1
|
Wang Z, Tang XL, Zhao MJ, Zhang YD, Xiao Y, Liu YY, Qian CF, Xie YD, Liu Y, Zou YJ, Yang K, Liu HY. Biomimetic hypoxia-triggered RNAi nanomedicine for synergistically mediating chemo/radiotherapy of glioblastoma. J Nanobiotechnology 2023; 21:210. [PMID: 37408007 DOI: 10.1186/s12951-023-01960-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
Although RNA interference (RNAi) therapy has emerged as a potential tool in cancer therapeutics, the application of RNAi to glioblastoma (GBM) remains a hurdle. Herein, to improve the therapeutic effect of RNAi on GBM, a cancer cell membrane (CCM)-disguised hypoxia-triggered RNAi nanomedicine was developed for short interfering RNA (siRNA) delivery to sensitize cells to chemotherapy and radiotherapy. Our synthesized CCM-disguised RNAi nanomedicine showed prolonged blood circulation, high BBB transcytosis and specific accumulation in GBM sites via homotypic recognition. Disruption and effective anti-GBM agents were triggered in the hypoxic region, leading to efficient tumor suppression by using phosphoglycerate kinase 1 (PGK1) silencing to enhance paclitaxel-induced chemotherapy and sensitize hypoxic GBM cells to ionizing radiation. In summary, a biomimetic intelligent RNAi nanomedicine has been developed for siRNA delivery to synergistically mediate a combined chemo/radiotherapy that presents immune-free and hypoxia-triggered properties with high survival rates for orthotopic GBM treatment.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang-Long Tang
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| | - Meng-Jie Zhao
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China
| | - Yi-Ding Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Xiao
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yu-Yang Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Chun-Fa Qian
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yan-Dong Xie
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan-Jie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
| | - Hong-Yi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital With Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, China.
- Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital With Nanjing Medical University, Nanjing, 210029, China.
- Institute of Neuro-Science, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Aragoneses-Cazorla G, Vallet-Regí M, Gómez-Gómez MM, González B, Luque-Garcia JL. Integrated transcriptomics and metabolomics analysis reveals the biomolecular mechanisms associated to the antitumoral potential of a novel silver-based core@shell nanosystem. Mikrochim Acta 2023; 190:132. [PMID: 36914921 PMCID: PMC10011303 DOI: 10.1007/s00604-023-05712-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023]
Abstract
A combination of omics techniques (transcriptomics and metabolomics) has been used to elucidate the mechanisms responsible for the antitumor action of a nanosystem based on a Ag core coated with mesoporous silica on which transferrin has been anchored as a targeting ligand against tumor cells (Ag@MSNs-Tf). Transcriptomics analysis has been carried out by gene microarrays and RT-qPCR, while high-resolution mass spectrometry has been used for metabolomics. This multi-omics strategy has enabled the discovery of the effect of this nanosystem on different key molecular pathways including the glycolysis, the pentose phosphate pathway, the oxidative phosphorylation and the synthesis of fatty acids, among others.
Collapse
Affiliation(s)
- Guillermo Aragoneses-Cazorla
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Ma Milagros Gómez-Gómez
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Blanca González
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Instituto de Investigación Sanitaria Hospital, 12 de Octubre (I+12), 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Saragossa, Spain
| | - Jose L Luque-Garcia
- Department of Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Metabolic protein phosphoglycerate kinase 1 confers lung cancer migration by directly binding HIV Tat specific factor 1. Cell Death Discov 2021; 7:135. [PMID: 34091600 PMCID: PMC8179927 DOI: 10.1038/s41420-021-00520-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/13/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is involved in glycolytic and various metabolic events. Dysfunction of PGK may induce metabolic reprogramming and the Warburg effect. In this study, we demonstrated that PGK1, but not PGK2, may play a key role in tumorigenesis and is associated with metastasis. We observed an inverse correlation between PGK1 and the survival rate in several clinical cohorts through bioinformatics statistical and immunohistochemical staining analyses. Surprisingly, we found that PGK1 was significantly increased in adenocarcinoma compared with other subtypes. Thus, we established a PGK1-based proteomics dataset by a pull-down assay. We further investigated HIV-1 Tat Specific Factor 1 (HTATSF1), a potential binding partner, through protein–protein interactions. Then, we confirmed that PGK1 indeed bound to HTATSF1 by two-way immunoprecipitation experiments. In addition, we generated several mutant clones of PGK1 through site-directed mutagenesis, including mutagenesis of the N-terminal region, the enzyme catalytic domain, and the C-terminal region. We observed that even though the phosphoglycerate kinase activity had been inhibited, the migration ability induced by PGK1 was maintained. Moreover, our immunofluorescence staining also indicated the translocation of PGK1 from the cytoplasm to the nucleus and its colocalization with HTATSF1. From the results presented in this study, we propose a novel model in which the PGK1 binds to HTATSF1 and exerts functional control of cancer metastasis. In addition, we also showed a nonenzymatic function of PGK1.
Collapse
|
4
|
Fu Q, Yu Z. Phosphoglycerate kinase 1 (PGK1) in cancer: A promising target for diagnosis and therapy. Life Sci 2020; 256:117863. [PMID: 32479953 DOI: 10.1016/j.lfs.2020.117863] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Phosphoglycerate kinase 1 (PGK1) is the first critical enzyme to produce ATP in the glycolytic pathway. PGK1 is not only a metabolic enzyme but also a protein kinase, which mediates the tumor growth, migration and invasion through phosphorylation some important substrates. Moreover, PGK1 is associated with poor treatment and prognosis of cancers. This manuscript reviews the structure, functions, post-translational modifications (PTMs) of PGK1 and its relationship with tumors, which demonstrates that PGK1 has indispensable value in the tumor progression. The current review highlights the important role of PGK1 in anticancer treatments.
Collapse
Affiliation(s)
- Qi Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China.; College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong Province, PR China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, PR China..
| |
Collapse
|
5
|
Sun W, Yan H, Qian C, Wang C, Zhao M, Liu Y, Zhong Y, Liu H, Xiao H. Cofilin-1 and phosphoglycerate kinase 1 as promising indicators for glioma radiosensibility and prognosis. Oncotarget 2017; 8:55073-55083. [PMID: 28903403 PMCID: PMC5589642 DOI: 10.18632/oncotarget.19025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
Glioma is a primary malignancy in central nervous system. Radiotherapy has been used as one of the standard treatments for glioma for decades. Since radioresistance can reduce the curative efficacy of radiotherapy in glioma, investigating the cause of radioresistance and predicting the tumour radiosensibility appeared particularly important. We previously reported that CFL1 and PGK1 are over-expressed in radioresistant U251 glioma cells. In this study, the level of CFL1 and PGK1 of 113 glioma tissues were measured by ELISA method. The relevance of the expression of these two proteins to radiosensibility was analyzed by mean test and multivariate logistic regression. The survival analysis was carried out in 85 irradiated patients and 105 followed-up patients respectively. The relationship between protein expression and clinical parameters was explored in overall 113 patients, and the correlation between CFL1 and PGK1 were determined as well. Our results showed that the expression of CFL1 and PGK1 were significantly higher (P < 0.001) in radioresistant patients than others. The multivariate Logistic regression demonstrated that the expression of CFL1 (p < 0.001) and PGK1 (p < 0.001) were associated with radioresistance in glioma. The multivariate Cox regression in overall survival suggested that CFL1 level or PGK1 level could be the independent prognosis factor for poor prognosis in 113 glioma patients. In addition, CFL1 expression was positively correlated with PGK1 expression in glioma. The results suggested that as promising indicators, CFL1 and PGK1 could be used to evaluate glioma radiosensibility and prognosis. These two proteins could also be the potential therapeutic targets of glioma.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hua Yan
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chenhan Wang
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yuchi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yujie Zhong
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| |
Collapse
|
6
|
Wang Y, Jin T, Dai X, Yan D, Peng Z. Histone deacetylase enzyme silencing using shRNAs enhances radiosensitivity of SW579 thyroid cancer cells. Mol Med Rep 2016; 14:3509-16. [PMID: 27600599 PMCID: PMC5042794 DOI: 10.3892/mmr.2016.5711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to screen the enzymes that are associated with the radiosensitivity of SW579 thyroid cancer cells, and investigate whether radiation, combined with specific RNA interference on the screened enzymes, enhances radiosensitivity of SW579 thyroid cancer cells. Quantitative polymerase chain reaction (qPCR) was used to analyze epigenetic enzyme expression changes before and after radiotherapy, and four enzymes, histone deacetylase 1 (HDAC1), HDAC2, HDAC4 and HDAC6 were screened. Western blot analysis was performed to analyze the change in HDAC1, HDAC2, HDAC4 and HDAC6 protein expression following radiotherapy. Short hairpin RNA (ShRNA)‑HDAC1, shRNA‑HDAC2, shRNA‑HDAC4 and shRNA‑HDAC6 plasmids were constructed and SW579 cells were transfected with corresponding shRNA‑HDACs. Reverse transcription‑qPCR was used to detect whether downregulation of HDAC mRNAs had been effective. In addition, shRNA and shRNA negative control (NC) pools were established and transfected into the SW579 cells. The samples were divided into four groups; control, trichostatin A, shRNA pool and shRNA NC pool, to analyze the effective enhancement of specific shRNA on radiosensitivity in thyroid cancer cells. The morphological changes were observed in the SW579 cells, and the number of tumor cells decreased markedly in the shRNA pool group compared with that of the other three groups. Therefore, it was concluded that HDACs present a potential target for increasing the sensitivity of thyroid cancer cells to radiotherapy, and shRNA‑HDAC interference combined with radiotherapy promotes the radiosensitivity of tumors.
Collapse
Affiliation(s)
- Ye Wang
- School of Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Tao Jin
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Xueming Dai
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai 200080, P.R. China
| | - Zhihai Peng
- School of Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|