1
|
Ghio AJ, Stewart M, Sangani RG, Pavlisko EN, Roggli VL. Cigarette smoking decreases macrophage-dependent clearance to impact the biological effects of occupational and environmental particle exposures. Front Public Health 2025; 13:1558723. [PMID: 40270740 PMCID: PMC12014686 DOI: 10.3389/fpubh.2025.1558723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 04/25/2025] Open
Abstract
The retention of occupational and environmental particles in the lung is a primary determinant of biological effects. In the distal respiratory tract, particle clearance includes phagocytosis by alveolar macrophages (AMs), migration to the terminal bronchiole, and transport of AMs and particles by the mucociliary escalator. With increasing particle exposure, a focal collection of particle-laden macrophages results at the respiratory bronchiole (RB) which is that site in the clearance pathway demanding the greatest traverse by these cells after a commencement from the alveoli. With the greatest particle doses, there is "particle overload" and impaired mobility which is reflected by an excess accumulation of particle-laden macrophages throughout the RBs, alveolar ducts, and alveoli. With deposition of fibrous particles in the distal respiratory tract, the AM is unable to extend itself to enclose fibers with a major diameter of 10-20 microns or longer resulting in "frustrated phagocytosis" and longer retention times. Clearance pathways for particles are shared. There can be a summation of particle exposures with exhaustion in the capacity of the AMs for transport. Cigarette smoking (CS) is the greatest particle challenge humans encounter. Associated with its enormous magnitude, CS profoundly impacts the clearance pathways and subsequently interacts with other particle exposures to increase biological effects. Interstitial lung disease, pulmonary function, chronic obstructive pulmonary disease, infections, lung cancer, and mortality can be altered among smokers exposed to occupational and environmental particles (e.g., silica, coal mine dust, air pollution particles, other particles, and asbestos). It is concluded that both decreasing CS and controlling particle exposures are of vital importance in occupational and environmental lung disease.
Collapse
Affiliation(s)
- Andrew J. Ghio
- US Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Matthew Stewart
- Department of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rahul G. Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, United States
| | | | - Victor L. Roggli
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
2
|
Li Y, Chen D, Xu Y, Ding Q, Xu X, Li Y, Mi Y, Chen Y. Prognostic implications, genomic and immune characteristics of lung adenocarcinoma with lepidic growth pattern. J Clin Pathol 2025; 78:277-284. [PMID: 39097406 DOI: 10.1136/jcp-2024-209603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
AIMS Conflicting data were provided regarding the prognostic impact and genomic features of lung adenocarcinoma (LUAD) with lepidic growth pattern (LP+A). Delineation of the genomic and immune characteristics of LP+A could provide deeper insights into its prognostic implications and treatment determination. METHODS We conducted a search of articles in PubMed, EMBASE and the Cochrane Library from inception to January 2024. A domestic cohort consisting of 52 LUAD samples was subjected to whole-exome sequencing as internal validation. Data from The Cancer Genomic Atlas and the Gene Expression Omnibus datasets were obtained to characterise the genomic and immune profiles of LP+A. Pooled HRs and rates were calculated. RESULTS The pooled results indicated that lepidic growth pattern was either predominant (0.35, 95% CI 0.22 to 0.56, p<0.01) or minor (HR 0.50, 95% CI 0.36 to 0.70, p<0.01) histological subtype was associated with favourable disease-free survival. Pooled gene mutation rates suggested higher EGFR mutation (0.55, 95% CI 0.46 to 0.64, p<0.01) and lower KRAS mutation (0.14, 95% CI 0.02 to 0.25, p=0.02) in lepidic-predominant LUAD. Lepidic-predominant LUAD had lower tumour mutation burden and pooled positive rate of PD-L1 expression compared with other subtypes. LP+A was characterised by abundance in resting CD4+memory T cells, monocytes and γδ T cells, as well as scarcity of cancer-associated fibroblasts. CONCLUSIONS LP+A was a unique histological subtype with a higher EGFR mutation rate, lower tumour mutation burden and immune checkpoint expression levels. Our findings suggested potential benefits from targeted therapy over immunotherapy in LP+A.
Collapse
Affiliation(s)
- Yue Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Donglai Chen
- Department of Thoracic Surgery, Zhongshan Hospital Fudan University, Shanghai, Shanghai, China
| | - Yi Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qifeng Ding
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuejun Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongzhong Li
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yedong Mi
- Department of Thoracic Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Lagunas‐Rangel FA, Linnea‐Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. GEOHEALTH 2022; 6:e2021GH000552. [PMID: 35493962 PMCID: PMC9036628 DOI: 10.1029/2021gh000552] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Collapse
Affiliation(s)
| | - Jenni Viivi Linnea‐Niemi
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Błażej Kudłak
- Faculty of ChemistryDepartment of Analytical ChemistryGdańsk University of TechnologyGdańskPoland
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
- Institute of Translational Medicine and BiotechnologyI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
4
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
5
|
Fitzgerald RC, Rhodes JM. Ingested asbestos in filtered beer, in addition to occupational exposure, as a causative factor in oesophageal adenocarcinoma. Br J Cancer 2019; 120:1099-1104. [PMID: 31068670 PMCID: PMC6738048 DOI: 10.1038/s41416-019-0467-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 03/21/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023] Open
Abstract
Oesophageal adenocarcinoma has become much more common over the past 50 years, particularly in Britain, with an unexplained male to female ratio of > 4:1. Given the use of asbestos filtration in commercial brewing and reports of its unregulated use in British public houses in the 1970's to clear draught beer "slops", we have assessed the hypothesis that ingested asbestos could be a causative factor for this increased incidence. Importantly, occupational asbestos exposure increases the risk of adenocarcinoma but not squamous cell carcinoma of the oesophagus. The presence of asbestos fibres was consistently reported in filtered beverages including beers in the 1970s and asbestos bodies have been found in gastrointestinal tissue, particularly oesophageal tissue, at autopsy. There is no reported association between the intake of alcohol and oesophageal adenocarcinoma but studies would mostly have missed exposure from draught beer before 1980. Oesophageal adenocarcinoma has some molecular similarities to pleural mesothelioma, a condition that is largely due to inhalation of asbestos fibres, including predominant loss of tumour suppressor genes rather than an increase of classical oncogenic drivers. Trends in incidence of oesophageal adenocarcinoma and mesothelioma are similar, rising rapidly over the past 50 years but now plateauing. Asbestos ingestion, either from beer consumed before around 1980, or from occupational exposure, seems a plausible causative factor for oesophageal adenocarcinoma. If this is indeed the case, its incidence should fall back to a low baseline by around 2050.
Collapse
Affiliation(s)
- Rebecca C Fitzgerald
- MRC Cancer Unit,Hutchison-MRC Research Centre, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, USA
| | - Jonathan M Rhodes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Nuffield Building, Crown St., Liverpool, L69 3GE, UK.
| |
Collapse
|
6
|
Bulgakova O, Zhabayeva D, Kussainova A, Pulliero A, Izzotti A, Bersimbaev R. miR-19 in blood plasma reflects lung cancer occurrence but is not specifically associated with radon exposure. Oncol Lett 2018; 15:8816-8824. [PMID: 29805621 PMCID: PMC5950512 DOI: 10.3892/ol.2018.8392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Radon is one of the most powerful carcinogens, particularly in terms of lung cancer onset and development. miRNAs may be considered not only as markers of the ongoing tumorigenesis but also as a hallmark of exposure to radiation, including radon and its progeny. Therefore, the purpose of the present study was to estimate the value of plasma miR-19b-3p level as the prospective marker of the response to radon exposure in lung cancer pathogenesis. A total of 136 subjects were examined, including 49 radon-exposed patients with lung cancer, 37 patients with lung cancer without radon exposure and 50 age/sex matched healthy controls. Total RNA from blood samples was extracted and used to detect miR-19b-3p expression via reverse transcription quantitative-polymerase chain reaction. The 2-ΔΔCq method was used to quantify the amount of relative miRNA. The plasma level of p53 protein was determined using a Human p53 ELISA kit. Plasma miR-19b-3p level was significantly higher in the patients with lung cancer groups, compared with the healthy control group (P<0.0001). No other statistically significant differences were determined in the expression level of plasma miR-19b-3p between patients diagnosed with lung cancer exposed to radon and not exposed to radon. The expression level of free circulating miR-19b-3p was higher in the group of non-smoking patients with lung cancer, compared with smokers with lung cancer. The miR-19b-3p was 1.4-fold higher in non-smokers than in smokers (P<0.05). No association between plasma levels of p53 protein and miR-19b-3p freely circulating in patients with lung cancer was observed. No other statistically significant differences were determined in the plasma p53 protein level between patients diagnosed with lung cancer exposed and not exposed to radon. These results indicated that detection of miR-19b-3p levels in plasma potentially could be exploited as a noninvasive method for the lung cancer diagnostics. However, this miRNA is not suitable as the precise marker for radon impact.
Collapse
Affiliation(s)
- Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Dinara Zhabayeva
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genoa, Genoa, I-16132 Liguria, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, I-16132 Liguria, Italy
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana, Akmola 010008, Kazakhstan
| |
Collapse
|
7
|
Chen X, Wang F, Lin L, Dong H, Huang F, Ghulam Muhammad K, Chen L, Gorlova OY. Association of Smoking with Metabolic Volatile Organic Compounds in Exhaled Breath. Int J Mol Sci 2017; 18:ijms18112235. [PMID: 29068415 PMCID: PMC5713205 DOI: 10.3390/ijms18112235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer (LC) screening will be more efficient if it is applied to a well-defined high-risk population. Characteristics including metabolic byproducts may be taken into account to access LC risk more precisely. Breath examination provides a non-invasive method to monitor metabolic byproducts. However, the association between volatile organic compounds (VOCs) in exhaled breath and LC risk or LC risk factors is not studied. Exhaled breath samples from 122 healthy persons, who were given routine annual exam from December 2015 to December 2016, were analyzed using thermal desorption coupled with gas chromatography mass spectrometry (TD-GC-MS). Smoking characteristics, air quality, and other risk factors for lung cancer were collected. Univariate and multivariate analyses were used to evaluate the relationship between VOCs and LC risk factors. 7, 7, 11, and 27 VOCs were correlated with smoking status, smoking intensity, years of smoking, and depth of inhalation, respectively. Exhaled VOCs are related to smoking and might have a potential to evaluate LC risk more precisely. Both an assessment of temporal stability and testing in a prospective study are needed to establish the performance of VOCs such as 2,5-dimethylfuranm and 4-methyloctane as lung cancer risk biomarkers.
Collapse
Affiliation(s)
- Xing Chen
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University, 38 Zheda Road, Zhou Yi Qing Building, Hangzhou 310027, China.
| | - Fuyuan Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University, 38 Zheda Road, Zhou Yi Qing Building, Hangzhou 310027, China.
| | - Liquan Lin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University, 38 Zheda Road, Zhou Yi Qing Building, Hangzhou 310027, China.
| | - Hao Dong
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University, 38 Zheda Road, Zhou Yi Qing Building, Hangzhou 310027, China.
| | - Feifei Huang
- Department of Family Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun E Rd, Hangzhou 310016, China.
| | - Kanhar Ghulam Muhammad
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University, 38 Zheda Road, Zhou Yi Qing Building, Hangzhou 310027, China.
| | - Liying Chen
- Department of Family Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun E Rd, Hangzhou 310016, China.
| | - Olga Y Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth College, One Medical Center Drive, Lebanon, NH 03756, USA.
| |
Collapse
|
8
|
Diagnostic and Therapeutic Potential of MicroRNAs in Lung Cancer. Cancers (Basel) 2017; 9:cancers9050049. [PMID: 28486396 PMCID: PMC5447959 DOI: 10.3390/cancers9050049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of deaths resulting from cancer owing to late diagnosis and limited treatment intervention. MicroRNAs are short, non-coding RNA molecules that regulate gene expression post-transcriptionally by translational repression or target messenger RNA degradation. Accumulating evidence suggests various roles for microRNAs, including development and progression of lung cancers. Because microRNAs are degraded to a much lesser extent in formalin-fixed paraffin-embedded specimens and are present not only in tumor tissues but also in body fluids, there is an increased potential in microRNA analyses for cancer research. In this review, recent studies of microRNA are introduced and briefly summarized, with a focus on the association of microRNAs with histological subtypes, genetic driver alterations, therapeutically-targeted molecules, and carcinogens. The reported circulating microRNA signature for the early detection of lung cancer and the implications of microRNAs as the modulators of tumor immune response are also introduced.
Collapse
|
9
|
Inamura K. Major Tumor Suppressor and Oncogenic Non-Coding RNAs: Clinical Relevance in Lung Cancer. Cells 2017; 6:cells6020012. [PMID: 28486418 PMCID: PMC5492016 DOI: 10.3390/cells6020012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, yet there remains a lack of specific and sensitive tools for early diagnosis and targeted therapies. High-throughput sequencing techniques revealed that non-coding RNAs (ncRNAs), e.g., microRNAs and long ncRNAs (lncRNAs), represent more than 80% of the transcribed human genome. Emerging evidence suggests that microRNAs and lncRNAs regulate target genes and play an important role in biological processes and signaling pathways in malignancies, including lung cancer. In lung cancer, several tumor suppressor/oncogenic microRNAs and lncRNAs function as biomarkers for metastasis and prognosis, and thus may serve as therapeutic tools. In this review, recent work on microRNAs and lncRNAs is introduced and briefly summarized with a focus on potential biological and therapeutic applications.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
10
|
Mäki-Nevala S, Sarhadi VK, Knuuttila A, Scheinin I, Ellonen P, Lagström S, Rönty M, Kettunen E, Husgafvel-Pursiainen K, Wolff H, Knuutila S. Driver Gene and Novel Mutations in Asbestos-Exposed Lung Adenocarcinoma and Malignant Mesothelioma Detected by Exome Sequencing. Lung 2016; 194:125-35. [PMID: 26463840 DOI: 10.1007/s00408-015-9814-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/27/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Asbestos is a carcinogen linked to malignant mesothelioma (MM) and lung cancer. Some gene aberrations related to asbestos exposure are recognized, but many associated mutations remain obscure. We performed exome sequencing to determine the association of previously known mutations (driver gene mutations) with asbestos and to identify novel mutations related to asbestos exposure in lung adenocarcinoma (LAC) and MM. METHODS Exome sequencing was performed on DNA from 47 tumor tissues of MM (21) and LAC (26) patients, 27 of whom had been asbestos-exposed (18 MM, 9 LAC). In addition, 9 normal lung/blood samples of LAC were sequenced. Novel mutations identified from exome data were validated by amplicon-based deep sequencing. Driver gene mutations in BRAF, EGFR, ERBB2, HRAS, KRAS, MET, NRAS, PIK3CA, STK11, and ephrin receptor genes (EPHA1-8, 10 and EPHB1-4, 6) were studied for both LAC and MM, and in BAP1, CUL1, CDKN2A, and NF2 for MM. RESULTS In asbestos-exposed MM patients, previously non-described NF2 frameshift mutation (one) and BAP1 mutations (four) were detected. Exome data mining revealed some genes potentially associated with asbestos exposure, such as MRPL1 and SDK1. BAP1 and COPG1 mutations were seen exclusively in MM. Pathogenic KRAS mutations were common in LAC patients (42 %), both in non-exposed (n = 5) and exposed patients (n = 6). Pathogenic BRAF mutations were found in two LACs. CONCLUSION BAP1 mutations occurred in asbestos-exposed MM. MRPL1, SDK1, SEMA5B, and INPP4A could possibly serve as candidate genes for alterations associated with asbestos exposure. KRAS mutations in LAC were not associated with asbestos exposure.
Collapse
|
11
|
Youssef O, Sarhadi VK, Armengol G, Piirilä P, Knuuttila A, Knuutila S. Exhaled breath condensate as a source of biomarkers for lung carcinomas. A focus on genetic and epigenetic markers-A mini-review. Genes Chromosomes Cancer 2016; 55:905-914. [DOI: 10.1002/gcc.22399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- Omar Youssef
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Virinder Kaur Sarhadi
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma De Barcelona; Barcelona Catalonia Spain
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS-Medical Imaging Center, Helsinki University Hospital and Helsinki University; Helsinki Finland
| | - Aija Knuuttila
- Department of Pulmonary Medicine; University of Helsinki and Helsinki University Hospital, Heart and Lung Center; Helsinki Finland
| | - Sakari Knuutila
- Faculty of Medicine; Department of Pathology, University of Helsinki; Helsinki Finland
| |
Collapse
|
12
|
Naka T, Hatanaka Y, Marukawa K, Okada H, Hatanaka KC, Sakakibara-Konishi J, Oizumi S, Hida Y, Kaga K, Mitsuhashi T, Matsuno Y. Comparative genetic analysis of a rare synchronous collision tumor composed of malignant pleural mesothelioma and primary pulmonary adenocarcinoma. Diagn Pathol 2016; 11:38. [PMID: 27091358 PMCID: PMC4836188 DOI: 10.1186/s13000-016-0488-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/02/2016] [Indexed: 12/04/2022] Open
Abstract
Background Although asbestos acts as a potent carcinogen in pleural mesothelial and pulmonary epithelial cells, it still remains unclear whether asbestos causes specific and characteristic gene alterations in these different kinds of target cells, because direct comparison in an identical patient is not feasible. We experienced a rare synchronous collision tumor composed of malignant pleural mesothelioma (MPM) and primary pulmonary adenocarcinoma (PAC) in a 77-year-old man with a history of long-term smoking and asbestos exposure, and compared the DNA copy number alteration (CNA) and somatic mutation in these two independent tumors. Methods Formalin-fixed paraffin-embedded (FFPE) tissues of MPM and PAC lesions from the surgically resected specimen were used. Each of these MPM and PAC lesions exhibited a typical histology and immunophenotype. CNA analysis using SNP array was performed using the Illumina Human Omni Express-12_FFPE (Illumina, San Diego, CA, USA) with DNA extracts from each lesion. Somatic mutation analysis using next-generation sequencing was performed using the TruSeq Amplicon Cancer Panel (Illumina). Results The CNA analysis demonstrated a marked difference in the frequency of gain and loss between MPM and PAC. In PAC, copy number (CN) gain was detected more frequently and widely than CN loss, whereas in MPM there was no such obvious difference. PAC did not harbor CNAs that have been identified in asbestos-associated lung cancer, but did harbor some of the CNAs associated with smoking. MPM exhibited CN loss at 9p21.2-3, which is the most common genetic alteration in mesothelioma. Conclusion In this particular case, asbestos exposure may not have played a primary role in PAC carcinogenesis, but cigarette smoking may have contributed more to the occurrence of CN gains in PAC. This comparative genetic analysis of two different lesions with same amount of asbestos exposure and cigarette smoke exposure has provided information on differences in the cancer genome related to carcinogenesis.
Collapse
Affiliation(s)
- Tomoaki Naka
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan.,Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Katsuji Marukawa
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hiromi Okada
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Jun Sakakibara-Konishi
- First Department of Medicine, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Satoshi Oizumi
- First Department of Medicine, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Tomoko Mitsuhashi
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan. .,Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan.
| |
Collapse
|