1
|
Harden ME, Munger K. Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins. Virology 2017; 507:192-198. [PMID: 28448850 DOI: 10.1016/j.virol.2017.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Many tumors, including cervical carcinoma, show dysregulated expression of the microRNA processing machinery, specifically DROSHA and DICER. Some cervical cancers exhibit chromosome 5p amplifications and DROSHA is the most significantly upregulated transcript and is observed in all tumors with 5p gain. DROSHA and DICER mRNA levels, however, are higher in HPV positive cancer lines than in an HPV negative cervical carcinoma line. We show that high-risk HPV E6/E7 expression in HPV negative C33A cervical carcinoma cells and primary human epithelial cell causes increased expression of DROSHA and DICER mRNA and protein. Most importantly, many DROSHA regulated microRNAs are dysregulated in HPV16 E6/E7 expressing cells. These results suggest that increased DROSHA levels contribute to HPV16 E6/E7 dysregulation of cellular microRNA expression.
Collapse
Affiliation(s)
- Mallory E Harden
- Program in Virology, Division of Medical Sciences, Harvard Medical School Boston, MA 02115, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
2
|
Zhang Y, Dong W, Wang J, Cai J, Wang Z. Human omental adipose-derived mesenchymal stem cell-conditioned medium alters the proteomic profile of epithelial ovarian cancer cell lines in vitro. Onco Targets Ther 2017; 10:1655-1663. [PMID: 28360526 PMCID: PMC5364023 DOI: 10.2147/ott.s129502] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been reported to participate in the formation of supportive tumor stroma. The abilities of proliferation and invasion of human epithelial ovarian cancer (EOC) cells were significantly enhanced when indirectly cocultured with human omental adipose-derived MSCs (O-ADSCs) in vitro. However, the underlying mechanisms remain poorly understood. In this study, EOC cells were cultured with conditioned medium (CM) from O-ADSCs (O-ADSC), and the effect of O-ADSC CM on the proteomic profile of EOC cells was assessed by two-dimensional gel electrophoresis (2-DE), followed by liquid chromatography and tandem mass spectrometry. The 2-DE assays revealed a global increase in protein expression in the EOC cells treated with CM. Nine proteins were identified from 11 selected protein spots with differential expression after treatment with CM from O-ADSCs. All the nine proteins have been linked to carcinoma and apoptosis, and the migration ability of tumor cells can be regulated by these proteins. Moreover, the upregulation of prohibitin and serine/arginine-rich splicing factor 1 in EOC cells treated with CM was further confirmed by quantitative real-time polymerase chain reaction. These results suggest that O-ADSCs affect the proteomic profile of EOC cells via paracrine mechanism in favor of EOC progression.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Junjie Wang
- Department of Obstetrics and Gynecology, Renhe Hospital, China Three Gorges University, Yichang, People's Republic of China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
3
|
Depletion of Dicer promotes epithelial ovarian cancer progression by elevating PDIA3 expression. Tumour Biol 2016; 37:14009-14023. [PMID: 27492604 DOI: 10.1007/s13277-016-5218-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022] Open
Abstract
Dicer is an essential component of the microRNA (miRNA) processing machinery whose low expression is associated with advanced stage and poor clinical outcome in epithelial ovarian cancer. To investigate the functional relevance of Dicer in epithelial ovarian cancer and to identify its downstream effectors, two-dimensional gel electrophoresis combined with mass spectrometry was used for proteomic profiling. Dicer depletion promoted ovarian cancer cell proliferation and migration accompanied by a global upregulation of proteins. Twenty-six proteins, 7 upregulated and 19 downregulated, were identified. The functions of the identified proteins and their interactions were bioinformatically analyzed. Among them, protein disulfide-isomerase A3 (PDIA3) was considered to be a potential target protein of Dicer. PDIA3 repression by siRNA could significantly relieve the proliferation- and migration-promoting effect mediated by Dicer depletion in vitro and in vivo. Moreover, the miRNAs targeting PDIA3 were decreased in cells with Dicer depletion. In summary, low Dicer expression contributes to epithelial ovarian cancer progression by elevating PDIA3 expression.
Collapse
|
5
|
Cai J, Li T, Huang B, Cheng H, Ding H, Dong W, Xiao M, Liu L, Wang Z. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples. PLoS One 2014; 9:e95974. [PMID: 24776823 PMCID: PMC4002476 DOI: 10.1371/journal.pone.0095974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022] Open
Abstract
Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.
Collapse
Affiliation(s)
- Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bangxing Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Henghui Cheng
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|