1
|
Yadav S, Neha, Arman M, Kumar A, Sonkar AB, Shrivastava NK, Singh J, Ansari MN, Aldossary SA, Saeedan AS, Kaithwas G. Antiproliferative effect of ketogenic diet on hormone independent mammary gland carcinoma via harnessing glucose metabolism: In-vitro and In-vivo investigations. J Genet Eng Biotechnol 2025; 23:100480. [PMID: 40390482 PMCID: PMC11979919 DOI: 10.1016/j.jgeb.2025.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 05/21/2025]
Abstract
The ketogenic diet (KD) has been emphasized as a complementary strategy for management of several clinical conditions including cancer. Therefore, in this study we explored the effect of KD in mammary gland carcinoma through in-vitro and in-vivo studies. In-vitro studies were performed on MCF-7 and MDA-MB-231 cells with different experimental conditions such as high glucose (HG), low glucose (LG) and no glucose(NG) in conjugation with β-hydroxy butyrate(BHB) treatment. The MTT assay revealed that glucose deprivation alongwith BHB(10 mM) treatment significantly reduces the viability of MDA-MB-231 cells as compared to MCF-7 cells. Moreover, apoptotic and antiproliferative potential (via AO/EtBr, JC-1, cell migration assay) were analyzed on MDA-MB-231 cells which indicate that NG with BHB treatment induce cell death.Furthermore, we investigated the in-vivo anticancer efficacy against DMBA-induced mammary gland carcinoma in female Wistar rats. KD treatment effectively restored autonomic dysfunction, altered mammary gland morphology and histology; as evident through decrease in lobules, alveolar bud, restoration of the surface architecture and loss of tumor micro-vessels. The altered levels of antioxidants such as TBARs(0.85 ± 0.19 nM of MDA/µg of protein), SOD(2.26 ± 0.05 U/µg of protein), PC(41.36 ± 2.94 µM/µg of protein), GSH(10.58 ± 3.08 µM/µg of protein) were also restored after KD treatment. Overall findings suggested, that deprived glucose concentration alongwith BHB can impart antiproliferative and apoptotic effect as observed through MDA-MB-231cells. Moreover, KD also diminished the carcinogenic effects of DMBA in albino wistar rats. In view of above, the KD was utilised as adjuvant therapy in the management of mammary gland carcinoma,possibly by providing unfavourable microenvironment for highly proliferating tumour cells due deficiency of quickly available glucose.
Collapse
Affiliation(s)
- Sneha Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Neha
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Mohammad Arman
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Anurag Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Neeraj Kumar Shrivastava
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Jyoti Singh
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, Clinical Pharmacy College, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, U.P. 226 025, India.
| |
Collapse
|
2
|
Parry RA, Mir IA, Bhat BA, Hussain MU, Ashraf S, Zaman GS, Bashir N, Vats S, Ganie SA. Exploring the cytotoxic effects of bioactive compounds from Alcea rosea against stem cell driven colon carcinogenesis. Sci Rep 2025; 15:5892. [PMID: 39966572 PMCID: PMC11836269 DOI: 10.1038/s41598-025-89714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Seven compounds were isolated from ethyl acetate extract of Alcea rosea and were examined for their cytotoxicity against HCT116, HT29 and SW480 colon cancer cells. It was found that two compounds (C4 and C5) exhibited strong anti-colon cancer activities. These two compounds were used to study their properties that include MTT activity (with IC50 of C4 as 74.71, 129.0 and 131.4 µg/ml in HCT116, HT29 and SW480 respectively, whereas IC50 of C5 as 128.1, 168.4 and 225.8 µg/ml in HCT116, HT29 and SW480 cells respectively), colony formation activity, wound healing activity, spheroid formation activity, DAPI-PI staining, acridine-orange and ethidium bromide staining, ROS measurement, and rhodamine-123 staining in both HCT116 and HT29 colon cancer cells. Both the compounds showed significant increase in apoptosis as visualized by 4',6-diamidino-2-phenylindol/propidium iodide (DAPI-PI) and acridine orange/ethidium bromide (AO/EtBr) staining. The induction of apoptosis was further confirmed by the expressions of cleaved PARP and caspase 3. ROS generation and its effect on MMP were measured by staining cells with Dichloro-dihydro-fluorescein diacetate (DCFH-DA) and Rhodamine. Expression levels of EMT associated markers like Cyclin D1, Slug, Vimentin, and E-Cadherin were also studied. Both the compounds down regulate protein levels of Slug, Cyclin D1, and Vimentin in a concentration-dependent manner. Eeffect of C4 and C5 compounds on key signaling protein like Wnt3a, Notch1, and Shh were evaluated. Additionally, mRNA levels of these genes were also analyzed. C4 exhibited the best binding affinity when docked with Shh and Wnt3a and Notch1. Similarly, C5 exhibited - 8.8, -8.2 and - 7.6 kcal⋅mol- 1 with Shh, Wnt3a and Notch1. The present findings provide insight and immense scientific support and integrity to a piece of indigenous knowledge. However, validation in living organisms is necessary before progressing to clinical trials and advancing it into a marketable pharmaceutical product.
Collapse
Affiliation(s)
- Ruhban Ansar Parry
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India
| | - Irfan Ahmad Mir
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | | | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Suhail Ashraf
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India
| | - Gaffar Sarwar Zaman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Nasreena Bashir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Sharad Vats
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Vanasthali, Rajasthan, 304022, India.
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Kang BK, Zhu Z, Wang J, Zhou J, Yu S, Zhou X, Zhao Z, Xie A, Lu L, Yang J. Maintenance of adult stem cells from human minor salivary glands via the Wnt signaling pathway. Stem Cell Res Ther 2023; 14:220. [PMID: 37620905 PMCID: PMC10464143 DOI: 10.1186/s13287-023-03445-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Xerostomia is a salivary gland dysfunction that negatively impacts the life quality of patients; however, there is no effective treatment for xerostomia. Bioengineered organs, generated using stem cells obtained from newborn salivary glands and ligated injury models, are a new organ transplantation strategy that could be feasible for xerostomia treatment. Reconstruction of salivary gland organoids by seed cells obtained from human minor salivary glands will offer theoretical fundaments and technology support for clinical application and organ regeneration research. Herein, we aimed to propose a new method for culturing and enriching adult human minor salivary gland stem cells in vitro in a three-dimensional (3D) environment via Wnt signaling activation. METHODS Obtained and characterized human minor salivary gland stem cells (hMSGSCs) with self-organization ability were 3D-cultured to generate organoids. We examined hMSGSCs proliferation and colony formation using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Telomerase reverse transcriptase staining, flow cytometry, immunofluorescence assay, RNA isolation, RT-PCR, and qPCR were performed to assess hMSGSCs structure and the function of reconstructive organoids in vitro. RESULTS hMSGSCs showed typical epithelial-like characteristics, such as positive for CD49f and cell KRT expression. hMSGSCs served as adult stem cells in salivary glands and could differentiate into acinar and duct cells. Upon the addition of Noggin, CHIR99021, and Wnt3A to the 3D culture system, hMSGSCs showed higher LGR5 expression and decreased AMY1B and MUC5B expression. Therefore, the Wnt and bone morphogenetic protein (BMP) pathways are important in regulating hMSGSCs self-organization and differentiation. CONCLUSIONS We showed that the stem cell properties of hMSGSCs in a 3D culture system can be maintained by activating the Wnt signaling pathway and inhibiting the BMP signaling pathway. Our findings contribute new insights on salivary gland organoid generation in vitro.
Collapse
Affiliation(s)
- Bo Kyoung Kang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China
| | - Jian Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shun Yu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, 214041, China
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University 3Rd Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Abdik H. Antineoplastic effects of erufosine on small cell and non-small cell lung cancer cells through induction of apoptosis and cell cycle arrest. Mol Biol Rep 2022; 49:2963-2971. [PMID: 35015224 DOI: 10.1007/s11033-022-07117-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung cancer (LC) is the most common types of cancer worldwide and is marked by high mortality rate. LC is classified into two major types due to their molecular and histological properties; non-small cell lung cancer (NSCLC) A549 and small cell lung cancer (SCLC). Currently, surgery, chemotherapy and radiation therapy are the most common treatment options of LC. However, the survival rate of LC is still very poor. Therefore, new treatment strategies are urgently needed. Erufosine (ErPC3) is a novel alkylphosphocholine and inhibits the translocation of Akt to the plasma membrane. METHODS AND RESULTS In the current study, the effects of ErPC3 in NSCLC cell line A549 and SCLC cell line DMS 114 in terms of cell viability, induction of apoptosis, cell cycle phase distribution, gene and protein expression levels, and migration capacity were investigated. 25 µM ErPC3 exhibited dose-dependent cytotoxicity against in both cancer cells. However, DMS 114 was more sensitive to ErPC3 than A549. Similarly, ErPC3 induced apoptotic cell ratio in DMS114 was significantly greater than A549. 25 µM ErPC3 caused the accumulation of both cell in G2/M phase. The levels of BCL-2 were downregulated and CASPASE 3-7 and BAX were upregulated while p-Akt levels were reduced in A549 and DMS 114 cells treated with 25 µM ErPC3. Besides, ErPC3 displayed anti-migratory effect on A549 and DMS 114. CONCLUSION These findings suggest that ErPC3 may be a promising novel therapeutic candidate for treatment of LC. ErPC3 treatment merits further investigation as potential agent against LC.
Collapse
Affiliation(s)
- Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey.
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
5
|
Avsar Abdik E, Abdik H, Turan D, Sahin F, Berger MR, Kaleagasioglu F. Dual Akt and Bcl-2 inhibition induces cell-type specific modulation of apoptotic and autophagic signaling in castration resistant prostate cancer cell lines. Mol Biol Rep 2021; 48:7755-7765. [PMID: 34647221 DOI: 10.1007/s11033-021-06786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cancer cell survival depends on the cross-regulation between apoptosis and autophagy which share common signaling pathways including PI3K/Akt/mTOR and Bcl-2. The aim of this study was to elucidate the modulation patterns between apoptosis and autophagy following dual inhibition by Akt inhibitor erufosine and Bcl-2 inhibitor ABT-737 in castration-resistant prostate cancer (CRPC) cell lines, PC-3 (Bax+) and DU-145 (Bax-). METHODS AND RESULTS Cell cycle progression, apoptotic and autophagic signaling were examined by flow cytometry, multi-caspase assay, Hoechst staining, acridine orange staining of acidic vesicular organelles (AVOs), qRT-PCR and Western Blot. Dual inhibition increased G2/M arrest in PC-3 and DU-145, but not in the healthy prostate epithelium cells, PNT-1A. Only in PC-3, dual inhibition induced synergistic apoptotic and additive autophagic effects. In DU-145 and PNT-1A cells, ABT-737 did not display any remarkable effect on multicaspase activity and erufosine and ABT-737, neither alone nor in combination induced AVOs. By dual inhibition, AKT, BCL-2 and NF-κB gene expressions were downregulated in PC-3, both ATG-5 and BECLIN-1 gene expressions were upregulated in DU-145 but Beclin-1 protein expression was substantially reduced in both CRPC cells. Dual inhibition-induced synergistic multicaspase activation in PC-3 degrades and disrupts autophagic activity of Beclin-1, enhancing caspase-dependent apoptosis. However, in DU-145, following dual inhibition, rate of multicaspase induction and apoptosis are lower but autophagy is completely abolished despite markedly increased BECLIN-1 gene expression. CONCLUSION In conclusion, antineoplastic drug combinations may display cell-type specific modulation of apoptotic and autophagic signaling and lack of protective autophagy may not necessarily indicate increased chemotherapeutic sensitivity in heterogenous tumor subpopulations.
Collapse
Affiliation(s)
- Ezgi Avsar Abdik
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Hüseyin Abdik
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Duygu Turan
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Koç University, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Ferda Kaleagasioglu
- Department of Pharmacology and Clinical Pharmacology, Istinye University Faculty of Medicine, Topkapı Campus, Maltepe Neighbourhood, Teyyareci Sami St., No. 3, Zeytinburnu, Istanbul, Turkey.
| |
Collapse
|
6
|
Toshkova RA, Todorova KS, Tzoneva RD. Antineoplastic effects of erufosine on Graffi myeloid tumour in hamsters. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cancer has become one of the most significant health challenges for both human and veterinary medicine. The present study examined the antineoplastic and antimetastatic activity of the novel membrane-targeting anticancer agent erufosine. The antitumour effects of erufosine on Graffi virus-induced experimental myeloid tumour in hamsters was assessed by histopathological methods and evaluation of some biometric parameters of tumour growth. Two schemes of experimental antitumour therapy were applied - one that started simultaneously with the tumour transplantation and a second one that started after the appearance of palpable tumours. The results demonstrated protective antitumour effect of erufosine, expressed by decrease of transplantability, tumour growth inhibition, suppression of metastatic activity and extension of mean survival time. The effectivity of the experimental therapy was more pronounced when it was started simultaneously with the transplantation of the tumour cells. Presented results suggest that erufosine is a promising drug candidate for treatment of haematological malignances.
Collapse
Affiliation(s)
- R. A. Toshkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - K. S. Todorova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - R. D. Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Kaleağasıoğlu F, Ali DM, Berger MR. Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators. Front Pharmacol 2020; 11:547. [PMID: 32410999 PMCID: PMC7201076 DOI: 10.3389/fphar.2020.00547] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a highly conserved multistep process and functions as passage for degrading and recycling protein aggregates and defective organelles in eukaryotic cells. Based on the nature of these materials, their size and degradation rate, four types of autophagy have been described, i.e. chaperone mediated autophagy, microautophagy, macroautophagy, and selective autophagy. One of the major regulators of this process is mTOR, which inhibits the downstream pathway of autophagy following the activation of its complex 1 (mTORC1). Alkylphosphocholine (APC) derivatives represent a novel class of antineoplastic agents that inhibit the serine-threonine kinase Akt (i.e. protein kinase B), which mediates cell survival and cause cell cycle arrest. They induce autophagy through inhibition of the Akt/mTOR cascade. They interfere with phospholipid turnover and thus modify signaling chains, which start from the cell membrane and modulate PI3K/Akt/mTOR, Ras-Raf-MAPK/ERK and SAPK/JNK pathways. APCs include miltefosine, perifosine, and erufosine, which represent the first-, second- and third generation of this class, respectively. In a high fraction of human cancers, constitutively active oncoprotein Akt1 suppresses autophagy in vitro and in vivo. mTOR is a down-stream target for Akt, the activation of which suppresses autophagy. However, treatment with APC derivatives will lead to dephosphorylation (hence deactivation) of mTOR and thus induces autophagy. Autophagy is a double-edged sword and may result in chemotherapeutic resistance as well as cancer cell death when apoptotic pathways are inactive. APCs display differential autophagy induction capabilities in different cancer cell types. Therefore, autophagy-dependent cellular responses need to be well understood in order to improve the chemotherapeutic outcome.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Department of Pharmacology, Faculty of Medicine, Near East University, Mersin, Turkey
| | - Doaa M. Ali
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pharmacology and Experimental Therapeutics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Wang K, Zhu TN, Zhao RJ. Filamin A regulates EGFR/ERK/Akt signaling and affects colorectal cancer cell growth and migration. Mol Med Rep 2019; 20:3671-3678. [PMID: 31485594 PMCID: PMC6755168 DOI: 10.3892/mmr.2019.10622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
The metastasis and recurrence rate, and the overall prognosis of colorectal cancer (CRC) remain unsatisfactory. Filamin A (FLNa), as an actin-binding protein, can interact with various signaling molecules and membrane receptors to affect cell signal transduction and function. However, whether FLNa is involved in the progression of CRC remains to be elucidated. The aim of the present study was to explore the role of FLNa in CRC cell proliferation and migration, as well as in the regulation of epidermal growth factor receptor (EGFR) signaling. Following transfection with a FLNa-targeting short hairpin RNA plasmid to knockdown expression of FLNa in the EGF-treated SW480 cell line, it was found that decreased expression of FLNa promoted cell proliferation and migration. Additionally, there was a negative correlation between FLNa levels and the activation of EGFR and Akt signaling pathways. Similarly, the expression of FLNa was significantly lower in human CRC tissues compared with adjacent normal tissues and FLNa expression was negatively correlated with the expression of Ki-67 in human CRC tissues. Although there was no significant difference in the Kaplan-Meier estimate of CRC between high expression and low expression of FLNa, there were significant negative associations between FLNa expression and TNM stage. The results suggested that FLNa may participate in EGF-induced cell proliferation and migration in CRC cells. Hence, interventions in the FLNa-mediated signaling pathway could provide attractive therapeutic targets for CRC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Transfusion, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Tie-Nian Zhu
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei 050017, P.R. China
| | - Rui-Jing Zhao
- Department of Immunology, Hebei Medical University, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
10
|
Karakuş F, Yılmaz K, Eyol E, Ünüvar S. Combination of 2 Bioactive Compounds for Treatment of Breast Cancer: Triterpenoid Cucurbitacin I and Phenolic CAPE. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19857492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It has been demonstrated that both cucurbitacin I (Cu I) and caffeic acid phenethyl ester (CAPE) have anticancer activities. The current study aimed to examine the proliferation, migration, and colony formation actions of Cu I and CAPE on MCF-7 and MDA-MB-231 human breast cancer cells. The antimigration, antiproliferative, and colony inhibition effects of different dosages of Cu I, CAPE, and Cu I + CAPE on cells were determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) cell viability assay, wound healing, and colony formation assays, respectively. Compared with single treatment, combination of 2 bioactive compounds enhanced the anticancer activity. When Cu I and CAPE were combined, a strong inhibitor effect was shown on cell growth, colony formation, and cell migration compared with the compounds used singly. The concomitant treatment with Cu I and CAPE showed stronger antiproliferative activities on both MCF-7 and MDA-MB-231 cells compared with individual treatment with either Cu I or CAPE. Caffeic acid phenethyl ester is a specific inhibitor of Nuclear factor-kappa B (NF-κB). It shows anticancer activity depending on this inhibition. It is a bioactive phenolic compound that is derived from propolis. Cucurbitacin I is a selective Januskinase/signal transducer and a transcription-3 signal pathway inhibitor. Combination of these 2 natural anticancer compounds is beneficial in the treatment of cancer, as well as the side effects associated with classical chemotherapeutics not being observed with the use of these compounds.
Collapse
Affiliation(s)
- Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, İzmir, Turkey
| | - Kadir Yılmaz
- Department of Chemistry, Faculty of Art and Science, İnönü University, Malatya, Turkey
| | - Ergül Eyol
- Chemotherapy and Toxicology Unit, German Cancer Research Center, Heidelberg, Germany
| | - Songül Ünüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| |
Collapse
|
11
|
Karakuş F, Eyol E, Yılmaz K, Ünüvar S. Inhibition of cell proliferation, migration and colony formation of LS174T Cells by carbonic anhydrase inhibitor. Afr Health Sci 2018; 18:1303-1310. [PMID: 30766596 PMCID: PMC6354875 DOI: 10.4314/ahs.v18i4.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Metastasis is the leading cause of cancer deaths. Migration of tumor cells is an important stage in metastasis. Therefore, recent studies have focused on clarifying migration and migration-dependent cell functions such as angiogenesis, wound healing, and invasion. Objectives In the present study, we aimed to investigate the effect of acetazolamide, which is a classical carbonic anhydrase inhibitor, on the cell viability, migration, and colony forming capacity of human LS174T colorectal cancer cells. Methods Three different cell culture techniques (MTT test, wound healing and clonogenic assay) were performed in this in vitro study on colorectal cancer cells. Results Acetazolamide reduced the cell viability, migration and colony formation ability of cells depending on dose. There was no significant difference between the cells treated with acetazolamide with 1 µM dose and the control. However, it can be concluded that acetazolamide exerts its effect on human colorectal cancer cells at 10-1000 µM concentrations. Conclusion Acetazolamide was observed to significantly inhibit the cell viability, colony forming capacity, and migration ability in the culture medium of LS174T cells. This inhibitor effect of acetazolamide was observed to be dependent on the concentration in medium.
Collapse
|
12
|
Yıilmaz K, Karakuş F, Eyol E, Tosun E, Yıilmaz İ, Ünüvar S. Cytotoxic Effects of Cucurbitacin I and Ecballium elaterium on Breast Cancer Cells. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the inhibitory effect of cucurbitacin I (CuI) and Ecballium elaterium L. (fruit juice and chloroform extract) on breast cancer cells (MCF-7 and MDA-MB-231). The CuI content of E. elaterium fruit juice and chloroform extract was quantified using high performance liquid chromatography. The cytotoxic effects of the fruit juice, chloroform extract and CuI were determined by MTT, wound healing and colony formation assays; all had an anti-proliferative activity on the breast cancer cells. Clarifying the mechanisms of cucurbitacins will enable the identification of new molecular targets for breast cancer therapy.
Collapse
Affiliation(s)
| | - Fuat Karakuş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy
| | - Ergül Eyol
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy
| | - Emir Tosun
- Department of Chemical Engineering, Faculty of Engineering, İnönü University, TR-44280 Malatya, Turkey
| | | | - Songül Ünüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy
| |
Collapse
|
13
|
In vitro effect of carbonic anhydrase inhibitor acetazolamide on cell viability, migration and colony formation of colorectal cancer cells. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0064-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Yang XY, Liu QR, Wu LM, Zheng XL, Ma C, Na RS. Overexpression of secretagogin promotes cell apoptosis and inhibits migration and invasion of human SW480 human colorectal cancer cells. Biomed Pharmacother 2018; 101:342-347. [PMID: 29499408 DOI: 10.1016/j.biopha.2018.01.147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE In order to investigate the effect of secretagogin (SCGN) on colorectal cancer (CRC) cells apoptosis, invasion and migration in vitro. METHODS Expression of SCGN in CRC tissues and the paired adjacent non-tumorous tissues (n = 36) and four human CRC cell lines (HT29, HCT116, SW480 and SW620) were detected. SW480 cells were transfected with the SCGN overexpression plasmid (eGFP-SCGN), si-SCGN-773, and the corresponding negative controls (NCs). Then, cell-cycle distribution, cell apoptosis, migration, invasion and expression of apoptosis- and metastasis-related proteins were detected. RESULTS SCGN was significantly downregulated in CRC tissues as compared with the adjacent non-tumorous tissues. The expression of SCGN in HT29 and SW480 cells were lower than those in HT116 and SW620 cells. We transfected SW480 cells with SCGN overexpression plasmid eGFP-SCGN and found the increased cell apoptosis, with cell arresting at G0/G1 phase. SW480 cells with SCGN overexpression showed wider wound width and fewer invaded cells than control and blank cells, with upregulated Bax, cleaved Caspase 3 and E-cadherin, and downregulated Bcl-2 and Vimentin. We also transfected SW480 cells with si-SCGN-773 and found si-SCGN increased cell migration and invasion, but did not affect cell apoptosis and expression of related proteins. CONCLUSION We concluded that the overexpression of SCGN in SW480 cells promoted cell apoptosis and inhibited cell migration and invasion.
Collapse
Affiliation(s)
- Xiang-Yi Yang
- Department of Gastroenterology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Qiao-Rui Liu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Li-Ming Wu
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Xu-Lei Zheng
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Cong Ma
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China
| | - Ri-Su Na
- Department of Endocrinology, Xuhui District Central Hospital, Shanghai 200031, China.
| |
Collapse
|
15
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
16
|
Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DΑ, Libra M, Tsatsakis AM. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol 2015; 48:869-85. [PMID: 26698230 PMCID: PMC4750533 DOI: 10.3892/ijo.2015.3306] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Targeted cancer therapies are used to inhibit the growth, progression, and metastasis of the tumor by interfering with specific molecular targets and are currently the focus of anticancer drug development. Protein kinase B, also known as Akt, plays a central role in many types of cancer and has been validated as a therapeutic target nearly two decades ago. This review summarizes the intracellular functions of Akt as a pivotal point of converging signaling pathways involved in cell growth, proliferation, apoptotis and neo‑angiogenesis, and focuses on the drug design strategies to develop potent anticancer agents targeting Akt. The discovery process of Akt inhibitors has evolved from adenosine triphosphate (ATP)‑competitive agents to alternative approaches employing allosteric sites in order to overcome the high degree of structural similarity between Akt isoforms in the catalytic domain, and considerable structural analogy to the AGC kinase family. This process has led to the discovery of inhibitors with greater specificity, reduced side-effects and lower toxicity. A second generation of Akt has inhibitors emerged by incorporating a chemically reactive Michael acceptor template to target the nucleophile cysteines in the catalytic activation loop. The review outlines the development of several promising drug candidates emphasizing the importance of each chemical scaffold. We explore the pipeline of Akt inhibitors and their preclinical and clinical examination status, presenting the potential clinical application of these agents as a monotherapy or in combination with ionizing radiation, other targeted therapies, or chemotherapy.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Denisa Margina
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Petras Juzenas
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Emmanouil Saloustros
- Oncology Unit, General Hospital of Heraklion 'Venizelio', Heraklion 71409, Greece
| | - Concettina Fenga
- Section of Occupational Medicine, University of Messina, I-98125 Messina, Italy
| | - Demetrios Α Spandidos
- Department of Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, General and Clinical Pathology and Oncology Section, University of Catania, I‑95124 Catania, Italy
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
17
|
Randhawa V, Kumar Singh A, Acharya V. A systematic approach to prioritize drug targets using machine learning, a molecular descriptor-based classification model, and high-throughput screening of plant derived molecules: a case study in oral cancer. MOLECULAR BIOSYSTEMS 2015; 11:3362-3377. [PMID: 26467789 DOI: 10.1039/c5mb00468c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Systems-biology inspired identification of drug targets and machine learning-based screening of small molecules which modulate their activity have the potential to revolutionize modern drug discovery by complementing conventional methods. To utilize the effectiveness of such pipelines, we first analyzed the dysregulated gene pairs between control and tumor samples and then implemented an ensemble-based feature selection approach to prioritize targets in oral squamous cell carcinoma (OSCC) for therapeutic exploration. Based on the structural information of known inhibitors of CXCR4-one of the best targets identified in this study-a feature selection was implemented for the identification of optimal structural features (molecular descriptor) based on which a classification model was generated. Furthermore, the CXCR4-centered descriptor-based classification model was finally utilized to screen a repository of plant derived small-molecules to obtain potential inhibitors. The application of our methodology may assist effective selection of the best targets which may have previously been overlooked, that in turn will lead to the development of new oral cancer medications. The small molecules identified in this study can be ideal candidates for trials as potential novel anti-oral cancer agents. Importantly, distinct steps of this whole study may provide reference for the analysis of other complex human diseases.
Collapse
Affiliation(s)
- Vinay Randhawa
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Anil Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| | - Vishal Acharya
- Functional Genomics and Complex Systems Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India
| |
Collapse
|