1
|
Liu L, Cheng P, Cui J, Ren S, Yao M, Li L, Zhou H, Zhang X, Qin X, Liu Y, Zhang H, Wang L, Chen M. Galectin-1: An important regulator in myeloid differentiation and acute myeloid leukemia as well as a promising prognostic indicator and therapeutic target. Int Immunopharmacol 2025; 158:114835. [PMID: 40378432 DOI: 10.1016/j.intimp.2025.114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/10/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive and heterogeneous hematological malignancy with a low survival probability and limited therapeutic options. Although galectin-1 (LGALS1) has been implicated in tumor cell survival and immune evasion in solid tumor, its role in AML is still unclear. In this study, we found that LGALS1 presents prominent upregulation in AML patients at both mRNA and protein levels compared with the control samples. Bioinformatics analysis indicated that high expression of LGALS1 is a significant unfavorable prognostic factor for overall survival in AML, correlating with adverse clinical and genetic features as well as immune cell infiltration. Depletion of LGALS1 in AML cells impeded cell proliferation, induced apoptosis and promoted myeloid differentiation. Treatment with OTX008, an LGALS1 inhibitor, markedly diminished the viability of primary malignant bone marrow cells from AML patients. Notably, LGALS1 expression was significantly reduced exclusively in AML-M5 patients after treatment, which may be due to its higher expression in AML-M5 subtype compared to other FAB subtypes. In summary, our findings indicate that LGALS1 could serve as an independent prognostic risk factor and a promising therapeutic target in AML, providing novel insights into AML pathogenesis and laying the foundation for the development of new therapeutic strategies.
Collapse
MESH Headings
- Humans
- Galectin 1/genetics
- Galectin 1/metabolism
- Galectin 1/antagonists & inhibitors
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Prognosis
- Female
- Male
- Middle Aged
- Cell Differentiation
- Cell Proliferation
- Adult
- Aged
- Apoptosis/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Lulu Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Key laboratory of cell and biomedical Technology of Shandong Province, PR China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Junjie Cui
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong Province, PR China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Mingkang Yao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Ling Li
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Xianning Zhang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Xianyun Qin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Yaqi Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China
| | - Hao Zhang
- Key laboratory of cell and biomedical Technology of Shandong Province, PR China; Department of Hematology, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Jining Key Laboratory of Hematopoietic Stem Cell Transplantation and Immunology, Jining 272000, Shandong Province, PR China
| | - Lina Wang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China.
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272000, Shandong Province, PR China; Key laboratory of cell and biomedical Technology of Shandong Province, PR China; Jining Key Laboratory of Hematopoietic Stem Cell Transplantation and Immunology, Jining 272000, Shandong Province, PR China.
| |
Collapse
|
2
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Hong X, Fu R. Construction of a 5-gene prognostic signature based on oxidative stress related genes for predicting prognosis in osteosarcoma. PLoS One 2023; 18:e0295364. [PMID: 38039294 PMCID: PMC10691720 DOI: 10.1371/journal.pone.0295364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The understanding of the complex biological scenario of osteosarcoma will open the way to identifying new strategies for its treatment. Oxidative stress is a cancer-related biological scenario. At present, it is not clear the oxidative stress genes in affecting the prognosis and progression of osteosarcoma, the underlying mechanism as well as their impact on the classification of osteosarcoma subtypes. METHODS We selected samples and sequencing data from TARGET data set and GSE21257 data set, and downloaded oxidative stress related-genes (OSRGs) from MsigDB. Univariate Cox analysis of OSRG was conducted using TARGET data, and the prognostic OSRG was screened to conduct unsupervised clustering analysis to identify the molecular subtypes of osteosarcoma. Through least absolute shrinkage and selection operator (LASSO) regression analysis and COX regression analysis of differentially expressed genes (DEGs) between subgroups, a risk assessment system for osteosarcoma was developed. RESULTS 45 prognosis-related OSRGs genes were acquired, and two molecular subtypes of osteosarcoma were clustered. C2 cluster displayed prolonged overall survival (OS) accompanied with high degree of immune infiltration and enriched immune pathways. While cell cycle related pathways were enriched in C2 cluster. Based on DEGs between subgroups and Lasso analysis, 5 hub genes (ZYX, GJA5, GAL, GRAMD1B, and CKMT2) were screened to establish a robust prognostic risk model independent of clinicopathological features. High-risk group had more patients with cancer metastasis and death as well as C1 subtype with poor prognosis. Low-risk group exhibited favorable OS and high immune infiltration status. Additionally, the risk assessment system was optimized by building decision tree and nomogram. CONCLUSIONS This study defined two molecular subtypes of osteosarcoma with different prognosis and tumor immune microenvironment status based on the expression of OSRGs, and provided a new risk assessment system for the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Xiaofang Hong
- Department of Stomatology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Ribin Fu
- Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
5
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Farnood PR, Pazhooh RD, Asemi Z, Yousefi B. Targeting Signaling Pathway by Curcumin in Osteosarcoma. Curr Mol Pharmacol 2023; 16:71-82. [PMID: 35400349 DOI: 10.2174/1874467215666220408104341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/15/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The most prevalent primary bone malignancy among children and adolescents is osteosarcoma. The high mortality rate of osteosarcoma is due to lung metastasis. Despite the development of multi-agent chemotherapy and surgical resection, patients with osteosarcoma have a high metastasis rate and poor prognosis. Thus, it is necessary to identify novel therapeutic agents to improve the 5-year survival rate of these patients. Curcumin, a phytochemical compound derived from Curcuma longa, has been employed in treating several types of cancers through various mechanisms. Also, in vitro studies have demonstrated that curcumin could inhibit cell proliferation and induce apoptosis in osteosarcoma cells. Development in identifying signaling pathways involved in the pathogenesis of osteosarcoma has provided insight into finding new therapeutic targets for the treatment of this cancer. Targeting MAPK/ERK, PI3k/AKT, Wnt/β-catenin, Notch, and MircoRNA by curcumin has been evaluated to improve outcomes in patients with osteosarcoma. Although curcumin is a potent anti-cancer compound, it has rarely been studied in clinical settings due to its congenital properties such as hydrophobicity and poor bioavailability. In this review, we recapitulate and describe the effect of curcumin in regulating signaling pathways involved in osteosarcoma.
Collapse
Affiliation(s)
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Zhu P, Li T, Li Q, Gu Y, Shu Y, Hu K, Chen L, Peng X, Peng J, Hao L. Mechanism and Role of Endoplasmic Reticulum Stress in Osteosarcoma. Biomolecules 2022; 12:1882. [PMID: 36551309 PMCID: PMC9775044 DOI: 10.3390/biom12121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common malignant bone tumor, often occurring in children and adolescents. The etiology of most patients is unclear, and the current conventional treatment methods are chemotherapy, radiotherapy, and surgical resection. However, the sensitivity of osteosarcoma to radiotherapy and chemotherapy is low, and the prognosis is poor. The development of new and useful treatment strategies for improving patient survival is an urgent need. It has been found that endoplasmic reticulum (ER) stress (ERS) affects tumor angiogenesis, invasion, etc. By summarizing the literature related to osteosarcoma and ERS, we found that the unfolded protein response (UPR) pathway activated by ERS has a regulatory role in osteosarcoma proliferation, apoptosis, and chemoresistance. In osteosarcoma, the UPR pathway plays an important role by crosstalk with autophagy, oxidative stress, and other pathways. Overall, this article focuses on the relationship between ERS and osteosarcoma and reviews the potential of drugs or gene targets associated with ERS for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peijun Zhu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ting Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Qingqing Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yawen Gu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuan Shu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Kaibo Hu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jie Peng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Xu N, Wang X, Wang L, Song Y, Zheng X, Hu H. Comprehensive analysis of potential cellular communication networks in advanced osteosarcoma using single-cell RNA sequencing data. Front Genet 2022; 13:1013737. [PMID: 36303551 PMCID: PMC9592772 DOI: 10.3389/fgene.2022.1013737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Osteosarcoma (OS) is a common bone cancer in children and adolescents, and metastasis and recurrence are the major causes of poor treatment outcomes. A better understanding of the tumor microenvironment is required to develop an effective treatment for OS. In this paper, a single-cell RNA sequencing dataset was taken to a systematic genetic analysis, and potential signaling pathways linked with osteosarcoma development were explored. Our findings revealed 25 clusters across 11 osteosarcoma tissues, with 11 cell types including “Chondroblastic cells”, “Osteoblastic cells”, “Myeloid cells”, “Pericytes”, “Fibroblasts”, “Proliferating osteoblastic cells”, “Osteoclasts”, “TILs”, “Endothelial cells”, “Mesenchymal stem cells”, and “Myoblasts”. The results of Cell communication analysis showed 17 potential cellular communication networks including “COLLAGEN signaling pathway network”, “CD99 signaling pathway network”, “PTN signaling pathway network”, “MIF signaling pathway network”, “SPP1 signaling pathway network”, “FN1 signaling pathway network”, “LAMININ signaling pathway network”, “FGF signaling pathway network”, “VEGF signaling pathway network”, “GALECTIN signaling pathway network”, “PERIOSTIN signaling pathway network”, “VISFATIN signaling pathway network”, “ITGB2 signaling pathway network”, “NOTCH signaling pathway network”, “IGF signaling pathway network”, “VWF signaling pathway network”, “PDGF signaling pathway network”. This research may provide novel insights into the pathophysiology of OS’s molecular processes.
Collapse
Affiliation(s)
- Ning Xu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lili Wang
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Yuan Song
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Xianyou Zheng
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| | - Hai Hu
- Departments of Orthopedics, Shanghai Eighth People’s Hospital, Shanghai, China
- Departments of Orthopedics, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yuan Song, ; Xianyou Zheng, ; Hai Hu,
| |
Collapse
|
9
|
Dana PM, Sadoughi F, Asemi Z, Yousefi B. Molecular signaling pathways as potential therapeutic targets in osteosarcoma. Curr Med Chem 2022; 29:4436-4444. [PMID: 35139778 DOI: 10.2174/0929867329666220209110009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
Among primary bone malignancies, osteosarcoma (OS) is the most common form causing morbidity and mortality in both adults and children. The interesting point about this malignancy is that nearly 10-20% of its newly diagnosed cases have developed metastasis. This adds up to the fact that the survival rate of both metastatic and non-metastatic patients of osteosarcoma hasn't changed in the past 30 years and suggests that we need to revise our therapeutic options for OS. In recent years, diverse signaling pathways have drawn the attention of the scientific community since they can be great candidates for treating complicated diseases such as cancer. In this review, we have tried to explain the pathophysiology of osteosarcoma by the help of different signaling pathways taking part in its initiation/progression and investigate how this pathway can be targeted for providing more efficient methods.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Ji T, Ma K, Chen L, Cao T. PADI1 contributes to EMT in PAAD by activating the ERK1/2-p38 signaling pathway. J Gastrointest Oncol 2021; 12:1180-1190. [PMID: 34295566 DOI: 10.21037/jgo-21-283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022] Open
Abstract
Background Peptidylarginine deiminase 1 (PADI1) has been reported to promote tumorigenesis in breast cancer. However, the functional role of PADI1 in pancreatic ductal adenocarcinoma (PAAD) has remained elusive until now. Methods The expression pattern of PADI1 in PAAD tissues and normal tissues was analyzed using The Cancer Genome Atlas (TCGA) dataset. A Kaplan-Meier curve analysis was performed to evaluate the prognostic value of PADI1 in PAAD patients. PADI1 was knocked down in CFPAN-1 and HPAC cells, and overexpressed in PANC-1 and Bxpc-3 cells by RNA interference. A wound-healing assay was performed to analyze relative cell migration distance. Cell migration and invasion were assessed by a Transwell assay. Related protein expression levels were measured by western blot and immunofluorescence. Results The bioinformatics analysis showed that PADI1 was overexpressed in PAAD tissues and associated with a poor survival prognosis. The knockdown of PADI1 suppressed cell migration and invasion, and activated the ERK1/2-p38 signaling pathway in CFPAN-1 and HPAC cells. The overexpression of PADI1 produced the opposite results in PANC-1 and Bxpc-3 cells. Additionally, treatment with an MEK1/2 inhibitor significantly attenuated the effects of PADI1 knockdown on cell migration, invasion, the epithelial-mesenchymal transition (EMT) process, and p-ERK1/2 and p38 expression in CFPAN-1 and HPAC cells. Conclusions Our data suggested that PADI1 may function as an oncogene in regulating metastasis in vitro in PAAD.
Collapse
Affiliation(s)
- Tengfei Ji
- Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Keqiang Ma
- Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Liang Chen
- Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| | - Tiansheng Cao
- Department of Hepatobiliary Surgery, Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, China
| |
Collapse
|
12
|
Abstract
Abstract
Background
Lung adenocarcinoma is metastatic cancer with a high mortality rate. Circular RNAs (circRNAs) are a type of noncoding RNA and play a vital role in cancer progression. However, the expression and function of circRNAs in lung adenocarcinoma are still mostly unknown.
Methods
In this study, we screened the differential expression of circRNAs in human bronchial epithelial cells (HBE) and A549 human lung adenocarcinoma cell line (A549) by human circRNA microarray and RT-qPCR. The role of overexpressed circRNA_104889 in A549 cell proliferation, apoptosis, migration, and invasion was studied extensively. Intracellular localization of circRNA_104889 was visualized by FISH assay. MiRNA sponging, ERK1/2 signaling, and caspase-3 expression were analyzed in siRNA-mediated circRNA_104889 knockdowned A549 cells.
Results
CircRNA microarray showed overexpression of circRNA_104889 (> 13-fold) in A459 cells compared to HBE. This finding was further corroborated by the RT-qPCR result. CircRNA_104889 was mainly localized in the cytoplasm of A549 cells. The knockdown of circRNA_104889 in A549 cells by si-RNA mediated RNA interference did not affect cell proliferation and apoptosis but significantly inhibited cell migration and invasion in vitro. Furthermore, knockdown of circRNA_104889 led to an increase of miR4458 expression. Overexpression of miR4458 inhibited A549 cell migration. Both the knockdown of circRNA_104889 and overexpression of miR4458 inhibited the caspase-3 expression and ERK1/2 phosphorylation in A549 cells.
Conclusions
CircRNA_104889 promotes lung adenocarcinoma cell migration and invasion by sponging miR4458 and targeting ERK1/2 signaling and caspase-3 expression.
Collapse
|
13
|
Wu ZL, Deng YJ, Zhang GZ, Ren EH, Yuan WH, Xie QQ. Development of a novel immune-related genes prognostic signature for osteosarcoma. Sci Rep 2020; 10:18402. [PMID: 33110201 PMCID: PMC7591524 DOI: 10.1038/s41598-020-75573-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Immune-related genes (IRGs) are responsible for osteosarcoma (OS) initiation and development. We aimed to develop an optimal IRGs-based signature to assess of OS prognosis. Sample gene expression profiles and clinical information were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) databases. IRGs were obtained from the ImmPort database. R software was used to screen differentially expressed IRGs (DEIRGs) and functional correlation analysis. DEIRGs were analyzed by univariate Cox regression and iterative LASSO Cox regression analysis to develop an optimal prognostic signature, and the signature was further verified by independent cohort (GSE39055) and clinical correlation analysis. The analyses yielded 604 DEIRGs and 10 hub IRGs. A prognostic signature consisting of 13 IRGs was constructed, which strikingly correlated with OS overall survival and distant metastasis (p < 0.05, p < 0.01), and clinical subgroup showed that the signature's prognostic ability was independent of clinicopathological factors. Univariate and multivariate Cox regression analyses also supported its prognostic value. In conclusion, we developed an IRGs signature that is a prognostic indicator in OS patients, and the signature might serve as potential prognostic indicator to identify outcome of OS and facilitate personalized management of the high-risk patients.
Collapse
Affiliation(s)
- Zuo-Long Wu
- Guanghe Traditional Chinese and Western Medicine Hospital, Lanzhou, 730000, Gansu, China
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ya-Jun Deng
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Guang-Zhi Zhang
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - En-Hui Ren
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No.29 Tongren Road, Xining, 810000, Qinghai, China
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wen-Hua Yuan
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi-Qi Xie
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No.29 Tongren Road, Xining, 810000, Qinghai, China.
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
14
|
Wang T, Wang ZY, Zeng LY, Gao YZ, Yan YX, Zhang Q. Down-Regulation of Ribosomal Protein RPS21 Inhibits Invasive Behavior of Osteosarcoma Cells Through the Inactivation of MAPK Pathway. Cancer Manag Res 2020; 12:4949-4955. [PMID: 32612383 PMCID: PMC7323807 DOI: 10.2147/cmar.s246928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
Objective The goal of our present study was to explore the expression level, biological function, and underlying molecular mechanism of ribosomal protein s21 (RPS21) in human osteosarcoma (OS). Methods Firstly, we evaluated the expression of RPS21 in OS tissue samples based on the Gene Expression Omnibus (GEO) datasets and also measured the RPS21 expression of OS cell lines (MG63, and U2OS) by quantitative real-time polymerase chain reaction (qRT-PCR). siRNA interference method was used to reduce the expression of RSP21 in the OS cells. Cell Counting Kit-8 (CCK-8), colony formation, wound-healing, and transwell assays were conducted to measure the proliferation, migration, and invasion of OS cells. The mitogen-activated protein kinase (MAPK) pathway-related proteins levels were examined by Western blot. Results Our analyses showed that the expression of RPS21 was significantly increased in OS, compared with normal samples. Upregulation of RPS21 was associated with worse outcomes of OS patients. Knockdown of RPS21 suppressed OS cell proliferation, colony-forming ability, migration, and invasion capacities. Moreover, down-regulation of RPS21 inactivated the MAPK signaling pathway. Conclusion RPS21 plays an oncogenic candidate in OS development via regulating the activity of MAPK pathway; therefore, it may serve as a novel therapeutic target for OS treatment.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| | - Zhi-Yong Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| | - Ling-Yuan Zeng
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| | - Yao-Zu Gao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| | - Yu-Xin Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| | - Quan Zhang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan City, Shanxi Province 030001, People's Republic of China
| |
Collapse
|
15
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
16
|
Stachowicz-Stencel T, Synakiewicz A. Biomarkers for pediatric cancer detection: latest advances and future perspectives. Biomark Med 2020; 14:391-400. [PMID: 32270691 DOI: 10.2217/bmm-2019-0613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cancer is one of the major health problems of the modern world. With the development of novel biochemistry and analytical instrumentation, precancer diagnosis has become a major focus of clinical and preclinical research. Finding appropriate biomarkers is crucial to make an early diagnosis, before the disease fully develops. With the improvement of precancer studies, cancer biomarkers prove their usefulness in providing important data on the cancer type and the status of patients' progression at a very early stage of the disease. Due to the constant evolution of pediatric cancer diagnosis, which includes highly advanced molecular techniques, the authors have decided to focus on selected groups of neoplastic disease and these include brain tumors, neuroblastoma, osteosarcoma and Hodgkin lymphoma.
Collapse
Affiliation(s)
- Teresa Stachowicz-Stencel
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| | - Anna Synakiewicz
- Department of Pediatrics, Hematology & Oncology, Medical University of Gdansk, Poland 7 Debinki Street, 80-952 Gdansk, Poland
| |
Collapse
|
17
|
Goud NS, Soukya PSL, Ghouse M, Komal D, Alvala R, Alvala M. Human Galectin-1 and Its Inhibitors: Privileged Target for Cancer and HIV. Mini Rev Med Chem 2019; 19:1369-1378. [PMID: 30834831 DOI: 10.2174/1389557519666190304120821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
Galectin 1(Gal-1), a β-galactoside binding mammalian lectin of 14KDa, is implicated in many signalling pathways, immune responses associated with cancer progression and immune disorders. Inhibition of human Gal-1 has been regarded as one of the potential therapeutic approaches for the treatment of cancer, as it plays a major role in tumour development and metastasis by modulating various biological functions viz. apoptosis, angiogenesis, migration, cell immune escape. Gal-1 is considered as a biomarker in diagnosis, prognosis and treatment condition. The overexpression of Gal-1 is well established and seen in many types of cancer progression like osteosarcoma, breast, lung, prostate, melanoma, etc. Gal-1 greatly accelerates the binding kinetics of HIV-1 to susceptible cells, leading to faster viral entry and a more robust viral replication by specific binding of CD4 cells. Hence, the Gal-1 is considered a promising molecular target for the development of new therapeutic drugs for cancer and HIV. The present review laid emphasis on structural insights and functional role of Gal-1 in the disease, current Gal-1 inhibitors and future prospects in the design of specific Gal-1 inhibitors.
Collapse
Affiliation(s)
- Narella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - P S Lakshmi Soukya
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Daipule Komal
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Ravi Alvala
- G. Pulla Reddy College of pharmacy, Hyderabad, 500028, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| |
Collapse
|
18
|
Goud NS, Ghouse SM, Vishnu J, Komal D, Talla V, Alvala R, Pranay J, Kumar J, Qureshi IA, Alvala M. Synthesis of 1-benzyl-1H-benzimidazoles as galectin-1 mediated anticancer agents. Bioorg Chem 2019; 89:103016. [PMID: 31185390 DOI: 10.1016/j.bioorg.2019.103016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
In our pursuit to develop novel non-carbohydrate small molecule Galectin-1 Inhibitors, we have designed a series of 1-benzyl-1H-benzimidazole derivatives and demonstrated their anticancer activity. The compound 6g, 4-(1-benzyl-5-chloro-1H-benzo[d]imidazol-2-yl)-N-(4-hydroxyphenyl) benzamide was found to be most potent with an IC50 of 7.01 ± 0.20 µM and arresting MCF-7 cell growth at G2/M phase and S phase. Induction of apoptosis was confirmed by morphological changes like cell shrinkage, blebbing and cell wall deformation, dose dependent increase in the mitochondrial membrane potential (ΔΨm) and ROS levels. Further, dose dependent decrease in Gal-1 protein levels proves Gal-1 mediated apoptosis by 6g. Molecular docking studies were performed to understand the Gal-1 interaction with compound 6g. In addition, RP-HPLC studies showed 85.44% of 6g binding to Gal-1. Binding affinity studies by fluorescence spectroscopy and Surface Plasmon Resonance (SPR) showed that 6g binds to Gal-1 with binding constant (Ka) of 1.2 × 104 M-1 and equilibrium constant KD value of 5.76 × 10-4 M respectively.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - S Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Jatoth Vishnu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - D Komal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ravi Alvala
- G. Pulla Reddy College of Pharmacy, Hyderabad 500 028, India
| | - Jakkula Pranay
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Janish Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
19
|
Zamborsky R, Kokavec M, Harsanyi S, Danisovic L. Identification of Prognostic and Predictive Osteosarcoma Biomarkers. Med Sci (Basel) 2019; 7:28. [PMID: 30754703 PMCID: PMC6410182 DOI: 10.3390/medsci7020028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Both adolescents and children suffer from osteosarcoma, localized in the metaphysis of the long bones. This is the most common primary high-grade bone tumor in this patient group. Early tumor detection is the key to ensuring effective treatment. Improved osteosarcoma outcomes in clinical trials have been contingent on biomarker discovery and an evolving understanding of molecules and their complex interactions. In this review, we present a short overview of biomarkers for osteosarcoma, and highlight advances in osteosarcoma-related biomarker research. Many studies show that several biomarkers undergo critical changes with osteosarcoma progression. Growing knowledge about osteosarcoma-related markers is expected to positively impact the development of therapeutics for osteosarcoma, and ultimately of clinical care. It has also become important to develop new biomarkers, which can identify vulnerable patients who should be treated with more intensive and aggressive therapy after diagnosis.
Collapse
Affiliation(s)
- Radoslav Zamborsky
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Milan Kokavec
- Department of Orthopedics, Faculty of Medicine, Comenius University, Limbova 1, 833 40 Bratislava, Slovakia.
| | - Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia.
| |
Collapse
|
20
|
Qiu BQ, Zhang PF, Xiong D, Xu JJ, Long X, Zhu SQ, Ye XD, Wu Y, Pei X, Zhang XM, Wu YB. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling. J Cell Physiol 2018; 234:11256-11264. [PMID: 30565694 DOI: 10.1002/jcp.27783] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The dysregulation of circular RNA (circRNA) expression is involved in the progression of several cancers, including non-small cell lung cancer (NSCLC). However, the role and underlying molecular mechanisms of circRNA FGFR3 (circFGFR3) in NSCLC progression remains unknown. Here, we used quantitative real-time polymerase chain reaction to validate that circFGFR3 expression was higher in NSCLC tissues than in the paratumor tissues. Furthermore, our study indicated that the forced circFGFR3 expression promoted NSCLC cell invasion and proliferation. Mechanistically, we found that circFGFR3 promoted NSCLC cell invasion and proliferation via competitively combining with miR-22-3p to facilitate the galectin-1 (Gal-1), p-AKT, and p-ERK1/2 expressions. Clinically, we revealed that the high circFGFR3 expression correlates with the poor clinical outcomes in patients with NSCLC. Together, these data provide mechanistic insights into the circFGFR3-mediated regulation of both the AKT and ERK1/2 signaling pathways by sponging miR-22-3p and increasing Gal-1 expression.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, The Central Hospital of Xuhui District, Shanghai, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu-Dong Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Abebayehu D, Spence A, Boyan BD, Schwartz Z, Ryan JJ, McClure MJ. Galectin-1 promotes an M2 macrophage response to polydioxanone scaffolds. J Biomed Mater Res A 2017; 105:2562-2571. [PMID: 28544348 DOI: 10.1002/jbm.a.36113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/27/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Regulating soft tissue repair to prevent fibrosis and promote regeneration is central to creating a microenvironment conducive to soft tissue development. Macrophages play an important role in this process. The macrophage response can be modulated using biomaterials, altering cytokine and growth factor secretion to promote regeneration. Electrospun polydioxanone (PDO) fiber scaffolds promoted an M2 phenotype when macrophages were cultured on large diameter, highly porous scaffolds, but an M1 phenotype on smaller diameter fibers. In this study, we investigated whether incorporation of galectin-1, an immunosuppressive protein that enhances muscle regeneration, could promote the M2 response. Galectin-1 was incorporated into large and small fiber PDO scaffolds during electrospinning. Galectin-1 incorporation increased arginase-1 and reduced iNOS and IL-6 production in mouse bone-marrow derived macrophages compared with PDO alone for both scaffold types. Inhibition of ERK mitogen-activated protein kinase did not alter galectin-1 effects on arginase-1 and iNOS expression, but reversed IL-6 suppression, indicating that IL-6 is mediated by a different mechanism. Our results suggest that galectin-1 can be used to modulate macrophage commitment to a pro-regenerative M2 phenotype, which may positively impact tissue regeneration when using small diameter PDO scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2562-2571, 2017.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia.,Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Spence
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Periodontics, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Michael J McClure
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, Virginia.,Physical Medicine and Rehabilitation Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
22
|
Feng T, Xu J, He P, Chen Y, Fang R, Shao X. Decrease in stathmin expression by arsenic trioxide inhibits the proliferation and invasion of osteosarcoma cells via the MAPK signal pathway. Oncol Lett 2017; 14:1333-1340. [PMID: 28789348 PMCID: PMC5529766 DOI: 10.3892/ol.2017.6347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of malignant bone tumor in children and adolescents. In total, 40–50% of patients with OS experience metastasis, and thus have a poor prognosis. Our previous study demonstrated that arsenic trioxide (As2O3) combined with doxorubicin [also known as Adriamycin (ADM)] significantly inhibited OS cell proliferation by downregulating stathmin expression. The present study investigated the effect and mechanism of stathmin expression on OS cell invasion. It was identified that the expression of stathmin was increased in human ADM-resistant OS MG63 (MG63/dox) cells compared with the level in the normal osteoblast hFoB1.19cell line using western blot analysis. Lentiviral-mediated small hairpin RNA (shRNA) was constructed to silence stathmin expression of MG63/dox cells. In transwell assay, stathmin-knockdown significantly suppressed migration and invasion in MG63/dox cells. As2O3 combined with ADM inhibited the migration and invasion of MG63/dox cells, and was associated with the downregulation of phosphorylated-mitogen-activated protein kinase (MAPK) 1 and β-catenin, and upregulation of phosphorylated-MAPK8 and E-cadherin. In addition, stathmin-knockdown significantly suppressed tumor growth and increased E-cadherin expression in a xenograft nude mouse model. Taken together, these data suggested that As2O3 combined with ADM inhibited stathmin-mediated invasion via the MAPK pathway. Elucidation of the mechanism for stathmin downregulation by As2O3 may provide novel insights into the mechanism of OS metastasis.
Collapse
Affiliation(s)
- Tao Feng
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| | - Jun Xu
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| | - Ping He
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| | - Yuanyuan Chen
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| | - Ruiying Fang
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| | - Xuejun Shao
- Clinical Laboratory, The Children's Hospital of Suzhou University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
23
|
TLR4-mediated galectin-1 production triggers epithelial-mesenchymal transition in colon cancer cells through ADAM10- and ADAM17-associated lactate production. Mol Cell Biochem 2016; 425:191-202. [PMID: 27837433 DOI: 10.1007/s11010-016-2873-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022]
Abstract
Toll-like receptor 4 (TLR4) activation is a key contributor to the carcinogenesis of colon cancer. Overexpression of galectin-1 (Gal-1) also correlates with increased invasive activity of colorectal cancer. Lactate production is a critical predictive factor of risk of metastasis, but the functional relationship between intracellular lactate and Gal-1 expression in TLR4-activated colon cancer remains unknown. In this study, we investigated the underlying mechanism and role of Gal-1 in metastasis and invasion of colorectal cancer (CRC) cells after TLR4 stimulation. Exposure to the TLR4 ligand lipopolysaccharide (LPS) increased expression of Gal-1, induced EMT-related cytokines, triggered the activation of glycolysis-related enzymes, and promoted lactate production. Gene silencing of TLR4 and Gal-1 in CRC cells inhibited lactate-mediated epithelial-mesenchymal transition (EMT) after TLR4 stimulation. Gal-1-mediated activation of a disintegrin and metalloproteinase 10 (ADAM10) and ADAM 17 increased the invasion activity and expression of mesenchymal characteristics in LPS-activated CRC cells. Conversely, inhibition of ADAM10 or ADAM17 effectively blocked the generation of lactate and the migration capacity of LPS-treated CRC cells. Thus, the TLR4/Gal-1 signaling pathway regulates lactate-mediated EMT processes through the activation of ADAM10 and ADAM17 in CRC cells.
Collapse
|
24
|
Yan B, Zhao D, Yao Y, Bao Z, Lu G, Zhou J. Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1. Int J Biol Sci 2016; 12:850-60. [PMID: 27313498 PMCID: PMC4910603 DOI: 10.7150/ijbs.14773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.
Collapse
Affiliation(s)
- Bing Yan
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejian Zhao
- 2. Department of Clinical Laboratory, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Esmailiejah AA, Taheriazam A, Golbakhsh MR, Jamshidi M, Shakeri M, Yahaghi E, Moghtadaei M. RETRACTED ARTICLE: Analysis of serum levels and tissue expression of galectin-1 and galectin-3 as noninvasive biomarkers in osteosarcoma patients. Tumour Biol 2015; 37:10.1007/s13277-015-4194-4. [PMID: 26453117 DOI: 10.1007/s13277-015-4194-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ali Akbar Esmailiejah
- Department of Orthopedics, Akhtar Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Department of Orthopedics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Golbakhsh
- Department of Orthopedics, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Jamshidi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammadreza Shakeri
- Department of Orthopaedic and Trauma Surgery, Birjand University of Medical Sciences, Birjand, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic, Rasoul-e-Akram Hospital, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
26
|
Li J, Sun RR, Yu ZJ, Liang H, Shen S, Kan Q. Galectin-1 Modulates the Survival and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Sensitivity in Human Hepatocellular Carcinoma Cells. Cancer Biother Radiopharm 2015; 30:336-41. [PMID: 26348206 DOI: 10.1089/cbr.2015.1857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Ran-ran Sun
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Zu-jiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Hongxia Liang
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Shen Shen
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| |
Collapse
|
27
|
Lee YS, Hwang SG, Kim JK, Park TH, Kim YR, Myeong HS, Choi JD, Kwon K, Jang CS, Ro YT, Noh YH, Kim SY. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Tumour Biol 2015; 37:2285-97. [PMID: 26361955 DOI: 10.1007/s13277-015-4033-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022] Open
Abstract
Acquired resistance to lapatinib is a highly problematic clinical barrier that has to be overcome for a successful cancer treatment. Despite efforts to determine the mechanisms underlying acquired lapatinib resistance (ALR), no definitive genetic factors have been reported to be solely responsible for the acquired resistance in breast cancer. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets related to breast cancer with ALR, using the R-based RankProd package. From the meta-analysis, we were able to identify a total of 990 differentially expressed genes (DEGs, 406 upregulated, 584 downregulated) that are potentially associated with ALR. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs showed that "response to organic substance" and "p53 signaling pathway" may be largely involved in ALR process. Of these, many of the top 50 upregulated and downregulated DEGs were found in oncogenesis of various tumors and cancers. For the top 50 DEGs, we constructed the gene coexpression and protein-protein interaction networks from a huge database of well-known molecular interactions. By integrative analysis of two systemic networks, we condensed the total number of DEGs to six common genes (LGALS1, PRSS23, PTRF, FHL2, TOB1, and SOCS2). Furthermore, these genes were confirmed in functional module eigens obtained from the weighted gene correlation network analysis of total DEGs in the microarray datasets ("GSE16179" and "GSE52707"). Our integrative meta-analysis could provide a comprehensive perspective into complex mechanisms underlying ALR in breast cancer and a theoretical support for further chemotherapeutic studies.
Collapse
Affiliation(s)
- Young Seok Lee
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sun Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Ki Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Tae Hwan Park
- Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Rae Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Ho Sung Myeong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jong Duck Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kang Kwon
- School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Young Tae Ro
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun Hee Noh
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
28
|
Lei P, He H, Hu Y, Liao Z. Small interfering RNA-induced silencing of galectin-3 inhibits the malignant phenotypes of osteosarcoma in vitro. Mol Med Rep 2015; 12:6316-22. [PMID: 26238776 DOI: 10.3892/mmr.2015.4165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 06/25/2015] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant tumor of bone. It has recently been demonstrated that galectin-3, a multifunctional β-galactoside-binding, is significantly upregulated in OS tissues, and is correlated with its progression and metastasis. However, the detailed role of galectin‑3 in the regulation of cellular biological processes in OS cells has remained to be elucidated. The present study reported that the mRNA and protein levels of galectin‑3 were significantly increased in OS tissues compared to those in their matched normal adjacent tissues. Furthermore, galectin‑3 was upregulated in three OS cell lines, Saos‑2, MG63 and U2OS, when compared with that in the human osteoblast cell line hFOB1.19. Knockdown of galectin‑3 by galectin‑3‑specific small interfering RNA markedly inhibited OS‑cell proliferation and induced cell apoptosis. Furthermore, silencing of galectin‑3 expression significantly inhibited OS cell migration and invasion, accompanied with a marked decrease in the protein expression of matrix metalloproteinase 2 and ‑9. Mechanistic investigation suggested that the mitogen‑activated protein kinase kinase/extracellular signal‑regulated protein kinase signaling pathway may be involved in the galectin‑3‑mediated OS cell invasion. In conclusion, the present study was the first to report that silencing of galectin‑3 inhibited the malignant phenotypes of osteosarcoma in vitro. Therefore, galectin-3 may serve as a potential therapeutic target for OS.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhan Liao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
29
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35:600-4. [DOI: 10.3109/10799893.2015.1030412] [Citation(s) in RCA: 1276] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Yau T, Dan X, Ng CCW, Ng TB. Lectins with potential for anti-cancer therapy. Molecules 2015; 20:3791-810. [PMID: 25730388 PMCID: PMC6272365 DOI: 10.3390/molecules20033791] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum odoratum lectin, mistletoe lectin, and concanavalin A, fucose-binding Dicentrarchus labrax lectin, and Strongylocentrotus purpuratus lectin, Polygonatum odoratum lectin, and mistletoe lectin, Polygonatum odoratum lectin, autophagy inducing lectins include annexins and Polygonatum odoratum lectin.
Collapse
Affiliation(s)
- Tammy Yau
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
31
|
Stojsic J, Stankovic T, Stojkovic S, Milinkovic V, Dinic J, Milosevic Z, Milovanovic Z, Tanic N, Bankovic J. Prolonged survival after neoadjuvant chemotherapy related with specific molecular alterations in the patients with nonsmall-cell lung carcinoma. Exp Mol Pathol 2015; 98:27-32. [DOI: 10.1016/j.yexmp.2014.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 11/18/2014] [Indexed: 11/25/2022]
|