1
|
Esteban JJ, Mason JR, Kaminski J, Ramachandran R, Luyt LG. A survey of stapling methods to increase affinity, activity, and stability of ghrelin analogues. RSC Med Chem 2024; 15:254-266. [PMID: 38283230 PMCID: PMC10809362 DOI: 10.1039/d3md00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
The growth hormone secretagogue receptor (GHSR) is a G protein-coupled receptor which regulates various important physiological and pathophysiological processes in the body such as energy homeostasis, growth hormone secretion and regulation of appetite. As a result, it has been postulated as a potential therapeutic target for the treatment of cancer cachexia and other metabolic disorders, as well as a potential imaging agent target for cancers and cardiovascular diseases. Ghrelin is the primary high affinity endogenous ligand for GHSR and has limited secondary structure in solution, which makes it proteolytically unstable. This inherent instability in ghrelin can be overcome by incorporating helix-inducing staples that stabilize its structure and improve affinity and activity. We present an analysis of different stapling methods at positions 12 and 16 of ghrelin(1-20) analogues with the goal of increasing proteolytic stability and to retain or improve affinity and activity towards the GHSR. Ghrelin(1-20) analogues were modified with a wide range of chemical staples, including a lactam staple, triazole staple, hydrocarbon staple, Glaser staple, and xylene-thioether staple. Once synthesized, the receptor affinity and α-helicity were measured using competitive binding assays and circular dichroism spectroscopy, respectively. Generally, an increase in alpha-helicity using a flexible staple linker led to improved affinity towards GHSR. Ghrelin(1-20) analogues with a lactam, triazole, and hydrocarbon staple resulted in helical analogues with stronger affinity towards GHSR than unstapled ghrelin(1-20), a compound that lacks helical character. Compounds were also investigated for their agonist activity through β-arrestin 1 & 2 recruitment BRET assays and for their metabolic stability through serum stability analysis.
Collapse
Affiliation(s)
- Juan J Esteban
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Julia R Mason
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Jakob Kaminski
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario 1151 Richmond Street London Ontario N6A 5C1 Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- Departments of Medical Imaging and Oncology, University of Western Ontario 1151 Richmond Street London Ontario N6A 3K7 Canada
- London Regional Cancer Program, Lawson Health Research Institute 800 Commissioners Road East London Ontario N6A 4L6 Canada
| |
Collapse
|
2
|
Leng Y, Zhao C, Yan G, Xu S, Yang Y, Gong T, Li X, Li C. Ghrelin enhances cisplatin sensitivity in HO-8910 PM human ovarian cancer cells. J Ovarian Res 2021; 14:162. [PMID: 34789301 PMCID: PMC8597245 DOI: 10.1186/s13048-021-00907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to platinum-based chemotherapy is one of the crucial problems in ovarian cancer treatment. Ghrelin, a widely distributed peptide hormone, participates in a series of cancer progression. The aim of this study is to determine whether ghrelin influences the sensitivity of ovarian cancer to cisplatin, and to demonstrate the underlying mechanism. METHODS The anti-tumor effects of ghrelin and cisplatin were evaluated with human ovarian cancer cells HO-8910 PM in vitro or in vivo. Cell apoptosis and cell cycle were analyzed via flow cytometry assay. The signaling pathway and the expression of cell cycle protein were analyzed with Western Blot. RESULTS Our results showed that treatment with ghrelin specifically inhibited cell proliferation of HO-8910 PM and sensitized these cells to cisplatin via S phase cell cycle arrest, and enhanced the inhibitory effect of cisplatin on tumor growth of HO-8910 PM derived xenografts in vivo. Treatment with ghrelin inhibited the expression of p-Erk1/2 and p-p38, which was opposite the effect of cisplatin. However, under the treatment of ghrelin, cisplatin treatment exhibited a stronger effect on inhibiting P21 expression, upregulating p-CDK1 and cyclin B1 expression, and blocking cell cycle progression. Mechanistically, ghrelin promoted S phase cell cycle arrest and upregulated p-CDK1 and cyclin B1 expression induced by cisplatin via inhibition of p38. CONCLUSION This study revealed a specifically inhibitory effect of ghrelin on platinum-resistance via suppressing p-P38 and subsequently promoting p-CDK1 mediated cell cycle arrest in HO-8910 PM.
Collapse
Affiliation(s)
- Yun Leng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 518101, China.,School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Can Zhao
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Shuangyue Xu
- School of Medicine, Xiamen University, Xiamen, 361100, China
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Ting Gong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China.
| | - Chenglin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China. .,School of Medicine, Xiamen University, Xiamen, 361100, China.
| |
Collapse
|
3
|
Protective and Healing Effects of Ghrelin and Risk of Cancer in the Digestive System. Int J Mol Sci 2021; 22:ijms221910571. [PMID: 34638910 PMCID: PMC8509076 DOI: 10.3390/ijms221910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility, and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of inflammatory processes. This review summarizes the recent findings concerning animal and human data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer, have been presented.
Collapse
|
4
|
Hu XL, Zhu YJ, Hu CH, You L, Wu J, He XY, Huang WJ, Wu ZH. Ghrelin Affects Gastric Cancer Progression by Activating AMPK Signaling Pathway. Biochem Genet 2021; 59:652-667. [PMID: 33442814 DOI: 10.1007/s10528-020-10022-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
As the endogenous ligand for the GH secretagogue receptor (GHSR), Ghrelin is aberrant expressed in multiple malignant carcinoma, and involved in regulating a number of progression of cancer, especially in metastasis and proliferation. However, the precise role of Ghrelin in tumorigenesis of gastric cancer (GC) is still poorly understood. In this study, we extensively investigated the roles and mechanisms of Ghrelin in human gastric cancer. Ghrelin levels in cancer tissues and cell lines were analyzed by immunohistochemistry, qRT-PCR, and Western blot. Functional studies were performed after Ghrelin overexpressed or knockdown in AGS cell line. Cell proliferation was evaluated in by MTT and clone formation assays. The wound healing and Transwell system were used to assess the cell migration and invasive ability of GC cells. Cell apoptosis was detected by flow cytometry, and metabolic assays were performed to reveal the function of Warburg effect in the process. Ghrelin was lowly expressed in gastric cancer tissues and cell lines. Overexpression of Ghrelin inhibited gastric cancer cell proliferation, migration, invasion, and promoted apoptosis by activating the AMPK pathway, while D-[lys3]-GHRP-6 (a GHSR agonist) treatment relieved the effect, promoting tumorigenesis. Ghrelin knockdown increased the glucose uptake and lactic acid release, suggesting that Ghrelin elicited an anti-Warburg effect via AMPK pathway to inhibit gastric tumorigenesis. Ghrelin inhibits cell proliferation, migration, and invasion by eliciting an anti-Warburg effect via AMPK signaling pathway in gastric cancer cells.
Collapse
Affiliation(s)
- Xiao-Lin Hu
- Department of Internal Medicine, Southwest University Hospital, Chongqing, 400715, People's Republic of China
| | - Yong-Jun Zhu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Li You
- Department of Pharmacy, Southwest University Hospital, Chongqing, 400715, People's Republic of China
| | - Juan Wu
- Department of Internal Medicine, Southwest University Hospital, Chongqing, 400715, People's Republic of China
| | - Xiao-Yan He
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Wen-Jie Huang
- Health Management Center, Southwest University Hospital, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, People's Republic of China
| | - Zong-Hui Wu
- Health Management Center, Southwest University Hospital, No. 2, Tiansheng Road, Beibei District, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
5
|
Fooladi S, Akbari H, Abolhassani M, Sadeghi E, Fallah H. Can Estradiol and Ghrelin Play a Protective Role in Epithelial Ovarian Cancer Incidence in Postmenopausal Women? Arch Med Res 2020; 52:324-331. [PMID: 33250215 DOI: 10.1016/j.arcmed.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The present study aimed to investigate the association between estradiol, n-octanoylated, des-octanoylated, total ghrelin, and ghrelin/des-octanoylated ghrelin ratio levels along with pathological parameters and epithelial ovarian cancer (EOC) odds in postmenopausal women. MATERIALS AND METHODS A case-control study was carried out on 45 patients with EOC and 33 age-matched postmenopausal women as the control group. Plasma levels of estradiol, n-octanoylated, des-octanoylated, and total ghrelin were measured by ELISA method. RESULTS Estradiol's plasma levels were significantly higher in patients with EOC than in control women (p <0.001). Although the ratio levels of n-octanoylated, des-octanoylated, total ghrelin, and ghrelin/des-octanoylated ghrelin were not associated with EOC in logistic regression models, estradiol levels were significantly related to the increase in EOC odds (OR: 1.083, 95% CI: 1.037-1.13, p <0.001). However, estradiol levels in the two first quartiles (Q1, Q2) were associated with decreased odds of EOC (OR: 0.011, 95% CI: 0.001-0.118, p <0.001, and OR: 0.030, 95% CI: 0.003-0.284, p = 0.002, respectively). For those patients in the third quartile of plasma des-octanoylated and total ghrelin compared to those in the highest (Q4), the multivariate odds ratios of EOC were respectively 0.192 and 0.25. CONCLUSION In conclusion, higher concentrations of des-octanoylated and total ghrelin might be associated with the decreased EOC odds. Furthermore, the findings suggest that high levels of estradiol might be a potential odds factor in EOC, however, lower estradiol levels may have a protective effect on EOC development.
Collapse
Affiliation(s)
- Saba Fooladi
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Moslem Abolhassani
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Sadeghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fallah
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Kanda R, Miyagawa Y, Wada-Hiraike O, Hiraike H, Fukui S, Nagasaka K, Ryo E, Fujii T, Osuga Y, Ayabe T. Rikkunshito attenuates induction of epithelial-mesenchymal switch via activation of Sirtuin1 in ovarian cancer cells. Endocr J 2020; 67:379-386. [PMID: 31839623 DOI: 10.1507/endocrj.ej19-0368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rikkunshito, a traditional Japanese herbal medicine, improves appetite via activation of gastrointestinal hormone ghrelin pathway. The function of ghrelin is mediated by growth hormone secretagogue receptor (GHSR1a), and ghrelin has been known to possess diverse physiological functions including growth suppression of some cancer cells. Considering that increased ghrelin signaling by Rikkunshito could enhance sirtuin1 (SIRT1) activity in nervous system, we aimed to investigate the effect of Rikkunshito in ovarian cancer cells. Ovarian cancer cell lines were treated with Rikkunshito, and cellular viability, gene expressions and epithelial-mesenchymal transition (EMT) status were investigated. To investigate the involvement of SIRT1 by Rikkunshito in SKOV3 cancer cells, endogenous expression of SIRT1 was depleted using small interfering RNA (siRNA). Treatment with Rikkunshito elevated ghrelin, GHSR1a and SIRT1, while cellular viability was decreased. The treatment of Rikkunshito also inhibited cellular migration and invasion status in a dose-dependent manner, and these effects were translated to the enhanced EMT status, although the role of SIRT1 was not determined. Our study revealed a novel function of Rikkunshito in enhancing EMT status of ovarian cancer cells. Therefore, we would like to propose that Rikkunshito may be used as a novel adjunctive therapy in chemotherapy of ovarian cancer because platinum-based chemotherapy frequently used for the treatment of ovarian cancer inevitably impairs appetite.
Collapse
Affiliation(s)
- Ranka Kanda
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yuko Miyagawa
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Haruko Hiraike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shiho Fukui
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Eiji Ryo
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo, Japan
| | - Takuya Ayabe
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Yuan MJ, Wang T. The new mechanism of Ghrelin/GHSR-1a on autophagy regulation. Peptides 2020; 126:170264. [PMID: 31981593 DOI: 10.1016/j.peptides.2020.170264] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
Autophagy is associated with several diseases. In recent years, accumulating evidence has suggested that ghrelin pathway exerts a protective effect by regulating autophagy. This review aims to assess the potential role and use of ghrelin as a new treatment for obesity, cardiovascular diseases, nonalcoholic fatty liver disease (NFALD), neurodegenerative diseases, and tissue damage associated with autophagy. Ghrelin reduces the basal expression of autophagy-related genes in obesity-associated type 2 diabetes and ghrelin level changes in obesity, heart failure, and NFALD as well as altered autophagy. Ghrelin and its receptor GHSR-1 activation induce the phosphorylation of ERK1/2 and the induction of PI-3 kinase (PI3 K) and phosphorylation of Akt. In the myocardium and hypothalamic NPY/AgRP neurons, ghrelin increases levels of the intracellular energy sensor AMPK and enhances autophagy, protecting cardiac ischemia and inducing neural stem cells. Nonetheless, ghrelin activates the PI3 K/Akt/Bcl-2 pathway and inhibits the activation of autophagy, such as tissues injured by sepsis or doxorubicin. In conclusion, endogenous ghrelin system could be considered as a new target or treatment for metabolism disorders, cardiac diseases, neurodegenerative diseases, and tissue injuries.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060 Wuhan, China.
| | - Tao Wang
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Badi RM, Khaleel EF, El-Bidawy MH, Satti HH, Mostafa DG. Exendin-4 Induces Cytotoxic Autophagy in Two Ovarian Cancer Cell Lines through Inhibition of Mtorc1 Mediated by Activation of AMPK and Suppression of Akt. Folia Biol (Praha) 2020; 66:186-203. [PMID: 34087975 DOI: 10.14712/fb2020066050186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activation of autophagy suppresses ovarian cancer (OC). This in vitro study investigated whether the anti-tumour effect of exendin-4 against OC involves modulation of autophagy and figured out the possible mechanisms of action. SKOV-3 and OVCAR-3 cells (1 × 105/ml) were cultured in DMEM medium and treated with exendin-4 in the presence or absence of chloroquine (CQ), an autophagy inhibitor. In some cases, cells were also treated with exendin- 4 with or without pre-treatment with compound C (CC), an AMPK inhibitor, or insulin-like growth factor (IGF-1), a PI3K/Akt activator. Exendin-4 increased expression of beclin-1 and LC3I/II, suppressed expression of p62, reduced cell survival, migration, and invasion, and increased cell apoptosis and LDH release in both SKOV-3 and OVCAR-3 cells. Besides, exendin-4 reduced phosphorylation of mTORC1, 6SK, 4E-BP1, and Akt but increased phosphorylation of AMPK in both cell lines. These effects were associated with down-regulation of Bcl-2, suppression of nuclear phosphorylation of NF-κB p65, and increased expression of Bax and cleaved caspases 3/8. Chloroquine completely prevented the inhibitory effects of exendin-4 on the cell survival, Bcl-2, NF-κB, and cell invasiveness and abolished its stimulation of cell apoptosis and LDH release. Moreover, only the combined treatment with IGF-1 and CC completely abolished the observed effect of exendin-4 on the expression of beclin-1, LC3I/II, p62, as well as on cell survival, apoptosis, and LDH release. Exendin-4 exhibits a potent anti-tumour cytotoxic effect in SKOV-3 and OVCAR-3 cells by activating the markers of autophagy, mediated by activation of AMPK and inhibition of Akt.
Collapse
Affiliation(s)
- R M Badi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - E F Khaleel
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M H El-Bidawy
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of BMS, Division of Physiology, College of Medicine, Prince Sattam Ibn Abdulaziz University, Al-Kharj, Saudi Arabia
| | - H H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - D G Mostafa
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Lalonde T, Fowkes MM, Hou J, Thibeault PE, Milne M, Dhanvantari S, Ramachandran R, Luyt LG. Single Amino Acid Replacement in G-7039 Leads to a 70-fold Increase in Binding toward GHS-R1a. ChemMedChem 2019; 14:1762-1766. [PMID: 31469937 DOI: 10.1002/cmdc.201900466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/28/2019] [Indexed: 12/29/2022]
Abstract
The growth hormone secretagogue receptor type 1a (GHS-R1a) is a class A rhodopsin-like G protein coupled receptor (GPCR) that is expressed in a variety of human tissues and is differentially expressed in benign and malignant prostate cancer. Previously, the peptidomimetic [1-Nal4 ,Lys5 (4-fluorobenzoyl)]G-7039 was designed as a molecular imaging tool for positron emission tomography (PET). However, this candidate was a poor binder (IC50 =69 nm), required a lengthy four-step radiosynthesis, and had a cLogP above 8. To address these challenges, we now report on changes targeted at the 4th position of G-7039. A 2-fluoropropionic acid (2-FPA) group was added on to Lys5 to determine the potential binding affinity of the [18 F]-2-FP radiolabeled analogue, which could be prepared by simplified radiochemistry. Lead candidate [Tyr4 ,Lys5 (2-fluoropropionyl)]G-7039 exhibited an IC50 of 0.28 nm and low picomolar activity toward GHS-R1a. Molecular docking revealed a molecular basis for this picomolar affinity.
Collapse
Affiliation(s)
- Tyler Lalonde
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada
| | - Milan M Fowkes
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada
| | - Jinqiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, ON, P7B 6V4, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 216, London, ON, N6A 5C1, Canada
| | - Mark Milne
- London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| | - Savita Dhanvantari
- Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada.,Department of Medical Biophysics, University of Western Ontario, Medical Sciences Building, Room M407, London, ON, N6A 5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, Medical Sciences Building, Room 216, London, ON, N6A 5C1, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 5B7, Canada.,Imaging Program, Lawson Health Research Institute, 750 Base Line Road East, London, ON, N6C 2R5, Canada.,London Regional Cancer Program, Lawson Health Research Institute, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.,Department of Oncology, University of Western Ontario, 800 Commissioners Road East, London, ON, N6A 5W9, Canada
| |
Collapse
|
10
|
Zhu J, Yao J, Huang R, Wang Y, Jia M, Huang Y. Ghrelin promotes human non-small cell lung cancer A549 cell proliferation through PI3K/Akt/mTOR/P70S6K and ERK signaling pathways. Biochem Biophys Res Commun 2018. [PMID: 29524402 DOI: 10.1016/j.bbrc.2018.03.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ghrelin is a gastric acyl-peptide that plays an important role in cell proliferation. In the present study, we explored the role of ghrelin in A549 cell proliferation and the possible molecular mechanisms. We found that ghrelin promotes A549 cell proliferation, knockdown of the growth hormone secretagogue receptor (GHSR) attenuated A549 cell proliferation caused by ghrelin. Ghrelin induced the rapid phosphorylation of phosphatidylinositol 3-kinase (PI3K), Akt, ERK, mammalian target of rapamycin (mTOR) and P70S6K. PI3K inhibitor (LY 294002), ERK inhibitor (PD98059) and mTOR inhibitor (Rapamycin) inhibited ghrelin-induced A549 cell proliferation. Moreover, GHSR siRNA inhibited phosphorylation of PI3K, Akt, ERK, mTOR and P70S6K induced by ghrelin. Akt and mTOR/P70S6K phosphorylation was inhibited by LY 294002 but not by PD98059. These results indicate that ghrelin promotes A549 cell proliferation via GHSR-dependent PI3K/Akt/mTOR/P70S6K and ERK signaling pathways.
Collapse
Affiliation(s)
- Jianhua Zhu
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China.
| | - Jianfeng Yao
- Quanzhou Maternal and Child Health Care Hospital, Quanzhou, Fujian, PR China
| | - Rongfu Huang
- The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian, PR China
| | - Yueqin Wang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Min Jia
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| | - Yan Huang
- Laboratory of Clinical Immunology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, PR China
| |
Collapse
|
11
|
Lalonde T, Shepherd TG, Dhanvantari S, Luyt LG. Stapled ghrelin peptides as fluorescent imaging probes. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tyler Lalonde
- Department of Chemistry; University of Western Ontario; London Ontario N6A 5B7 Canada
| | - Trevor G. Shepherd
- London Regional Cancer Program; London Ontario N6A 4L6 Canada
- Department of Obstetrics and Gynecology; University of Western Ontario; London Ontario N6A 5B7 Canada
| | - Savita Dhanvantari
- Imaging Program, Lawson Health Research Institute; London Ontario N6A 4V2 Canada
- Department of Medical Biophysics; University of Western Ontario; London Canada
- Department of Pathology; University of Western Ontario; London Canada
- Department of Laboratory Medicine; University of Western Ontario; London Canada
| | - Leonard G. Luyt
- Department of Chemistry; University of Western Ontario; London Ontario N6A 5B7 Canada
- London Regional Cancer Program; London Ontario N6A 4L6 Canada
- Department of Oncology; University of Western Ontario; London Ontario N6A 5B7 Canada
- Department of Medical Imaging; University of Western Ontario; London Ontario N6A 5B7 Canada
| |
Collapse
|
12
|
Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J, Wei B. Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget 2018; 7:83476-83487. [PMID: 27825125 PMCID: PMC5347782 DOI: 10.18632/oncotarget.13080] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved cellular self-digestion pathway for maintenance of homeostasis under basal and stressed conditions. Autophagy plays pivotal roles in the pathogenesis of many diseases, such as aging-related diseases, autoimmune diseases, cardiovascular diseases, and cancers. Of special note is that accumulating data suggest an intimate relationship between autophagy and ovarian carcinoma. Autophagy is well identified to act as either as a tumor-suppressor or as a tumor-promoter in ovarian carcinoma. The exact function of autophagy in ovarian carcinoma is highly dependent on the circumstances of cancer including hypoxic, nutrient-deficient, chemotherapy and so on. However, the mechanism underlying autophagy associated with ovarian carcinoma remains elusive, the precise role of autophagy in ovarian carcinoma also remains undetermined. In this review, we tried to sum up and discuss recent research achievements of autophagy in ovarian cancer. Moreover, waves of novel therapies ways for ovarian carcinoma based on the functions of autophagy were collected.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yu Zhang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Wenyan Wang
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Enxue Song
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yijun Fan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
13
|
Current Evidence for a Role of Neuropeptides in the Regulation of Autophagy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5856071. [PMID: 28593174 PMCID: PMC5448050 DOI: 10.1155/2017/5856071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/30/2017] [Indexed: 12/14/2022]
Abstract
Neuropeptides drive a wide diversity of biological actions and mediate multiple regulatory functions involving all organ systems. They modulate intercellular signalling in the central and peripheral nervous systems as well as the cross talk among nervous and endocrine systems. Indeed, neuropeptides can function as peptide hormones regulating physiological homeostasis (e.g., cognition, blood pressure, feeding behaviour, water balance, glucose metabolism, pain, and response to stress), neuroprotection, and immunomodulation. We aim here to describe the recent advances on the role exerted by neuropeptides in the control of autophagy and its molecular mechanisms since increasing evidence indicates that dysregulation of autophagic process is related to different pathological conditions, including neurodegeneration, metabolic disorders, and cancer.
Collapse
|
14
|
Sinha RA, Singh BK, Yen PM. Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocr Rev 2017; 38:69-102. [PMID: 27901588 DOI: 10.1210/er.2016-1103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is a cellular quality control and energy-providing process that is under strict control by intra- and extracellular stimuli. Recently, there has been an exponential increase in autophagy research and its implications for mammalian physiology. Autophagy deregulation is now being implicated in many human diseases, and its modulation has shown promising results in several preclinical studies. However, despite the initial discovery of autophagy as a hormone-regulated process by De Duve in the early 1960s, endocrine regulation of autophagy still remains poorly understood. In this review, we provide a critical summary of our present understanding of the basic mechanism of autophagy, its regulation by endocrine hormones, and its contribution to endocrine and metabolic homeostasis under physiological and pathological settings. Understanding the cross-regulation of hormones and autophagy on endocrine cell signaling and function will provide new insight into mammalian physiology as well as promote the development of new therapeutic strategies involving modulation of autophagy in endocrine and metabolic disorders.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Brijesh K Singh
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| | - Paul M Yen
- Program of Cardiovascular and Metabolic Disorders, Duke-National University of Singapore Medical School Singapore, Singapore 169016
| |
Collapse
|
15
|
Xu J, Xiao D, Lin QH, He JF, Liu WY, Xie N, Feng F, Qu W. Cytotoxic Tirucallane and Apotirucallane Triterpenoids from the Stems of Picrasma quassioides. JOURNAL OF NATURAL PRODUCTS 2016; 79:1899-1910. [PMID: 27494664 DOI: 10.1021/acs.jnatprod.5b01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phytochemical investigation on the stems of Picrasma quassioides led to the isolation of a novel compound, picraquassin A (1), with an unprecedented 21,24-cycloapotirucallane skeleton, and four new apotirucallane-type triterpenoids (2-5), together with 15 new tirucallane-type triterpenoids (6-20) and 10 known tirucallane-type triterpenoids (21-30). To our knowledge, this is the first report demonstrating the presence of apotirucallane-type triterpenoids in the genus Picrasma. The structures of the new compounds were determined based on spectroscopic data interpretation. Cytotoxicities of the isolated compounds were evaluated using three human cancer cell lines, MKN-28, A-549, and MCF-7. Compound 2 exhibited the most potent activity against MKN-28 cells with an IC50 value of 2.5 μM. Flow cytometry and Western blot analysis revealed that 2 induces the apoptosis of MKN-28 cells via activating caspase-3/-9, while increasing Bax and Bad and decreasing Bcl-2 expression levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Xie
- Jiangxi Qingfeng Pharmaceutical Corporation , Ganzhou 341000, People's Republic of China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University , Nanjing 211198, People's Republic of China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University , Nanjing 211198, People's Republic of China
| |
Collapse
|
16
|
Okada Y, Sugita Y, Ohshima K, Morioka M, Komaki S, Miyoshi J, Abe H. Signaling of ghrelin and its functional receptor, the growth hormone secretagogue receptor, promote tumor growth in glioblastomas. Neuropathology 2016; 36:535-543. [DOI: 10.1111/neup.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/19/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Yousuke Okada
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
- Department of Neurosurgery; Kurume University School of Medicine; Kurume Japan
| | - Yasuo Sugita
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Koichi Ohshima
- Department of Pathology; Kurume University School of Medicine; Kurume Japan
| | - Motohiro Morioka
- Department of Neurosurgery; Kurume University School of Medicine; Kurume Japan
| | - Satoru Komaki
- Department of Neurosurgery; Kurume University School of Medicine; Kurume Japan
| | - Junko Miyoshi
- Department of Neurosurgery; Kurume University School of Medicine; Kurume Japan
| | - Hideyuki Abe
- Department of Surgical Pathology; Kurume University School of Medicine; Kurume Japan
| |
Collapse
|
17
|
Bai RX, Wang WP, Zhao PW, Li CB. Ghrelin attenuates the growth of HO-8910 ovarian cancer cells through the ERK pathway. Braz J Med Biol Res 2016; 49:S0100-879X2016000300602. [PMID: 26840702 PMCID: PMC4763821 DOI: 10.1590/1414-431x20155043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is one of the most common causes of death from gynecologic tumors and is an important public health issue. Ghrelin is a recently discovered bioactive peptide that acts as a natural endogenous ligand of the growth hormone secretagogue receptor (GHSR). Several studies have identified the protective effects of ghrelin on the mammalian reproductive system. However, little research has been done on the effects of ghrelin on ovarian cancer cells, and the underlying mechanisms of these effects. We sought to understand the potential involvement of mitogen-activated protein kinases (MAPKs) in ghrelin-mediated inhibition of growth of the ovarian line HO-8910. We applied different concentrations of ghrelin and an inhibitor of the ghrelin receptor (D-Lys3-GHRP-6) to HO-8910 cells and observed the growth rate of cells and changes in phosphorylation of the MAPKs ERK1/2, JNK and p38. We discovered that ghrelin-induced apoptosis of HO-8910 cells was though phosphorylated ERK1/2, and that this phosphorylation (as well as p90rsk phosphorylation) was mediated by the GHSR. The ERK1/2 pathway is known to play an essential part in the ghrelin-mediated apoptosis of HO-8910 cells. Hence, our study suggests that ghrelin inhibits the growth of HO-8910 cells primarily through the GHSR/ERK pathway.
Collapse
Affiliation(s)
- R X Bai
- Department of Clinical Laboratory, Inner Mongolia People's Hospital, Hohhot, China
| | - W P Wang
- Graduate College, Inner Mongolia Medical University, Hohhot, China
| | - P W Zhao
- Microbiology and Immunology Laboratory, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - C B Li
- School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
18
|
Cecarini V, Bonfili L, Cuccioloni M, Keller JN, Bruce-Keller AJ, Eleuteri AM. Effects of Ghrelin on the Proteolytic Pathways of Alzheimer's Disease Neuronal Cells. Mol Neurobiol 2015; 53:3168-3178. [PMID: 26033219 DOI: 10.1007/s12035-015-9227-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
Ghrelin is an orexigenic hormone with a role in the onset and progression of neurodegenerative disorders. It has been recently associated to Alzheimer's disease (AD) for its neuroprotective and anti-apoptotic activity. In the present study, we dissected the effect of ghrelin treatment on the two major intracellular proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy, in cellular models of AD (namely SH-SY5Y neuroblastoma cells stably transfected with either the wild-type AβPP gene or the 717 valine-to-glycine AβPP-mutated gene). Ghrelin showed a growth-promoting effect on neuronal cells inducing also time-dependent modifications of the growth hormone secretagogue receptor type 1 (GHS-R1) expression. Interestingly, we demonstrated for the first time that ghrelin was able to activate the proteasome in neural cells playing also a role in the interplay between the UPS and autophagy. Our data provide a novel mechanism by which circulating hormones control neural homeostasis through the regulation of proteolytic pathways implicated in AD.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy.
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Massimiliano Cuccioloni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Anna Maria Eleuteri
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| |
Collapse
|
19
|
Wang J, Guo S, Han L, Fang M, Wang L, Bartsch JW, Li J. Correlation of ghrelin and growth hormone secretagogue receptor expression with clinical features in human pituitary adenomas. Exp Ther Med 2015; 9:1909-1914. [PMID: 26136913 DOI: 10.3892/etm.2015.2341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/03/2015] [Indexed: 12/12/2022] Open
Abstract
Ghrelin, as a brain-gut peptide, has growth hormone (GH)-releasing and appetite-inducing activities and a widespread tissue distribution. Furthermore, ghrelin is an endogenous ligand of the GH secretagogue receptor (GHSR), and both ghrelin and GHSR are expressed in the pituitary; however, the data regarding the expression of ghrelin and GHSR in pituitary adenomas are divergent and conflicting. In the present study, therefore, the expression of ghrelin and GHSR was examined in the full spectrum of human pituitary adenoma subtypes (n=34) and in normal pituitary tissue (n=3). The mRNA and protein expression levels were quantified using a competitive reverse transcription-polymerase chain reaction and western blotting and the correlation of the results with the clinical parameters was assessed. mRNA and protein expression of ghrelin and GHSR was detected in all samples with the highest mean level in GH adenomas, a moderate level in clinically non-functioning adenomas and the lowest level in adrenocorticotropin adenomas. A significant correlation between the ghrelin and GHSR mRNA expression levels was observed in the GH adenomas (n=12) (r=0.8435, P=0.0006). The ghrelin mRNA expression level in the GH adenomas correlated positively with the basic serum GH level (n=12) (r=0.6488, P=0.0225). Furthermore, the mean level of ghrelin mRNA expression was significantly higher in invasive adenomas than in noninvasive adenomas (P<0.01). Collectively, the results of the study provided evidence that ghrelin and GHSR are expressed in the various subtypes of pituitary adenoma, with specific overexpression in GH adenomas. The study suggests that the binding of ghrelin to GHSR promotes the secretion of GH and plays an important role in the development of GH adenomas via autocrine and/or paracrine effects.
Collapse
Affiliation(s)
- Junwen Wang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Songbo Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Affiliated to Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Lin Han
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College Affiliated to Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Mingbo Fang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Lei Wang
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| | - Jörg W Bartsch
- Department of Neurosurgery, Marburg University, D-35033 Marburg, Germany
| | - Jun Li
- Department of Neurosurgery, Wuhan Central Hospital, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
20
|
Ghrelin and its emerging role in tumor pathogenesis and progression. Obes Res Clin Pract 2015; 9:184-5. [DOI: 10.1016/j.orcp.2015.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 12/18/2022]
|