1
|
Zargar S, Altwaijry N, Alanazi H, Alshammari AH, Alkahtani HM, Wani TA. Elucidation of molecular mechanisms, pathways, and diseases modulated by arsenicals through toxogenomics and multi-omics analysis. J Trace Elem Med Biol 2024; 86:127561. [PMID: 39531826 DOI: 10.1016/j.jtemb.2024.127561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Arsenic compounds exist in inorganic and organic forms with inorganic form confirmed as a potent carcinogen. Toxogenomics and multi-omics analysis were used to explore the molecular mechanisms of carcinogenecity induced by arsenicals. Comparative toxogenomics revealed sodium arsenite and arsenate as the most toxic arsenicals to humans, interacting with various genes and altering gene expression through mRNA binding proteins. Both metalloids were classified as Class II toxins by the ProTox II prediction tool, with a lethal dose (LD50) of 149 mg/kg body weight. The most frequently interacting genes were HMOX1, CAT, NFE2L2, CASP3, MAPK1, CXCL8, PARP1, TNF, and PYGM. Analysis of TCGA pan-cancer data revealed that 46 % of hepatocellular carcinoma patients exhibited alterations in the genes HMOX1, CAT, NFE2L2, CASP3, MAPK1, CXCL8, PARP1, TNF, and PYGM, suggesting their significant role in the development of this disease. The alteration in the gene list decreased the overall patient survival but insignificantly in the Kaplan-Meier curves revealing insignificant role in survival. GSEA suggested significant enrichment of the gene list in pathways involved in the G2M checkpoint, apoptosis, hypoxia, TNFA signaling via NFKB, PI3K AKTMTOR signaling, P53, IFN gamma and inflammatory response pathways revealing the involvement of these pathways. Ten microRNAs (miRNAs) regulated the expressions of the genes involved in the above-mentioned pathways with the significant enrichment in miR-21-3p, miR-206 and mir486a-5p. The relevant pathway and graphical representation of the network of miRNA-target interactions identified by the enrichment analysis along with disease ontologies were predicted. This study will be helpful insight into setting of laboratory experiments.
Collapse
Affiliation(s)
- Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nojood Altwaijry
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Humidah Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atekah Hazzaa Alshammari
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Dhane AS, Sarode SC, Sarode GS, Sharma NK. Rise in arsenic pollution and oral cancer: A call for action. ORAL ONCOLOGY REPORTS 2024; 9:100238. [DOI: 10.1016/j.oor.2024.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
|
3
|
Breast Cancer and Arsenic Anticancer Effects: Systematic Review of the Experimental Data from In Vitro Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8030931. [PMID: 36619302 PMCID: PMC9815927 DOI: 10.1155/2022/8030931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/31/2022]
Abstract
Arsenic is a known environmental carcinogenic agent. However, under certain circumstances, it may exert anticancer effects. In this systematic review, we aim to provide information on recent developments in studies on arsenic antitumor effects in breast cancer. Research included in the review refers to experimental data from in vitro studies. The data was collected using search terms "breast cancer," "arsenic," and "anticancer" (25.05.2021). Only studies in English and published in the last 10 years were included. The search identified 123 studies from the EBSCOhost, PubMed, and Scopus databases. In the selection process, thirty full-texts were evaluated as eligible for the review. The literature of the last decade provides a lot of information on mechanisms behind anticancer effects of arsenic on breast cancer. Similar to arsenic-induced carcinogenesis, these mechanisms include the activation of the redox system and the increased production of free radicals. Targets of arsenic action are systems of cell membranes, mitochondria, pathways of intracellular transmission, and the genetic apparatus of the cell. Beneficial effects of arsenic use are possible due to significant metabolic differences between cancer and healthy cells. Further efforts are needed in order to establish modes and doses of treatment with arsenic that would provide anticancer activity with minimal toxicity.
Collapse
|
4
|
Wu SZ, Lan YY, Chu CY, Lee YP, Chang HY, Huang BM. Sodium arsenite and dimethylarsenic acid induces apoptosis in OC3 oral cavity cancer cells. Mol Med Rep 2022; 27:26. [PMID: 36524366 PMCID: PMC9813566 DOI: 10.3892/mmr.2022.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Although arsenic is an environmental toxicant, arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia (APL) with anticancer effects. Studies have demonstrated oral cancer is in the top 10 cancers in Taiwan. High rate of oral cancers is linked to various behaviors, such as excessive alcohol consumption and tobacco use. Similarly, betel chewing is a strong risk factor in oral cancer. In the present study, oral squamous carcinoma OC3 cells were investigated with the treatments of sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA), respectively, to examine if arsenic compounds have anti‑cancer efforts. It was found that 1 µM NaAsO2 and 1 mM DMA for 24 h induced rounded contours with membrane blebbing phenomena in OC3 cells, revealing cell apoptotic characteristics. In addition, NaAsO2 (10‑100 µM) and DMA (1‑100 mM) significantly decreased OC3 cell survival. In cell cycle regulation detected by flow cytometry, NaAsO2 and DMA significantly augmented percentage of subG1 and G2/M phases in OC3 cells, respectively. Annexin V/PI double staining assay was further used to confirm NaAsO2 and DMA did induce OC3 cell apoptosis. In mechanism investigation, western blotting assay was applied and the results showed that NaAsO2 and DMA significantly induced phosphorylation of JNK, ERK1/2 and p38 and then the cleavages of caspase‑8, ‑9, ‑3 and poly ADP‑ribose polymerase (PARP) in OC3 cells, dynamically. In conclusion, NaAsO2 and DMA activated MAPK pathways and then apoptotic pathways to induce OC3 oral cancer cell apoptosis.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C.,Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 73658, R.O.C
| | - Yu-Yan Lan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C.,Correspondence to: Professor Hong-Yi Chang, Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, 1, Nan-Tai Street, Yungkang, Tainan 71005, Taiwan, R.O.C., E-mail:
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40406, Taiwan, R.O.C.,Professor Bu-Miin Huang, Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan, R.O.C., E-mail:
| |
Collapse
|
5
|
Ma N, Guo J, Wu X, Liu Z, Yao T, Zhao Q, Li B, Tian F, Yan X, Zhang W, Qiu Y, Gao Y. Meta-analysis of TLR4 pathway-related protein alterations induced by arsenic exposure. Biol Trace Elem Res 2022; 201:3290-3299. [PMID: 36166114 DOI: 10.1007/s12011-022-03426-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
Arsenic is a toxic metal, which ultimately leads to cell apoptosis. TLR4 signaling pathway played a key role in immunomodulatory. Therefore, alterations in related proteins on the TLR4 signaling pathway induced by arsenic exposure was systematically reviewed and analyzed by meta-analysis. Some databases were searched including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and WANFANG MED ONLINE. The results of NF-κB, IKK, NF-κBp65, phospho-NF-κBp65, and TLR4 expressions were analyzed by Review Manage 5.3. In the arsenic intervention group, NF-κB, phospho-NF-κBp65, and TLR4 expression levels were higher than the control group, respectively. SMD and 95%CI were 11.29 (6.34, 16.24), 4.71(1.73, 7.68), and 5.79 (-4.22, 15.80). Compared to controls, in the exposed group, IKK levels were found to be 38.11-fold higher (Z = 0.97; P = 0.33); NF-κBp65 levels were found to be 0.92-fold higher (Z = 3.33; P = 0.0009) for normal cells and tissue, while IKK levels were found to be 5.18-fold lower (Z = 5.34; P < 0.0001); NF-κBp65 levels were found to be 2.01-fold lower (Z = 3.87; P = 0.0001) for abnormal cells. With comparing of low dose, high dose of arsenic exposure was found to reduce the expression of NF-κB, but increase the expression of NF-κBp65. This review supports the alterations in related proteins on the TLR4 signaling pathway induced by arsenic exposure, which is helpful to provide theoretical basis for the mechanism of toxicity of arsenic-induced immune system damage.
Collapse
Affiliation(s)
- Nanxin Ma
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Jian Guo
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiaolong Wu
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Tian Yao
- The First Hospital of Shanxi Medical University, Shanxi, 030001, China
| | - Qian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Fengjie Tian
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Wenping Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, Shanxi Medical University, 56 Xin-Jian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
6
|
Wu SZ, Lan YY, Chu CY, Wang YK, Lee YP, Chang HY, Huang BM. Arsenic compounds induce apoptosis by activating the MAPK and caspase pathways in FaDu oral squamous carcinoma cells. Int J Oncol 2022; 60:18. [PMID: 35029282 DOI: 10.3892/ijo.2022.5308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 11/06/2022] Open
Abstract
For a number of years, oral cancer has remained in the top ten most common types of cancer, with an incidence rate that is steadily increasing. In total, ~75% oral cancer cases are associated with lifestyle factors, including uncontrolled alcohol consumption, betel and tobacco chewing, and the excessive use of tobacco. Notably, betel chewing is highly associated with oral cancer in Southeast Asia. Arsenic is a key environmental toxicant; however, arsenic trioxide has been used as a medicine for the treatment of acute promyelocytic leukemia, highlighting its anticancer properties. The present study aimed to investigate the role of arsenic compounds in the treatment of cancer, using FaDu oral squamous carcinoma cells treated with sodium arsenite (NaAsO2) and dimethyl arsenic acid (DMA). The results demonstrated that FaDu cells exhibited membrane blebbing phenomena and high levels of apoptosis following treatment with 10 µM NaAsO2 and 1 mM DMA for 24 h. The results of cell viability assay demonstrated that the rate of FaDu cell survival was markedly reduced as the concentration of arsenic compounds increased from 10 to 100 µM NaAsO2, and 1 to 100 mM DMA. Moreover, flow cytometry was carried out to further examine the effects of arsenic compounds on FaDu cell cycle regulation; the results revealed that treatment with NaAsO2 and DMA led to a significant increase in the percentage of FaDu cells in the sub‑G1 and G2/M phases of the cell cycle. An Annexin V/PI double staining assay was subsequently performed to verify the levels of FaDu cell apoptosis following treatment with arsenic compounds. Furthermore, the results of the western blot analyses revealed that the expression levels of caspase‑8, ‑9 and ‑3, and poly ADP‑ribose polymerase, as well the levels of phosphorylated JNK and ERK1/2 were increased following treatment with NaAsO2 and DMA in the FaDu cells. On the whole, the results of the present study revealed that treatment with NaAsO2 and DMA promoted the apoptosis of FaDu oral cancer cells, by activating MAPK pathways, as well as the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Su-Zhen Wu
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Yu-Yan Lan
- Department of Nursing, Shu‑Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan, R.O.C
| | - Chiao-Yun Chu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hong-Yi Chang
- Department of Biotechnology and Food Technology, College of Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
7
|
Molecular mechanisms and therapeutic relevance of gasdermin E in human diseases. Cell Signal 2021; 90:110189. [PMID: 34774988 DOI: 10.1016/j.cellsig.2021.110189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 01/02/2023]
Abstract
Gasdermin E (GSDME) is one of the main members of the GSDM family and is originally involved in hereditary hearing loss. Recent studies have reported that GSDME expression is epigenetically silenced by methylation in several common tumours, thereby enhancing tumour proliferation and metastasis. GSDME is also downregulated in cancer tissues compared with normal tissues, which suggests that GSDME can be considered a tumour suppressor. Furthermore, GSDME is the effector protein of caspase-3 and granzyme B in pyroptosis, and it plays a significant role in innate immunity, tissue damage, cancer, and hearing loss, thus revealing potential novel therapeutic avenues. A great deal of evidence reveals that GSDME can be implemented as a biomarker in cancer diagnosis and monitoring, chemotherapy, immunotherapy, and chemoresistance. Based on the current knowledge of GSDME, this review is focussed on its mechanism of action and the most recent advances in its role in cancer and normal physiology.
Collapse
|
8
|
Tetraarsenic oxide affects non-coding RNA transcriptome through deregulating polycomb complexes in MCF7 cells. Adv Biol Regul 2021; 80:100809. [PMID: 33932728 DOI: 10.1016/j.jbior.2021.100809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022]
Abstract
Non-coding RNAs (ncRNAs) play important and diverse roles in mammalian cell biology and pathology. Although the functions of an increasing number of ncRNAs have been identified, the mechanisms underlying ncRNA gene expression remain elusive and are incompletely understood. Here, we investigated ncRNA gene expression in Michigan cancer foundation 7 (MCF7), a malignant breast cancer cell line, on treatment of tetraarsenic oxide (TAO), a potential anti-cancer drug. Our genomic analyses found that TAO up- or down-regulated ncRNA genes genome-wide. A subset of identified ncRNAs with critical biological and clinical functions were validated by real-time quantitative polymerase chain reaction. Intriguingly, these TAO-regulated genes included CDKN2B-AS, HOXA11-AS, SHH, and DUSP5 that are known to interact with or be targeted by polycomb repressive complexes (PRCs). In addition, the PRC subunits were enriched in these TAO-regulated ncRNA genes and TAO treatment deregulated the expression of PRC subunits. Strikingly, TAO decreased the cellular and gene-specific levels of EZH2 expression and H3K27me3. In particular, TAO reduced EZH2 and H3K27me3 and increased transcription at MALAT1 gene. Inhibiting the catalytic activity of EZH2 using GSK343 increased representative TAO-inducible ncRNA genes. Together, our findings suggest that the expression of a subset of ncRNA genes is regulated by PRC2 and that TAO could be a potent epigenetic regulator through PRCs to modulate the ncRNA gene expression in MCF7 cells.
Collapse
|
9
|
Arsenic hexoxide has differential effects on cell proliferation and genome-wide gene expression in human primary mammary epithelial and MCF7 cells. Sci Rep 2021; 11:3761. [PMID: 33580144 PMCID: PMC7881197 DOI: 10.1038/s41598-021-82551-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Arsenic is reportedly a biphasic inorganic compound for its toxicity and anticancer effects in humans. Recent studies have shown that certain arsenic compounds including arsenic hexoxide (AS4O6; hereafter, AS6) induce programmed cell death and cell cycle arrest in human cancer cells and murine cancer models. However, the mechanisms by which AS6 suppresses cancer cells are incompletely understood. In this study, we report the mechanisms of AS6 through transcriptome analyses. In particular, the cytotoxicity and global gene expression regulation by AS6 were compared in human normal and cancer breast epithelial cells. Using RNA-sequencing and bioinformatics analyses, differentially expressed genes in significantly affected biological pathways in these cell types were validated by real-time quantitative polymerase chain reaction and immunoblotting assays. Our data show markedly differential effects of AS6 on cytotoxicity and gene expression in human mammary epithelial normal cells (HUMEC) and Michigan Cancer Foundation 7 (MCF7), a human mammary epithelial cancer cell line. AS6 selectively arrests cell growth and induces cell death in MCF7 cells without affecting the growth of HUMEC in a dose-dependent manner. AS6 alters the transcription of a large number of genes in MCF7 cells, but much fewer genes in HUMEC. Importantly, we found that the cell proliferation, cell cycle, and DNA repair pathways are significantly suppressed whereas cellular stress response and apoptotic pathways increase in AS6-treated MCF7 cells. Together, we provide the first evidence of differential effects of AS6 on normal and cancerous breast epithelial cells, suggesting that AS6 at moderate concentrations induces cell cycle arrest and apoptosis through modulating genome-wide gene expression, leading to compromised DNA repair and increased genome instability selectively in human breast cancer cells.
Collapse
|
10
|
An H, Heo JS, Kim P, Lian Z, Lee S, Park J, Hong E, Pang K, Park Y, Ooshima A, Lee J, Son M, Park H, Wu Z, Park KS, Kim SJ, Bae I, Yang KM. Tetraarsenic hexoxide enhances generation of mitochondrial ROS to promote pyroptosis by inducing the activation of caspase-3/GSDME in triple-negative breast cancer cells. Cell Death Dis 2021; 12:159. [PMID: 33558527 PMCID: PMC7870965 DOI: 10.1038/s41419-021-03454-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/21/2023]
Abstract
Although tetraarsenic hexoxide is known to exert an anti-tumor effect by inducing apoptosis in various cancer cells, its effect on other forms of regulated cell death remains unclear. Here, we show that tetraarsenic hexoxide induces the pyroptotic cell death through activation of mitochondrial reactive oxygen species (ROS)-mediated caspase-3/gasdermin E (GSDME) pathway, thereby suppressing tumor growth and metastasis of triple-negative breast cancer (TNBC) cells. Interestingly, tetraarsenic hexoxide-treated TNBC cells exhibited specific pyroptotic characteristics, including cell swelling, balloon-like bubbling, and LDH releases through pore formation in the plasma membrane, eventually suppressing tumor formation and lung metastasis of TNBC cells. Mechanistically, tetraarsenic hexoxide markedly enhanced the production of mitochondrial ROS by inhibiting phosphorylation of mitochondrial STAT3, subsequently inducing caspase-3-dependent cleavage of GSDME, which consequently promoted pyroptotic cell death in TNBC cells. Collectively, our findings highlight tetraarsenic hexoxide-induced pyroptosis as a new therapeutic strategy that may inhibit cancer progression of TNBC cells.
Collapse
Affiliation(s)
- Haein An
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Jin Sun Heo
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Pyunggang Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Zenglin Lian
- Beijing Yichuang Biotechnology Industry Research Institute, Beijing, China
| | - Siyoung Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Minjung Son
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Hyeyeon Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon,, 16419, Gyeonggi-do, Republic of Korea
| | - Zhaoyan Wu
- Chemas Co., Ltd., Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, 463-400, Gyeonggi-do, Republic of Korea
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Suwon, Gyeonggi-do, 16229, Republic of Korea
- Medpacto Inc., Seoul, Republic of Korea
| | - Illju Bae
- Chemas Co., Ltd., Seoul, Republic of Korea.
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, 16229, Republic of Korea.
- Medpacto Inc., Seoul, Republic of Korea.
| |
Collapse
|
11
|
Liu YJ, Fan XY, Zhang DD, Xia YZ, Hu YJ, Jiang FL, Zhou FL, Liu Y. Dual Inhibition of Pyruvate Dehydrogenase Complex and Respiratory Chain Complex Induces Apoptosis by a Mitochondria-Targeted Fluorescent Organic Arsenical in vitro and in vivo. ChemMedChem 2020; 15:552-558. [PMID: 32101363 DOI: 10.1002/cmdc.201900686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Based on the potential therapeutic value in targeting mitochondria and the fluorophore tracing ability, a fluorescent mitochondria-targeted organic arsenical PDT-PAO-F16 was fabricated, which not only visualized the cellular distribution, but also exerted anti-cancer activity in vitro and in vivo via targeting pyruvate dehydrogenase complex (PDHC) and respiratory chain complexes in mitochondria. In details, PDT-PAO-F16 mainly accumulated into mitochondria within hours and suppressed the activity of PDHC resulting in the inhibition of ATP synthesis and thermogenesis disorder. Moreover, the suppression of respiratory chain complex I and IV accelerated the mitochondrial dysfunction leading to caspase family-dependent apoptosis. In vivo, the acute promyelocytic leukemia was greatly alleviated in the PDT-PAO-F16 treated group in APL mice model. Our results demonstrated the organic arsenical precursor with fluorescence imaging and target-anticancer efficacy is a promising anticancer drug.
Collapse
Affiliation(s)
- Yu-Jiao Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Xiao-Yang Fan
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Dong-Dong Zhang
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yin-Zheng Xia
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yan-Jun Hu
- College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China
| | - Feng-Lei Jiang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Fu-Ling Zhou
- Department of Haematology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.,College of Chemistry and Materials Science, Nanning Normal University, Nanning, 530001, China.,School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
12
|
Zimta AA, Schitcu V, Gurzau E, Stavaru C, Manda G, Szedlacsek S, Berindan-Neagoe I. Biological and molecular modifications induced by cadmium and arsenic during breast and prostate cancer development. ENVIRONMENTAL RESEARCH 2019; 178:108700. [PMID: 31520827 DOI: 10.1016/j.envres.2019.108700] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Breast and prostate cancer are two of the most common malignancies worldwide. Both cancers can develop into hormone -dependent or -independent subtypes and are associated to environmental exposure in the context of an inherited predisposition. As and Cd have been linked to the onset of both cancers, with the exception of As, which lacks a definitive association with breast carcinogenesis. The two elements exert an opposite effect dependent on acute versus chronic exposure. High doses of As or Cd were shown to induce cell death in acute experimental exposure, while chronic exposure triggers cell proliferation and viability, which is no longer limited by telomere shortening and apoptosis. The chronically exposed cells also increase their invasion capacity and tumorigenic potential. At molecular level, malignant transformation is evidenced mainly by up-regulation of BCL-2, MMP-2, MMP-9, VIM, Snail, Twist, MT, MLH and down-regulation of Casp-3, PTEN, E-CAD, and BAX. The signaling pathways most commonly activated are KRAS, p53, TGF-β, TNF-α, WNT, NRF2 and AKT. This knowledge could potentially raise public awareness over the health risks faced by the human population living or working in a polluted environment and smokers. Human exposure to As and Cd should be minimize as much as possible. Healthcare policies targeting people belonging to these risk categories should include analysis of: DNA damage, oxidative stress, molecular alterations, and systemic level of heavy metals and of essential minerals. In this review, we present the literature regarding cellular and molecular alterations caused by exposure to As or Cd, focusing on the malignant transformation of normal epithelial cells after long-term intoxication with these two carcinogens.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Vlad Schitcu
- The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, 400015, Cluj-Napoca, Romania; "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babes Street, 400012, Cluj-Napoca, Romania
| | - Eugen Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240, Cluj-Napoca, Romania; Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, Cluj- Napoca, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology, 103 Splaiul Independentei Street, Bucharest, 050096, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, 99-101 Splaiul Independentei Street, 050096, Bucharest, Romania
| | - Stefan Szedlacsek
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, 296 Splaiul Independentei Street, Bucharest, 060031, Romania
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Gheorghe Marinescu Street, 400337, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Xiong X, Li Y, Liu L, Qi K, Zhang C, Chen Y, Fang J. Arsenic trioxide induces cell cycle arrest and affects Trk receptor expression in human neuroblastoma SK-N-SH cells. Biol Res 2018; 51:18. [PMID: 29898774 PMCID: PMC5998579 DOI: 10.1186/s40659-018-0167-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arsenic trioxide (As2O3), a drug that has been used in China for approximately two thousand years, induces cell death in a variety of cancer cell types, including neuroblastoma (NB). The tyrosine kinase receptor (Trk) family comprises three members, namely TrkA, TrkB and TrkC. Various studies have confirmed that TrkA and TrkC expression is associated with a good prognosis in NB, while TrkB overexpression can lead to tumor cell growth and invasive metastasis. Previous studies have shown that As2O3 can inhibit the growth and proliferation of a human NB cell line and can also affect the N-Myc mRNA expression. It remains unclear whether As2O3 regulates Trks for the purposes of treating NB. METHODS The aim of the present study was to investigate the effect of As2O3 on Trk expression in NB cell lines and its potential therapeutic efficacy. SK-N-SH cells were grown with increasing doses of As2O3 at different time points. We cultured SK-N-SH cells, which were treated with increasing doses of As2O3 at different time points. Trk expression in the NB samples was quantified by immunohistochemistry, and the cell cycle was analyzed by flow cytometry. TrkA, TrkB and TrkC mRNA expression was evaluated by real-time PCR analysis. RESULTS Immunohistochemical and real-time PCR analyses indicated that TrkA and TrkC were over-expressed in NB, and specifically during stages 1, 2 and 4S of the disease progression. TrkB expression was increased in stage 3 and 4 NB. As2O3 significantly arrested SK-N-SH cells in the G2/M phase. In addition, TrkA, TrkB and TrkC expression levels were significantly upregulated by higher concentrations of As2O3 treatment, notably in the 48-h treatment period. Our findings suggested that to achieve the maximum effect and appropriate regulation of Trk expression in NB stages 1, 2 and 4S, As2O3 treatment should be at relatively higher concentrations for longer delivery times;however, for NB stages 3 and 4, an appropriate concentration and infusion time for As2O3 must be carefully determined. CONCLUSION The present findings suggested that As2O3 induced Trk expression in SK-N-SH cells to varying degrees and may be a promising adjuvant to current treatments for NB due to its apoptotic effects.
Collapse
Affiliation(s)
- Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Ling Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Pediatric Hematology/Oncology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, 524000 Guangdong China
| | - Kai Qi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Yueqin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Life Sciences, Sun Yat-Sen University, Guangzhou, 510120 Guangdong China
| | - Jianpei Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
14
|
Wei M, Liu J, Xu M, Rui D, Xu S, Feng G, Ding Y, Li S, Guo S. Divergent Effects of Arsenic on NF-κB Signaling in Different Cells or Tissues: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:163. [PMID: 26821040 PMCID: PMC4772183 DOI: 10.3390/ijerph13020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Arsenic is ubiquitously present in human lives, including in the environment and organisms, and has divergent effects between different cells and tissues and between different exposure times and doses. These observed effects have been attributed to the nuclear transcription factor kappa B(NF-κB) signaling pathway. Herein, a meta-analysis was performed by independently searching databases including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze effects of arsenic exposure on NF-κB signaling. Compared to controls, in the exposed group, p-IκB levels were found to be 8.13-fold higher (95% CI, 2.40-13.85; Z = 2.78; p = 0.005), IκB levels were 16.19-fold lower (95% CI, -27.44--4.94; Z = 2.78; p = 0.005), and NF-κBp65 levels were 0.77-fold higher (95% CI, 0.13-1.42; Z = 2.34; p = 0.02) for normal cells and tissue, while NF-κBp65 levels were 4.90-fold lower (95% CI, -8.49-1.31; Z = 2.62; p = 0.009), NF-κB activity was 2.45-fold lower (95% CI, -3.66-1.25; Z = 4.00; p < 0.0001), and DNA-binding activity of NF-κB was 9.75-fold lower (95% CI, -18.66-4.54; Z = 2.15; p = 0.03) for abnormal cells and tissue. Short exposure to high arsenic doses activated the NF-κB signaling pathway, while long exposure to low arsenic doses suppressed NF-κB signaling pathway activation. These findings may provide a theoretical basis for injurious and therapeutic mechanisms of divergent effects of arsenic.
Collapse
Affiliation(s)
- Meng Wei
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Jiaming Liu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Mengchuan Xu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Dongsheng Rui
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shangzhi Xu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Gangling Feng
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Yusong Ding
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shuxia Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
15
|
Soria EA, Bongiovanni GA, Luján CD, Eynard AR. Effect of arsenite on nitrosative stress in human breast cancer cells and its modulation by flavonoids. Nutr Cancer 2015; 67:659-63. [PMID: 25849845 DOI: 10.1080/01635581.2015.1019637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Arsenic (As) is used in the treatment of leukemia and breast cancer due to its oxidative cytotoxic action. However, it is also toxic to normal cells. One proposed anticancer mechanism induced by As might be nitrosative stress (NS). It is believed that antioxidant flavonoids in combination with As might reduce its toxic action on normal cells without interfering with its antitumor action. In the present study, we evaluated the antineoplastic potential of As on breast human cancer lines MCF-7 and ZR-75-1 treated with redox-modulating flavonoids, such as quercetin (Q) and silymarin (S). Even though both cell lines differed about their oxidative responsiveness, their viability was decreased by NS induction through γ-glutamyltranspeptidase inhibition. Arsenic triggered NS in both MCF-7 and ZR-75-1 cultures, with the formers more sensitive without recovering their pre-treatment capacity. ZR-75-1 cells maintained their antioxidant status, whereas MCF-7 ones treated with S, As, and As + Q did not. Silymarin did not interfere with the described As bioactivity. NS was an anticancer mechanism exerted by As depending on the redox cellular response that could be differentially modified by dietary antioxidants. Hence, it is worthwhile to consider the use of dietary antioxidants as adjuvant in cancer chemotherapy, especially when using As.
Collapse
Affiliation(s)
- Elio A Soria
- a Instituto de Investigaciones en Ciencias de la Salud (INICSA-UNC/CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | | | | | | |
Collapse
|