1
|
Value of whole-body dynamic 18F-FMISO PET/CT Patlak multi-parameter imaging for evaluating the early radiosensitizing effect of oleanolic acid on C6 rat gliomas. Cancer Chemother Pharmacol 2023; 91:133-141. [PMID: 36565309 DOI: 10.1007/s00280-022-04502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to investigate the value of tumour-to-muscle (T/M) ratios and Patlak Ki images extracted from whole-body dynamic 18F-fluoromisonidazole (FMISO) PET/CT Patlak multi-parameter imaging for evaluating the early radiosensitizing effect of oleanolic acid (OA). Twenty-four rats with C6 gliomas were divided into 4 groups and treated with OA (group B), radiotherapy (group C), both (group D) or neither (group A). Whole-body dynamic 18F-FMISO PET/CT scans were performed for 120 min before treatment and 24 h following the treatment course. The tumour samples were dissected for hematoxylin and eosin staining, and HIF-1α, Ki-67 and GLUT-1 immunohistochemical staining. PET images were analysed using kinetic modelling (Patlak Ki) and static analysis (T/M ratios), and correlated with immunohistochemical results. The changes in T/M ratios, Ki values and tumour volume before treatment and 24 h following the treatment course were compared, and the survival time of tumour-bearing rats was recorded. Kaplan-Meier analysis showed that OA combined with radiotherapy can inhibit tumour growth and prolong the survival time of tumour-bearing rats. Whole-body dynamic 18F-FMISO PET/CT showed that the Ki values in group D were significantly lower than those in group C, whilst there was no significant difference in T/M ratios between groups C and D. The Pearson correlation coefficient analysis showed that Ki values were significantly related to immunohistochemical results. Our study suggests that Patlak Ki images may add value to PET/CT static images for evaluating the early radio-sensitizing effect of OA.
Collapse
|
2
|
Pacifico S, Bláha P, Faramarzi S, Fede F, Michaličková K, Piccolella S, Ricciardi V, Manti L. Differential Radiomodulating Action of Olea europaea L. cv. Caiazzana Leaf Extract on Human Normal and Cancer Cells: A Joint Chemical and Radiobiological Approach. Antioxidants (Basel) 2022; 11:1603. [PMID: 36009322 PMCID: PMC9404970 DOI: 10.3390/antiox11081603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of a natural compound with selectively differential radiomodulating activity would arguably represent a valuable asset in the striving quest for widening the therapeutic window in cancer radiotherapy (RT). To this end, we fully characterized the chemical profile of olive tree leaf polyphenols from the Caiazzana cultivar (OLC), autochthonous to the Campania region (Italy), by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HR-MS). Oleacein was the most abundant molecule in the OLC. Two normal and two cancer cells lines were X-ray-irradiated following 24-h treatment with the same concentration of the obtained crude extract and were assessed for their radioresponse in terms of micronucleus (MN) induction and, for one of the normal cell lines, of premature senescence (PS). Irradiation of pre-treated normal cells in the presence of the OLC reduced the frequency of radiation-induced MN and the onset of PS. Conversely, the genotoxic action of ionising radiation was exacerbated in cancer cells under the same experimental conditions. To our knowledge, this is the first report on the dual action of a polyphenol-rich olive leaf extract on radiation-induced damage. If further confirmed, these findings may be pre-clinically relevant and point to a substance that may potentially counteract cancer radioresistance while reducing RT-associated normal tissue toxicity.
Collapse
Affiliation(s)
- Severina Pacifico
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Pavel Bláha
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah 67149-67346, Iran
| | - Francesca Fede
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Katarina Michaličková
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Simona Piccolella
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare-Sezione di Napoli, 80126 Napoli, Italy
- Dipartimento di Fisica “E. Pancini”, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| |
Collapse
|
3
|
Zhou L, Li A, Zhang Q. 6'-O-Galloylpaeoniflorin Exerts Inhibitory Bioactivities in Human Neuroblastoma Cells via Modulating AMPK/miR-489/XIAP Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1327835. [PMID: 35572727 PMCID: PMC9098314 DOI: 10.1155/2022/1327835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Although therapies against neuroblastoma (NBM) have advanced, the patients still suffer from poor prognoses due to distal metastasis or the occurrence of multidrug resistance. Accumulating evidence has proved that chemicals derived from natural products possess potent anti-NBM properties or can be used as adjuvants for chemotherapy. In the present study, we demonstrated that 6'-O-galloylpaeoniflorin (GPF), a galloylated derivative of paeoniflorin isolated from the roots of Paeonia lactiflora Pall, exerted significant inhibitory effects on proliferation and invasion of SH-SY5Y cells (an NBM cell line) and enhanced the sensitivity of SH-SY5Y cells to cisplatin in vitro. Further studies showed that GPF treatment upregulated miR-489 in NBM cells via activating AMP-activated protein kinase (AMPK). We also demonstrated that similar to GPF treatment, miR-489 exhibited a significant anti-NBM capacity. Further studies showed that miR-489 directly targeted the X-linked inhibitor of apoptosis protein (XIAP). Overall, our results indicated that GPF possessed an evident anti-NBM capacity dependent on AMPK/miR-489/XIAP pathway, providing an emerging strategy for clinical treatment of NBM.
Collapse
Affiliation(s)
- Lijun Zhou
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qiangye Zhang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Chen Y, Fang L, Zhou W, Chang J, Zhang X, He C, Chen C, Yan R, Yan Y, Lu Y, Xu C, Xiang G. Nitric oxide-releasing micelles with intelligent targeting for enhanced anti-tumor effect of cisplatin in hypoxia. J Nanobiotechnology 2021; 19:246. [PMID: 34399762 PMCID: PMC8365946 DOI: 10.1186/s12951-021-00989-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxic tumor microenvironment (TME) promotes tumor metastasis and drug resistance, leading to low efficiency of cancer chemotherapy. The development of targeted agents or multi-target therapies regulating hypoxic microenvironment is an important approach to overcome drug resistance and metastasis. Methods In this study, chitosan oligosaccharide (COS)-coated and sialic acid (SA) receptor-targeted nano-micelles were prepared using film dispersion method to co-deliver cisplatin (CDDP) and nitric oxide (NO) (denoted as CTP/CDDP). In addition, we explored the mechanisms by which NO reversed CDDP resistance as well as enhanced anti-metastatic efficacy in hypoxic cancer cells. Results Because of the different affinities of COS and SA to phenylboronic acid (PBA) under different pH regimes, CTP/CDDP micelles with intelligent targeting property increased cellular uptake of CDDP and enhanced cytotoxicity to tumors, but reduced systemic toxicity to normal organs or tissues. In addition, CTP/CDDP showed stimulus-responsive release in TME. In terms of anti-tumor mechanism, CTP/CDDP reduced CDDP efflux and inhibited epithelial-mesenchymal transition (EMT) process of tumor by down-regulating hypoxia-inducible factor-1α (HIF-1α), glutathione (GSH), multidrug resistance-associated protein 2 (MRP2) and matrix metalloproteinase 9 (MMP9) expression, thus reversing drug resistance and metastasis of hypoxic tumor cells. Conclusions The designed micelles significantly enhanced anti-tumor effects both in vitro and in vivo. These results suggested that CTP/CDDP represented a promising strategy to treat resistance and metastatic tumors. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00989-z.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Fang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weixin Zhou
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinghan Chang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruicong Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yakai Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Elangovan P, Jalaludeen AM, Ramakrishnan R, Amutha K, Pari L. In-vivo and In-vitro Antioxidant Activity of Troxerutin on Nickel Induced Toxicity in Experimental Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:89-97. [PMID: 33224214 PMCID: PMC7667551 DOI: 10.22037/ijpr.2020.15487.13126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to evaluate the effect of troxerutin (TXN) on Nickel (Ni) toxicity by using rats and in-vitro model. Ni toxicity induced in male albino wistar rats (20 mg/kg body weight (b.w) was administered orally for 20 days). TXN was administered orally (100 mg/kg (b.w) for 20 days with administration of Ni. The toxic effect of Ni and the action of TXN was measure by determining the lipid peroxidation markers and antioxidant levels in plasma and various in-vitro antioxidant systems. TXN exhibited a significant (p < 0.05) antioxidant activity in Ni induced toxicity by reversing the changes observed in TBARS, HP, Vitamin C, E and GSH. The free radical scavenging properties of TXN at different concentrations (10-50ug/mL) were investigated with various in-vitro methods such as 2, 2'-diphenyl-1- picrylhydrazyl radical (DPPH), 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS•+), hydroxyl radical, superoxide anion scavenging activity and reducing power. Among the different concentrations, 50 μg/mL of TXN was more effective compared to other concentrations in all in-vitro assays. The above study conclude that TXN possesses potent in-vivo and in-vitro antioxidant activity with effective free radical scavenger for potential therapeutic value.
Collapse
Affiliation(s)
- Perumal Elangovan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| | - Abdulkadhar Mohamed Jalaludeen
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| | - Ramalingam Ramakrishnan
- Department of Biochemistry, St. Joseph’s College of Arts & Science (Autonomous), Cuddalore 607001, Tamil Nadu, India.
| | - Kasinathan Amutha
- Department of Biochemistry, Sri Sankara Arts & Science College, Enathur, Kancheepuram,Tamil Nadu, India.
| | - Leelavinothan Pari
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar – 608002, Tamil Nadu, India.
| |
Collapse
|
6
|
Feng Y, Wang G, Chang Y, Cheng Y, Sun B, Wang L, Chen C, Zhang H. Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core-Shell Nanoparticles. NANO LETTERS 2019; 19:4478-4489. [PMID: 31244230 DOI: 10.1021/acs.nanolett.9b01293] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles (Ag NPs) have promising plasmonic properties, however, they are rarely used in biomedical applications because of their potent toxicity. Herein, an electron compensation effect from Au to Ag was applied to design safe Au@Ag core-shell NPs. The Ag shell thickness was precisely regulated to enable the most efficient electron enrichment in Ag shell of Au@Ag2.4 NPs, preventing Ag oxidation and subsequent Ag+ ion release. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analysis revealed the electron transfer process from Au core to Ag shell, and inductively coupled plasma optical emission spectroscopy analysis confirmed the low Ag+ ion release from Au@Ag2.4 NPs. Bare Au@Ag2.4 NPs showed much lower toxicological responses than Ag NPs in BEAS-2B and Raw 264.7 cells and acute lung inflammation mouse models, and PEGylation of Au@Ag2.4 NPs could further improve their safety to L02 and HEK293T cells as well as mice through intravenous injection. Further, diethylthiatri carbocyanine iodide attached pAu@Ag2.4 NPs exhibited intense surface-enhanced Raman scattering signals and were used for Raman imaging of MCF7 cells and Raman biosensing in MCF7 tumor-bearing mice. This electron compensation effect opens up new opportunity for broadening biomedical application of Ag-based NPs.
Collapse
Affiliation(s)
- Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Guorui Wang
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education , Northeast Normal University , Changchun 130024 , P.R. China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Bingbing Sun
- School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P.R. China
| | - Liming Wang
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Chunying Chen
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, Institute of High Energy Physics, and National Center for Nanoscience and Technology of China , Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
7
|
Feng Y, Chang Y, Sun X, Cheng Y, Zheng R, Wu X, Wang L, Ma X, Li X, Zhang H. Differential photothermal and photodynamic performance behaviors of gold nanorods, nanoshells and nanocages under identical energy conditions. Biomater Sci 2019; 7:1448-1462. [DOI: 10.1039/c8bm01122b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The corner angle structure of Au nanostructures could more efficiently convert the photon energy into the photodynamic performance.
Collapse
|
8
|
Jeon D, Park HJ, Kim HS. Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells. Biochem Biophys Res Commun 2017; 495:212-216. [PMID: 29113799 DOI: 10.1016/j.bbrc.2017.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 12/22/2022]
Abstract
Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial-mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs.
Collapse
Affiliation(s)
- Daun Jeon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea; Department of Microbiology, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Hong Seok Kim
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea.
| |
Collapse
|
9
|
Cheng Y, Chang Y, Feng Y, Liu N, Sun X, Feng Y, Li X, Zhang H. Simulated Sunlight-Mediated Photodynamic Therapy for Melanoma Skin Cancer by Titanium-Dioxide-Nanoparticle-Gold-Nanocluster-Graphene Heterogeneous Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603935. [PMID: 28371113 DOI: 10.1002/smll.201603935] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/08/2017] [Indexed: 05/22/2023]
Abstract
Simulated sunlight has promise as a light source able to alleviate the severe pain associated with patients during photodynamic therapy (PDT); however, low sunlight utilization efficiency of traditional photosensitizers dramatically limits its application. Titanium-dioxide-nanoparticle-gold-nanocluster-graphene (TAG) heterogeneous nanocomposites are designed to efficiently utilize simulated sunlight for melanoma skin cancer PDT. The narrow band gap in gold nanoclusters (Au NCs), and staggered energy bands between Au NCs, titanium dioxide nanoparticles (TiO2 NPs), and graphene can result in efficient utilization of simulated sunlight and separation of electron-hole pairs, facilitating the production of abundant hydroxyl and superoxide radicals. Under irradiation of simulated sunlight, TAG nanocomposites can trigger a series of toxicological responses in mouse B16F1 melanoma cells, such as intracellular reactive oxygen species production, glutathione depletion, heme oxygenase-1 expression, and mitochondrial dysfunctions, resulting in severe cell death. Furthermore, intravenous or intratumoral administration of biocompatible TAG nanocomposites in B16F1-tumor-xenograft-bearing mice can significantly inhibit tumor growth and cause severe pathological tumor tissue changes. All of these results demonstrate prominent simulated sunlight-mediated PDT effects.
Collapse
Affiliation(s)
- Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Ning Liu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Xiujuan Sun
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Yuqing Feng
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130022, P. R. China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin, 130022, P. R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| |
Collapse
|
10
|
Aboubakr EM, Taye A, Aly OM, Gamal-Eldeen AM, El-Moselhy MA. Enhanced anticancer effect of Combretastatin A-4 phosphate when combined with vincristine in the treatment of hepatocellular carcinoma. Biomed Pharmacother 2017; 89:36-46. [PMID: 28214686 DOI: 10.1016/j.biopha.2017.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 01/16/2023] Open
Abstract
Tubulin targeting agents have received considerable interest as a potential tumor-selective vascular disrupting agents, which represent another avenue for cancer growing therapeutic opportunities. Hence, the present study was conducted to investigate the anti-tumor activity of Combretastatin A-4 phosphate (CA4-P) and vincristine against hepatocellular carcinoma in rats, by individual administration and in combination. In vitro study was conducted using human hepatocellular carcinoma cell lines, showed that CA4-P and vincristine have a potent cell cytotoxic and tubulin inhibitory effect. In addition, a remarkable synergistic effect was observed by the simultaneous application of both drugs. Whereas in vivo study was conducted using model of rat liver cancer initiated with DENA and promoted by CCl4, showed that CA4-P and vincristine were significantly decreased liver relative weight, number of hepatic nodules and there relative volumes, tubulin content of the hepatic tissue, GSH and AFP. On the other hand, co-administration of both drugs exhibited significant further decrements in these parameters. Whereas a marked increase in MDA, carbonyl content and TNF-α inside hepatic tissue were observed in the treated groups and these increments were more prominent by co-administration of both drugs. In conclusion CA4-P showed a potential anti-cancer activity against hepatocellular carcinoma and this effect was greatly enhanced by co-administration with vincristine. Additionally, our new findings provided an important evidence that the anticancer activity of drugs with a narrow therapeutic window such as vincristine can be greatly improved by its co-administration with CA4-P providing more enhanced activity with less side effects.
Collapse
Affiliation(s)
- Esam M Aboubakr
- Department of Pharmacology and Toxicology, South Valley University, 6 Km, Qena Safaga Road, Qena, Egypt.
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Minia University, Ard Shalaby, Misr-Aswan Road, El-Minia, Egypt.
| | - Omar M Aly
- Department of Medicinal Chemistry, Minia University, Ard Shalaby, Misr-Aswan Road, El-Minia, Egypt.
| | - Amira M Gamal-Eldeen
- Cancer Biology, Center of excellence for advanced sciences, National Research Center, El Buhouth St., Dokki, Cairo, Egypt.
| | - Mohamed A El-Moselhy
- Department of Pharmacology and Toxicology, Minia University, Ard Shalaby, Misr-Aswan Road, El-Minia, Egypt.
| |
Collapse
|
11
|
Song B, Zhang Q, Yu M, Qi X, Wang G, Xiao L, Yi Q, Jin W. Ursolic acid sensitizes radioresistant NSCLC cells expressing HIF-1α through reducing endogenous GSH and inhibiting HIF-1α. Oncol Lett 2016; 13:754-762. [PMID: 28356955 PMCID: PMC5351155 DOI: 10.3892/ol.2016.5468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/26/2016] [Indexed: 12/25/2022] Open
Abstract
In previous studies, the present authors demonstrated that effective sensitization of ionizing radiation-induced death of tumor cells, including non-small cell lung cancer (NSCLC) cells, could be produced by oleanolic acid (OA), a pentacyclic triterpenoid present in plants. In the present study, it was investigated whether ursolic acid (UA), an isomer of OA, had also the capacity of sensitizing radioresistant NSCLC cells. The radioresistant cell line H1299/M-hypoxia inducible factor-1α (HIF-1α) was established by transfection with a recombinant plasmid expressing mutant HIF-1α (M-HIF-1α). Compared with parental H1299 cells and H1299 cells transfected with empty plasmid, H1299/M-HIF-1α cells had lower radiosensitivity. Following the use of UA to treat NSCLC cells, elevation of the radiosensitivity of cells was observed by MTT assay. The irradiated H1299/M-HIF-1α cells were more sensitive to UA pretreatment than the irradiated cells with empty plasmid and control. The alteration of DNA damage in the irradiated cells was further measured using micronucleus (MN) assay. The combination of UA treatment with radiation could induce the increase of cellular MN frequencies, in agreement with the change in the tendency observed in the cell viability assay. It was further shown that the endogenous glutathione (GSH) contents were markedly attenuated in the differently irradiated NSCLC cells with UA (80 µmol/l) pretreatment through glutathione reductase/5,5'-dithiobis-(2-nitrob-enzoic acid) (DTNB) recycling assay. The results revealed that UA treatment alone could effectively decrease the GSH content in H1299/M-HIF-1α cells. In addition, the inhibition of HIF-1α expression in radioresistant cells was confirmed by western blotting. It was then concluded that UA could upregulate the radiosensitivity of NSCLC cells, and in particular reduce the refractory response of cells expressing HIF-1α to ionizing radiation. The primary mechanism is associated with reduction of endogenous GSH and inhibition of high expression of intracellular HIF-1α. UA should therefore be deeply studied as a potential radiosensitizing reagent for NSCLC radiotherapy.
Collapse
Affiliation(s)
- Bing Song
- Department of Cardiology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qian Zhang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Maohu Yu
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Xinrong Qi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Gang Wang
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Linlin Xiao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qiyi Yi
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wensen Jin
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
12
|
Guo Y, Han B, Luo K, Ren Z, Cai L, Sun L. NOX2-ROS-HIF-1α signaling is critical for the inhibitory effect of oleanolic acid on rectal cancer cell proliferation. Biomed Pharmacother 2016; 85:733-739. [PMID: 27938946 DOI: 10.1016/j.biopha.2016.11.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 02/07/2023] Open
Abstract
Rectal cancer is the second leading cause of cancer mortality in the western countries and accounts for 10% incidence and mortality of cancer in the whole world. Drug resistance and severe toxicity severely limited the efficiency of chemotherapy of rectal cancer. Oleanolic acid (OA) is a natural triterpenoid and an aglycone of many saponins. In the present study, we aimed to investigate the effect of OA on rectal cancer cell proliferation and its possible mechanism. We showed that OA concentration-dependently inhibited cell proliferation in HCT-15, HT-29, HCT-8 and Colo 205 human rectal cancer cell lines. OA significantly increased reactive oxygen species (ROS) generation and NADPH oxidase 2 (NOX2) expression in a concentration-dependent manner. In HCT-15 and HT-29 cells, siNOX2 notably suppressed OA-induced ROS generation, inhibition of cell proliferation, increase of S phase cell population and decrease of cyclin D1 and CDK2 expression. OA markedly decreased hypoxia-inducible factor 1α (HIF-1α) expression in HCT-15 and HT-29 cells in a concentration-dependent manner. Overexpression of HIF-1α significantly suppressed OA-induced inhibition of cell proliferation, increase of S phase cell population and decrease of cyclin D1 and CDK2 expression. Inhibition of NOX2 by siRNA notably blocked OA-induced suppression of HIF-1α expression. Our findings provide novel insights into OA-induced inhibition of rectal cancer cell proliferation and highlight NOX2/ROS/HIF-1α axis as a novel therapeutic target for the treatment of rectal cancer.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of General Surgery, Xi'an Ninth Hospital, Xi'an 710054, Shaanxi Province, China
| | - Bing Han
- Department of Radiology, Xi'an Ninth Hospital, Xi'an 710054, Shaanxi Province, China
| | - Kongliang Luo
- Department of General Surgery, Xi'an Ninth Hospital, Xi'an 710054, Shaanxi Province, China
| | - Zhijian Ren
- Department of General Surgery, Xi'an Ninth Hospital, Xi'an 710054, Shaanxi Province, China
| | - Lei Cai
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China.
| | - Li Sun
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
13
|
Li YG, Liang NX, Qin YZ, Ma DJ, Huang CJ, Liu L, Li SQ. Effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition. Tumour Biol 2016; 37:16357–16365. [PMID: 27900564 DOI: 10.1007/s13277-016-5458-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
This study examined the effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition. Different CoCl2 concentrations were used to treat A549 cells and establish a CoCl2-induced hypoxic model of A549 cells. MTT and clone formation assays were used to determine the effects of different concentrations of CoCl2 on the growth and proliferation of A549 cells treated by different doses of X-ray irradiation. The siRNA-expressing vector was transfected by liposomes and for silencing of TUSC3. Flow cytometry was used to measure cell cycle changes and apoptosis rate. Real-time quantitative polymerase chain reaction (qRT-PCR) assay was performed to detect the expression of TUSC3 mRNA. Western blotting was applied to detect the changes of TUSC3, LC3, and p62 proteins under different CoCl2 concentrations and after siRNA silencing of TUSC3. The TUSC3 levels in A549 cells increased under hypoxic conditions in a dose-dependent manner (P < 0.05). Hypoxia inhibited the growth and proliferation of A549 cells and promoted apoptosis (P < 0.05). With an increasing dose of X-ray irradiation, A549 cells showed significantly increased growth and proliferation and decreased apoptosis (P < 0.05). After siRNA-TUSC3 was transfected by liposome, the TUSC3 level was substantially inhibited (P < 0.05). Silencing TUSC3 inhibited A549 cell growth and proliferation after radiotherapy under hypoxic condition, promoted apoptosis, increased G0/G1 phase cells, and reduced S phase cells (all P < 0.05). Hypoxia and radiation along with different CoCl2 concentrations could induce cell autophagy, which increased with concentration and dose, while silencing the TUSC3 gene inhibited autophagy (all P < 0.05). RNAi silencing of TUSC3 inhibited growth and proliferation, while enhanced apoptosis and radiation sensitivity of hypoxic A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Ya-Guang Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Nai-Xin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Ying-Zhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Dong-Jie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Chang-Jin Huang
- Plastic Surgery Hospital, CAMS, PUMC, Beijing, 100144, People's Republic of China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shan-Qing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
14
|
Ai Y, Kang F, Huang Z, Xue X, Lai Y, Peng S, Tian J, Zhang Y. Synthesis of CDDO-amino acid-nitric oxide donor trihybrids as potential antitumor agents against both drug-sensitive and drug-resistant colon cancer. J Med Chem 2015; 58:2452-64. [PMID: 25675144 DOI: 10.1021/jm5019302] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seventeen CDDO-amino acid-NO donor trihybrids (4a-q) were designed and synthesized. Biological evaluation indicated that the most active compound 4c produced high levels of NO and inhibited the proliferation of drug-sensitive (HCT-8, IC50 = 0.294 μM) and drug-resistant (HCT-8/5-FU, IC50 = 0.232 μM) colon cancer cells, which were attenuated by an NO scavenger or typical substrate of PepT1. Furthermore, 4c triggered HCT-8 and HCT-8/5-FU cell apoptosis more strongly than CDDO-Me, inhibited the HIF-1α, Stat3, AKT, and ERK signaling, and induced the nitration of P-gp, MRP1, and BCRP proteins in HCT-8/5-FU cells. Finally, 4c had 4.36-5.53-fold less inhibitory activity against nontumor colon epithelial-like cells (CCD841, IC50 = 1.282 μM) in vitro and inhibited the growth of implanted human drug-resistant colon cancers in mice more potently than CDDO-Me. Together, 4c is a novel trihybrid with potent antitumor activity and may be a promising candidate for the treatment of drug-resistant colon cancer.
Collapse
Affiliation(s)
- Yong Ai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, PR China
| | | | | | | | | | | | | | | |
Collapse
|