoxicity, modulation of cell cycle, Ca 2+ homeostasis and ROS production in human breast cells. Toxicology 2016; 370:1-19. [PMID: 27640744 DOI: 10.1016/j.tox.2016.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/04/2023]
Abstract
Cytochalasin B, a cell-permeable mycotoxin isolated from the fungus Phoma spp., shows a wide range of biological effects, among which its potent antitumor activity has raised great interests in different models. However, the cytotoxic activity of cytochalasin B and its underlying mechanisms have not been elucidated in breast cells. This study examined the effect of cytochalasin B on MCF 10A human breast epithelial cells and ZR-75-1 human breast cancer cells. Cytochalasin B (10-20μM) concentration-dependently induced cytotoxicity, cell cycle arrest, and [Ca2+]i rises in ZR-75-1 cells but not in MCF 10A cells. In ZR-75-1 cells, cytochalasin B triggered G2/M phase arrest through the modulation of CDK1, cyclin B1, p53, p27 and p21 expressions. The Ca2+ signal response induced by cytochalasin B was reduced by removing extracellular Ca2+ and was inhibited by the store-operated Ca2+ channel blocker 2-APB and SKF96365. In Ca2+-free medium, cytochalasin B induced Ca2+ release through thapsigargin-sensitive endoplasmic reticulum stores. Moreover, cytochalasin B increased H2O2 levels but reduced GSH levels. The apoptotic effects evoked by cytochalasin B were partially inhibited by prechelating cytosolic Ca2+ with BAPTA-AM and the antioxidant NAC. Together, in ZR-75-1 cells but not in MCF 10A cells, cytochalasin B activated Ca2+-associated mitochondrial apoptotic pathways that involved G2/M phase arrest and ROS signaling. Furthermore, cytochalasin B induced [Ca2+]i rises by releasing Ca2+ from the endoplasmic reticulum and causing Ca2+ influx through 2-APB or SKF96365-sensitive store-operated Ca2+ entry. Our findings provide new insights into the possible application of cytochalasin B in human breast cancer therapy.
Collapse
Affiliation(s)
- Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan, ROC
| | - I-Shu Chen
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Chia-Cheng Yu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, 813, Taiwan, ROC
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, ROC,.
| |
Collapse
|
15
|
Wang YY, Chang XL, Tao ZY, Wang XL, Jiao YM, Chen Y, Qi WJ, Xia H, Yang XD, Sun X, Shen JL, Fang Q. Optimized codon usage enhances the expression and immunogenicity of DNA vaccine encoding Taenia solium oncosphere TSOL18 gene. Mol Med Rep 2015; 12:281-8. [PMID: 25738605 DOI: 10.3892/mmr.2015.3387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Cysticercosis due to larval cysts of Taenia solium, is a serious public health problem affecting humans in numerous regions worldwide. The oncospheral stage-specific TSOL18 antigen is a promising candidate for an anti-cysticercosis vaccine. It has been reported that the immunogenicity of the DNA vaccine may be enhanced through codon optimization of candidate genes. The aim of the present study was to further increase the efficacy of the cysticercosis DNA vaccine; therefore, a codon optimized recombinant expression plasmid pVAX1/TSOL18 was developed in order to enhance expression and immunogenicity of TSOL18. The gene encoding TSOL18 of Taenia solium was optimized, and the resulting opt-TSOL18 gene was amplified and expressed. The results of the present study showed that the codon-optimized TSOL18 gene was successfully expressed in CHO-K1 cells, and immunized mice vaccinated with opt-TSOL18 recombinant expression plasmids demonstrated opt‑TSOL18 expression in muscle fibers, as determined by immunohistochemistry. In addition, the codon-optimized TSOL18 gene produced a significantly greater effect compared with that of TSOL18 and active spleen cells were markedly stimulated in vaccinated mice. 3H-thymidine incorporation was significantly greater in the opt-TSOL18 group compared with that of the TSOL18, pVAX and blank control groups (P<0.01). In conclusion, the eukaryotic expression vector containing the codon-optimized TSOL18 gene was successfully constructed and was confirmed to be expressed in vivo and in vitro. The expression and immunogenicity of the codon-optimized TSOL18 gene were markedly greater compared with that of the un-optimized gene. Therefore, these results may provide the basis for an optimized TSOL18 gene vaccine against cysticercosis.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xue-Lian Chang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zhi-Yong Tao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Li Wang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yu-Meng Jiao
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Yong Chen
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Wen-Juan Qi
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hui Xia
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiao-Di Yang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xin Sun
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Ji-Long Shen
- Department of Pathobiology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiang Fang
- Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
16
|
Chang CY, Leu JD, Lee YJ. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 2015; 16:4095-120. [PMID: 25689427 PMCID: PMC4346946 DOI: 10.3390/ijms16024095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch, Taipei 106, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
17
|
Trendowski M, Mitchell JM, Corsette CM, Acquafondata C, Fondy TP. Chemotherapy with cytochalasin congeners in vitro and in vivo against murine models. Invest New Drugs 2015; 33:290-9. [PMID: 25563824 PMCID: PMC4387261 DOI: 10.1007/s10637-014-0203-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/13/2022]
Abstract
Background Despite inherent differences between the cytoskeletal networks of malignant and normal cells, and the clinical antineoplastic activity of microtubule-directed agents, there has yet to be a microfilament-directed agent approved for clinical use. One of the most studied microfilament-directed agents has been cytochalasin B, a mycogenic toxin known to disrupt the formation of actin polymers. Therefore, this study sought to expand on our previous work with the microfilament-directed agent, along with other less studied cytochalasin congeners. Materials and Methods We determined whether cytochalasin B exerted significant cytotoxic effects in vitro on adherent M109 lung carcinoma and B16BL6 and B16F10 murine melanomas, or on suspension P388/ADR murine leukemia cells. We also examined whether cytochalasin B, its reduced congener 21, 22-dihydrocytochalasin B (DiHCB), or cytochalasin D could synergize with doxorubicin (ADR) against ADR-resistant P388/ADR leukemia cells, and produce significant cytotoxicity in vitro. For in vivo characterization, cytochalasins B and D were administered intraperitoneally (i.p.) to Balb/c mice challenged with drug sensitive P388-S or multidrug resistant P388/ADR leukemias. Results Cytochalasin B demonstrated higher cytotoxicity against adherent lung carcinoma and melanoma cells than against suspension P388/ADR leukemia cells, as assessed by comparative effects on cell growth, and IC50 and IC80 values. Isobolographic analysis indicated that both cytochalasin B and DiHCB demonstrate considerable drug synergy with ADR against ADR-resistant P388/ADR leukemia, while cytochalasin D exhibits only additivity with ADR against the same cell line. In vivo, cytochalasins B and D substantially increased the life expectancy of mice challenged with P388/S and P388/ADR leukemias, and in some cases, produced long-term survival. Conclusion Taken together, it appears that cytochalasins have unique antineoplastic activity that could potentiate a novel class of chemotherapeutic agents.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA,
| | | | | | | | | |
Collapse
|
18
|
Trendowski M, Mitchell JM, Corsette CM, Acquafondata C, Fondy TP. Chemotherapy in vivo against M109 murine lung carcinoma with cytochalasin B by localized, systemic, and liposomal administration. Invest New Drugs 2015; 33:280-9. [PMID: 25560541 PMCID: PMC4387252 DOI: 10.1007/s10637-014-0202-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/16/2014] [Indexed: 02/04/2023]
Abstract
Cytochalasin B is a potentially novel microfilament-directed chemotherapeutic agent that prevents actin polymerization, thereby inhibiting cytokinesis. Although cytochalasin B has been extensively studied in vitro, only limited data are available to assess its in vivo potential. Cytochalasin B was administered to Balb/c mice challenged i.d. with M109 murine lung carcinoma to determine whether the agent could affect an established i.d. tumor when the compound is administered s.c. in the region of the i.d. tumor, but not in direct contact with it. Cytochalasin B was also administered either i.p. or s.c. at a distant site or i.v. to determine whether it could affect the long-term development of an established i.d. tumor. Cytochalasin B was then liposome encapsulated to determine whether the maximum tolerated dose (MTD) of the compound could be increased, while reducing immunosuppression that we have previously characterized. Liposomal cytochalasin B was also administered to mice challenged i.d. with M109 lung carcinoma to assess its chemotherapeutic efficacy. The results can be summarized as follows: 1) cytochalasin B substantially delayed the growth of i.d. M109 tumor nodules, inhibited metastatic progression in surrounding tissues, and produced long-term cures in treated mice; 2) liposomal cytochalasin B increased the i.p. MTD by more than 3-fold, produced a different distribution in tissue concentrations, and displayed antitumor effects against M109 lung carcinoma similar to non-encapsulated cytochalasin B. These data show that cytochalasin B exploits unique chemotherapeutic mechanisms and is an effective antineoplastic agent in vivo in pre-clinical models, either in bolus form or after liposome encapsulation.
Collapse
Affiliation(s)
- Matthew Trendowski
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA,
| | | | | | | | | |
Collapse
|
19
|
Bułdak RJ, Skonieczna M, Bułdak Ł, Matysiak N, Mielańczyk Ł, Wyrobiec G, Kukla M, Michalski M, Żwirska-Korczala K. Changes in subcellular localization of visfatin in human colorectal HCT-116 carcinoma cell line after cytochalasin B treatment. Eur J Histochem 2014; 58:2408. [PMID: 25308845 PMCID: PMC4194393 DOI: 10.4081/ejh.2014.2408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
The aim of the study was to assess the expression and subcellular localization of visfatin in HCT-116 colorectal carcinoma cells after cytokinesis failure using Cytochalasin B (CytB) and the mechanism of apoptosis of cells after CytB. We observed translocation of visfatin’s antigen in cytB treated colorectal carcinoma HCT-116 cells from cytosol to nucleus. Statistical and morphometric analysis revealed significantly higher area-related numerical density visfatin-bound nano-golds in the nuclei of cytB-treated HCT-116 cells compared to cytosol. Reverse relation to visfatin subcellular localization was observed in un-treated HCT-116 cells. The total amount of visfatin protein and visfatin mRNA level in HCT-116 cells was also decreased after CytB treatment. Additionally, CytB significantly decreased cell survival, increased levels of G2/M fractions, induced bi-nuclei formation as well as increased reactive oxygen species (ROS) level in HCT-116 cells. CytB treatment showed cytotoxic effect that stem from oxidative stress and is connected with the changes in the cytoplasmic/nuclear amount of visfatin in HCT-116 cells.
Collapse
|