1
|
Feng Y, Ma J, Bo Z, Yue D, Wang Y. The crucial role of small heat shock proteins in prostate cancer: mechanisms and new therapeutic perspectives. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195090. [PMID: 40222452 DOI: 10.1016/j.bbagrm.2025.195090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
As resistance to new anti-androgen drugs occurs more frequently, increasing numbers of researchers are exploring alternative key molecular targets for prostate cancer treatment. The small heat shock protein (sHSP) family is a subclass of heat shock proteins (HSPs). Due to the smaller molecular size of their monomers, they often function as large oligomeric complexes with diverse biological roles, thus garnering increasing attention from urologists. Different members of the sHSP family exhibit distinct biological roles in prostate cancer, offering a new perspective for precision therapy. In this review, we summarize the specific roles of sHSP family members in prostate cancer and analyze their similarities and differences. Additionally, we discuss and review the drugs targeting various sHSPs in prostate cancer, providing new insights into the exploration and further application of sHSP-targeted therapies.
Collapse
Affiliation(s)
- Yuankang Feng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jialu Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhihao Bo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300211, China.
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
2
|
Stewart M, Schisler JC. Targeting chaperone modifications: Innovative approaches to cancer treatment. J Biol Chem 2024; 300:107907. [PMID: 39433125 PMCID: PMC11599458 DOI: 10.1016/j.jbc.2024.107907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer and other chronic diseases are marked by alterations in the protein quality control system, affecting the posttranslational destiny of various proteins that regulate, structure, and catalyze cellular processes. Cellular chaperones, also known as heat shock proteins (HSPs), are pivotal in this system, performing protein triage that often determines the fate of proteins they bind to. Grasping the regulatory mechanisms of HSPs and their associated cofactors is crucial for understanding protein quality control in both healthy and diseased states. Recent research has shed light on the interactions within the protein quality control system and how post-translational modification govern protein interactions, function, and localization, which can drive or inhibit cell proliferation. This body of work encompasses critical elements of the heat shock response, including heat shock protein 70, heat shock protein 90, carboxyl-terminus of HSC70 interacting protein, and heat shock protein organizing protein. This review aims to synthesize these advancements, offering a holistic understanding of the system and its response when commandeered by diseases like cancer. We focus on the mechanistic shift in co-chaperone engagement-transitioning from heat shock protein organizing protein to carboxyl-terminus of HSC70 interacting protein in association with heat shock protein 70 and heat shock protein 90-which could influence cellular growth and survival pathways. A comprehensive examination of posttranslational modification-driven regulation within the protein quality control network is presented, highlighting the roles of activation factors, chaperones, and co-chaperones. Our insights aim to inform new strategies for therapeutically targeting diseases by considering the entire heat shock response system.
Collapse
Affiliation(s)
- Mariah Stewart
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- The McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; The Department of Pathology and Lab Medicine and Computational Medicine Program, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
3
|
Miles HN, Tomlin D, Ricke WA, Li L. Integrating intracellular and extracellular proteomic profiling for in-depth investigations of cellular communication in a model of prostate cancer. Proteomics 2023; 23:e2200287. [PMID: 37226375 PMCID: PMC10667563 DOI: 10.1002/pmic.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cellular communication is essential for cell-cell interactions, maintaining homeostasis and progression of certain disease states. While many studies examine extracellular proteins, the holistic extracellular proteome is often left uncaptured, leaving gaps in our understanding of how all extracellular proteins may impact communication and interaction. We used a cellular-based proteomics approach to more holistically profile both the intracellular and extracellular proteome of prostate cancer. Our workflow was generated in such a manner that multiple experimental conditions can be observed with the opportunity for high throughput integration. Additionally, this workflow is not limited to a proteomic aspect, as metabolomic and lipidomic studies can be integrated for a multi-omics workflow. Our analysis showed coverage of over 8000 proteins while also garnering insights into cellular communication in the context of prostate cancer development and progression. Identified proteins covered a variety of cellular processes and pathways, allowing for the investigation of multiple aspects into cellular biology. This workflow demonstrates advantages for integrating intra- and extracellular proteomic analyses as well as potential for multi-omics researchers. This approach possesses great value for future investigations into the systems biology aspects of disease development and progression.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Devin Tomlin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - William A. Ricke
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- George M. O’Brien Urology Research Center of Excellence, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Wang Y, Abazid A, Badendieck S, Mustea A, Stope MB. Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells. Biomedicines 2023; 11:biomedicines11051471. [PMID: 37239142 DOI: 10.3390/biomedicines11051471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, biomedical research has increasingly investigated physical plasma as an innovative therapeutic approach with a number of therapeutic biomedical effects. It is known from radiation and chemotherapy that these applications can lead to the induction and activation of primarily cytoprotective heat shock proteins (HSP). HSP protect cells and tissues from physical, (bio)chemical, and physiological stress and, ultimately, along with other mechanisms, govern resistance and treatment failure. These mechanisms are well known and comparatively well studied in drug therapy. For therapies in the field of physical plasma medicine, however, extremely little data are available to date. In this review article, we provide an overview of the current studies on the interaction of physical plasma with the cellular HSP system.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Steffen Badendieck
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
6
|
Parma B, Wurdak H, Ceppi P. Harnessing mitochondrial metabolism and drug resistance in non-small cell lung cancer and beyond by blocking heat-shock proteins. Drug Resist Updat 2022; 65:100888. [DOI: 10.1016/j.drup.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/25/2022] [Indexed: 11/30/2022]
|
7
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The Role of Heat Shock Protein 27 in Carcinogenesis and Treatment of Colorectal Cancer. Curr Pharm Des 2022; 28:2677-2685. [PMID: 35490324 DOI: 10.2174/1381612828666220427140640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, which has made this disease an important global health issue. Despite many efforts, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (Hsp27) is one of the most studied members of the Hsp family. It has attracted particular attention in CRC pathogenesis since it is involved in fundamental cell functions for cell survival. Evidence shows that Hsp27 plays important role in CRC progression and metastasis. Hsp27 overexpression has been observed in CRC and is suggested to be associated with CRC's poor prognosis. In the present review, we focus on the current knowledge of the role of Hsp27 in CRC carcinogenesis and the underlying mechanisms. In addition, we discuss the value of targeting Hsp27 in CRC treatment.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Zheng S, Liang Y, Li L, Tan Y, Liu Q, Liu T, Lu X. Revisiting the Old Data of Heat Shock Protein 27 Expression in Squamous Cell Carcinoma: Enigmatic HSP27, More Than Heat Shock. Cells 2022; 11:1665. [PMID: 35626702 PMCID: PMC9139513 DOI: 10.3390/cells11101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
Initially discovered to be induced by heat shock, heat shock protein 27 (HSP27, also called HSPB1), a member of the small HSP family, can help cells better withstand or avoid heat shock damage. After years of studies, HSP27 was gradually found to be extensively engaged in various physiological or pathophysiological activities. Herein, revisiting the previously published data concerning HSP27, we conducted a critical review of the literature regarding its role in squamous cell carcinoma (SCC) from the perspective of clinicopathological and prognostic significance, excluding studies conducted on adenocarcinoma, which is very different from SCC, to understand the enigmatic role of HSP27 in the tumorigenesis of SCC, including normal mucosa, dysplasia, intraepithelial neoplasm, carcinoma in situ and invasive SCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China;
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| |
Collapse
|
9
|
Impact of phosphorylation of heat shock protein 27 on the expression profile of periodontal ligament fibroblasts during mechanical strain. J Orofac Orthop 2022; 84:143-153. [PMID: 35445818 PMCID: PMC10126016 DOI: 10.1007/s00056-022-00391-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Orthodontic tooth movement is a complex process involving the remodeling of extracellular matrix and bone as well as inflammatory processes. During orthodontic treatment, sterile inflammation and mechanical loading favor the production of receptor activator of NF-κB ligand (RANKL). Simultaneously, expression of osteoprotegerin (OPG) is inhibited. This stimulates bone resorption on the pressure side. Recently, heat shock protein 27 (HSP27) was shown to be expressed in the periodontal ligament after force application and to interfere with inflammatory processes. METHODS We investigated the effects of phosphorylated HSP27 on collagen synthesis (COL1A2 mRNA), inflammation (IL1B mRNA, IL6 mRNA, PTGS2 protein) and bone remodeling (RANKL protein, OPG protein) in human periodontal ligament fibroblasts (PDLF) without and with transfection of a plasmid mimicking permanent phosphorylation of HSP27 using real-time quantitative polymerase chain reaction (RT-qPCR), western blot and enzyme-linked immunosorbent assays (ELISAs). Furthermore, we investigated PDLF-induced osteoclastogenesis after compressive strain in a co-culture model with human macrophages. RESULTS In particular, phosphorylated HSP27 increased gene expression of COL1A2 and protein expression of PTGS2, while IL6 mRNA levels were reduced. Furthermore, we observed an increasing effect on the RANKL/OPG ratio and osteoclastogenesis mediated by PDLF. CONCLUSION Phosphorylation of HSP27 may therefore be involved in the regulation of orthodontic tooth movement by impairment of the sterile inflammation response and osteoclastogenesis.
Collapse
|
10
|
Lampros M, Vlachos N, Voulgaris S, Alexiou GA. The Role of Hsp27 in Chemotherapy Resistance. Biomedicines 2022; 10:897. [PMID: 35453647 PMCID: PMC9028095 DOI: 10.3390/biomedicines10040897] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Heat shock protein (Hsp)-27 is a small-sized, ATP-independent, chaperone molecule that is overexpressed under conditions of cellular stress such as oxidative stress and heat shock, and protects proteins from unfolding, thus facilitating proteostasis and cellular survival. Despite its protective role in normal cell physiology, Hsp27 overexpression in various cancer cell lines is implicated in tumor initiation, progression, and metastasis through various mechanisms, including modulation of the SWH pathway, inhibition of apoptosis, promotion of EMT, adaptation of CSCs in the tumor microenvironment and induction of angiogenesis. Investigation of the role of Hsp27 in the resistance of various cancer cell types against doxorubicin, herceptin/trastuzumab, gemcitabine, 5-FU, temozolomide, and paclitaxel suggested that Hsp27 overexpression promotes cancer cell survival against the above-mentioned chemotherapeutic agents. Conversely, Hsp27 inhibition increased the efficacy of those chemotherapy drugs, both in vitro and in vivo. Although numerous signaling pathways and molecular mechanisms were implicated in that chemotherapy resistance, Hsp27 most commonly contributed to the upregulation of Akt/mTOR signaling cascade and inactivation of p53, thus inhibiting the chemotherapy-mediated induction of apoptosis. Blockage of Hsp27 could enhance the cytotoxic effect of well-established chemotherapeutic drugs, especially in difficult-to-treat cancer types, ultimately improving patients' outcomes.
Collapse
Affiliation(s)
| | | | | | - George A. Alexiou
- Department of Neurosurgery, University Hospital of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
11
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
12
|
Long S, Peng F, Song B, Wang L, Chen J, Shang B. Heat Shock Protein Beta 1 is a Prognostic Biomarker and Correlated with Immune Infiltrates in Hepatocellular Carcinoma. Int J Gen Med 2021; 14:5483-5492. [PMID: 34531676 PMCID: PMC8439715 DOI: 10.2147/ijgm.s330608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most serious malignancies. The main features of HCC are vascular invasion and drug resistance. Ferroptosis is a novel cell program that is involved in several diseases, such as cancer. Heat shock protein beta 1 (HSPB1) is a major component of heat shock proteins. A recent study showed that HSPB1 could be a new therapeutic target for colorectal cancer with 5-fluorouracil-acquired resistance. However, the functional role of HSPB1 in HCC remains unclear. Aim The aim of this study is to clarify HSPB1 expression in HCC and its potential therapeutic and prognostic value. Methods We collected data on HSPB1 expression levels in HCC and normal liver tissues from The Cancer Genome Atlas and Gene Expression Omnibus databases. We then validated it using immunohistochemistry (IHC). Receiver operating characteristic and Kaplan–Meier survival curves were used to investigate the role of HSPB1 in the prognosis analysis of HCC. Further, we used the online Search Tool for the Retrieval of Interacting Genes/Proteins website, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes to conduct enrichment analysis and identify the predictive signaling pathways. Meanwhile, we used the TIMER and GSVA package of R (v3.6.3) to analyze the association between HSPB1 and immunocyte infiltration. Results Compared to normal tissues, there was differential expression of HSPB1 in pan-cancers. HSPB1 expression was higher in HCC tissues than in normal tissues (p<0.05). There was an evident significant difference between HSPB1 mRNA levels and histologic grade, vascular invasion, and alpha-fetoprotein level (all p values<0.05). Univariate analysis indicated that HCC patients with high HSPB1 levels had shorter overall survival rates than those with low HSPB1 levels (p<0.05). MAPK14, HSPA8, MAPKAPK3, MAPKAPK5, and MAPKAPK2 are essential proteins that interact with HSPB1. There was a significant correlation between HSPB1 expression levels and immune cell infiltration, including CD4+ T cells (r=0.203, p<0.05). Conclusion High HSPB1 expression is closely associated with a worse prognosis in HCC patients, and HSPB1 may be a target of immunotherapy in HCC.
Collapse
Affiliation(s)
- Shengyi Long
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Fang Peng
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Baohui Song
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Jun Chen
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | - Bingbing Shang
- The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| |
Collapse
|
13
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
14
|
ZNF322A-mediated protein phosphorylation induces autophagosome formation through modulation of IRS1-AKT glucose uptake and HSP-elicited UPR in lung cancer. J Biomed Sci 2020; 27:75. [PMID: 32576196 PMCID: PMC7310457 DOI: 10.1186/s12929-020-00668-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background ZNF322A is an oncogenic transcription factor that belongs to the Cys2His2-type zinc-finger protein family. Accumulating evidence suggests that ZNF322A may contribute to the tumorigenesis of lung cancer, however, the ZNF322A-mediated downstream signaling pathways remain unknown. Methods To uncover ZNF322A-mediated functional network, we applied phosphopeptide enrichment and isobaric labeling strategies with mass spectrometry-based proteomics using A549 lung cancer cells, and analyzed the differentially expressed proteins of phosphoproteomic and proteomic profiles to determine ZNF322A-modulated pathways. Results ZNF322A highlighted a previously unidentified insulin signaling, heat stress, and signal attenuation at the post-translational level. Consistently, protein-phosphoprotein-kinase interaction network analysis revealed phosphorylation of IRS1 and HSP27 were altered upon ZNF322A-silenced lung cancer cells. Thus, we further investigated the molecular regulation of ZNF322A, and found the inhibitory transcriptional regulation of ZNF322A on PIM3, which was able to phosphorylate IRS1 at serine1101 in order to manipulate glucose uptake via the PI3K/AKT/mTOR signaling pathway. Moreover, ZNF322A also affects the unfolded protein response by phosphorylation of HSP27S82 and eIF2aS51, and triggers autophagosome formation in lung cancer cells. Conclusions These findings not only give new information about the molecular regulation of the cellular proteins through ZNF322A at the post-translational level, but also provides a resource for the study of lung cancer therapy.
Collapse
|
15
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
16
|
Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019; 11:cancers11081195. [PMID: 31426426 PMCID: PMC6721579 DOI: 10.3390/cancers11081195] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 27 (HSP27), induced by heat shock, environmental, and pathophysiological stressors, is a multi-functional protein that acts as a protein chaperone and an antioxidant. HSP27 plays a significant role in the inhibition of apoptosis and actin cytoskeletal remodeling. HSP27 is upregulated in many cancers and is associated with a poor prognosis, as well as treatment resistance, whereby cells are protected from therapeutic agents that normally induce apoptosis. This review highlights the most recent findings and role of HSP27 in cancer, as well as the strategies for using HSP27 inhibitors for therapeutic purposes.
Collapse
|
17
|
Abazid A, Martin B, Choinowski A, McNeill RV, Brandenburg LO, Ziegler P, Zimmermann U, Burchardt M, Erb H, Stope MB. The androgen receptor antagonist enzalutamide induces apoptosis, dysregulates the heat shock protein system, and diminishes the androgen receptor and estrogen receptor β1 expression in prostate cancer cells. J Cell Biochem 2019; 120:16711-16722. [PMID: 31297844 DOI: 10.1002/jcb.28929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/05/2022]
Abstract
Enzalutamide's accepted mode of action is by targeting the androgen receptor's (AR) activity. In clinical practice, enzalutamide demonstrates a good benefit-risk profile for the treatment of advanced prostate cancer (PC), even after poor response to standard antihormonal treatment. However, since both, well-established antiandrogens and enzalutamide, target AR functionality, we hypothesized that additional unknown mechanisms might be responsible for enzalutamide's superior anticancer activity. In the current study, PC cells were incubated with enzalutamide and enzalutamide-dependent modulation of apoptotic mechanisms were assessed via Western blot analysis, TDT-mediated dUTP-biotin nick end-labeling assay, and nuclear morphology assay. Alterations of heat shock protein (HSP), AR, and estrogen receptor (ER) expression were examined by Western blot analysis. Enzalutamide attenuated the proliferation of PC cells in a time- and dose-dependent manner. In the presence of enzalutamide, apoptosis occurred which was shown by increased BAX expression, decreased Bcl-2 expression, nuclear pyknosis, and genomic DNA fragmentation. Moreover, enzalutamide inhibited the expression of HSPs primarily involved in steroid receptor stabilization and suppressed AR and ERβ1 expression. This study demonstrates for the first time that enzalutamide treatment of PC cells triggers varying molecular mechanisms resulting in antiproliferative effects of the drug. In addition to the well-characterized antagonistic inhibition of AR functionality, we have shown that enzalutamide also affects the intracellular synthesis of steroid receptor-associated HSPs, thereby diminishing the expression of AR and ERβ1 proteins and inducing apoptotic pathways. According to an indirect attenuation of HSP-associated factors such as steroid receptors, endometrial carcinoma, uterine leiomyosarcoma, and mamma carcinoma cells also demonstrated inhibited cell growth in the presence of enzalutamide. Our data, therefore, suggest that enzalutamide's high efficacy is at least partially independent of AR and p53 protein expression, which are frequently lost in advanced PC.
Collapse
Affiliation(s)
- Alexander Abazid
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Benedikt Martin
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Anja Choinowski
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | | | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Holger Erb
- Department of Urology, University of Dresden, Dresden, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Brünnert D, Langer C, Zimmermann L, Bargou RC, Burchardt M, Chatterjee M, Stope MB. The heat shock protein 70 inhibitor VER155008 suppresses the expression of HSP27, HOP and HSP90β and the androgen receptor, induces apoptosis, and attenuates prostate cancer cell growth. J Cell Biochem 2019; 121:407-417. [PMID: 31222811 DOI: 10.1002/jcb.29195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.
Collapse
Affiliation(s)
- Daniela Brünnert
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Clara Langer
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Luise Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Ralf C Bargou
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Manik Chatterjee
- Comprehensive Cancer Center Mainfranken, Translational Oncology, University Hospital of Würzburg, Würzburg, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
19
|
Xu L, Lin X, Zheng Y, Zhou H. Silencing of heat shock protein 27 increases the radiosensitivity of non‑small cell lung carcinoma cells. Mol Med Rep 2019; 20:613-621. [PMID: 31115576 PMCID: PMC6580021 DOI: 10.3892/mmr.2019.10263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Radiotherapy is a useful treatment for malignant tumors, including lung carcinoma; however, non‑small cell lung carcinoma (NSCLC) is frequently insensitive to radiation. It has been reported that heat shock protein 27 (HSPB1) is a radioresistance‑associated protein in nasopharyngeal carcinoma. In the present study, the role of HSPB1 in NSCLC cells induced by irradiation was investigated. The viability of cells was determined by a Cell Counting Kit‑8 assay. The apoptotic activity, cell cycle distribution and mitochondrial membrane potential (MMP) of cells were evaluated via flow cytometry. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were employed to measure the expression of various genes and proteins. It was observed that knockdown of HSPB1 with small interfering RNA (si‑HSPB1) markedly decreased the viability of A549 NSCLC cells and induced cell cycle arrest in the G2/M phase following exposure to 6 Gy irradiation. Furthermore, it was revealed that si‑HSPB1 significantly downregulated cyclin B1 and cyclin G1 expression. Additionally, si‑HSPB1 promoted apoptosis and depolarized the MMP of cells exposed to 6 Gy irradiation. The expression levels of B‑cell lymphoma‑2 (Bcl‑2), mitochondrial cytochrome c (cyto c) and pro‑caspase‑8 were downregulated, whereas those of Bcl‑2 associated X protein (Bax), cytosolic cyto c and cleaved‑caspase‑8 were upregulated. Collectively, silencing of HSPB1 increased the radiosensitivity of NSCLC cells by reducing cell viability, depolarizing the MMP, arresting the cell cycle in the G2/M phase and promoting cell apoptosis. Therefore, HSPB1 may be a novel target for increasing radiosensitivity in the treatment of NSCLC.
Collapse
Affiliation(s)
- Liping Xu
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Xuemei Lin
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Yihua Zheng
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Hua Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
20
|
Liu CC, Chou KT, Hsu JW, Lin JH, Hsu TW, Yen DHT, Hung SC, Hsu HS. High metabolic rate and stem cell characteristics of esophageal cancer stem-like cells depend on the Hsp27-AKT-HK2 pathway. Int J Cancer 2019; 145:2144-2156. [PMID: 30920655 DOI: 10.1002/ijc.32301] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/26/2019] [Accepted: 03/20/2019] [Indexed: 12/22/2022]
Abstract
Tumor progression with chemoresistance and local recurrence is commonly happened during treatment of esophageal squamous cell carcinoma (ESCC). Cancer stem cells (CSC) may respond for tumor progression. However, there are few reports regarding metabolism of esophageal CSCs with clinical correlation. In this work, we demonstrated that ESCC cell lines in spheroid culture display CSC phenotypes, including increased ALDH activity, chemoresistance and tumor initiation, which are dependent on Hsp27 activation. Esophageal CSCs also exhibit reprogrammed metabolic features particularly higher glycolysis and oxidative phosphorylation, which are regulated via the Hsp27-AKT-HK2 pathway. Moreover, HK2 is required for maintenance of CSC phenotypes. Inhibition of CSC metabolism reduces cell growth and tumor formation. Clinically, patients who underwent surgical resection for esophageal cancer, and displayed overexpression of both Hsp27 and HK2, had the worst prognosis of all expression types. In conclusion, stem cells features and aberrant metabolic reprogramming of esophageal CSCs depend on the Hsp27-AKT-HK2 pathway. Targeting Hsp27 and HK2 could be novel therapeutic strategy for treating esophageal cancer and warrants further investigation.
Collapse
Affiliation(s)
- Chen-Chi Liu
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Ta Chou
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jyuan-Wei Hsu
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jiun-Han Lin
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Wei Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Tsang Yen
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chieh Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of New Drug Development, Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Rottach AM, Ahrend H, Martin B, Walther R, Zimmermann U, Burchardt M, Stope MB. Cabazitaxel inhibits prostate cancer cell growth by inhibition of androgen receptor and heat shock protein expression. World J Urol 2019; 37:2137-2145. [PMID: 30603780 DOI: 10.1007/s00345-018-2615-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Cabazitaxel, a semi-synthetic taxane of the third generation, inhibits prostate cancer (PC) cell growth by affecting the microtubule architecture. Since cabazitaxel has also been demonstrated to inhibit androgen receptor (AR) functionality, AR and AR-associated heat shock protein (HSP) expressions in the presence of cabazitaxel were characterized. METHODS AR and HSP expressions were assessed via Western blotting utilizing a PC-cell-line in vitro system incubated with cabazitaxel. RESULTS Incubation experiments with 0.3 nM cabazitaxel exhibited significantly reduced levels of AR and the AR-associated factors HSP90α, HSP40, and HSP70/HSP90 organising protein. Furthermore, expression of the anti-apoptotic factor HSP60 was suppressed. In contrast to other anticancer compounds, cabazitaxel did not alter the cytoprotective chemoresistance factor HSP27. CONCLUSIONS Despite the deregulation of microtubule organisation, cabazitaxel has been shown to suppress the expression of HSP. Very notably, and may be as a result of down-regulated HSP, cabazitaxel additionally inhibits the expression of the AR in AR-positive PC cells. Thus, cabazitaxel bears an additional anti-proliferative activity which is at least in part specific for PC cells.
Collapse
Affiliation(s)
- Anja-Martina Rottach
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Hannes Ahrend
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Benedikt Martin
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| |
Collapse
|
22
|
Huang CY, Wei PL, Chen WY, Chang WC, Chang YJ. Silencing Heat Shock Protein 27 Inhibits the Progression and Metastasis of Colorectal Cancer (CRC) by Maintaining the Stability of Stromal Interaction Molecule 1 (STIM1) Proteins. Cells 2018; 7:cells7120262. [PMID: 30544747 PMCID: PMC6315635 DOI: 10.3390/cells7120262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, and this disease has become an important health issue worldwide. Currently, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (HSP27) is a chaperone that interacts with many proteins. HSP27 has been shown to be overexpressed in many cancers, including colon cancer, and its overexpression is related to poor disease outcome. Although the importance of HSP27 as a biomarker cannot be underrated, its detailed mechanisms in colon cancer are still unclear. In vitro studies have indicated that silencing HSP27 reduces the proliferation, migration and invasion of colon cancer cells, and xenograft models have shown that silencing HSP27 decreases tumor progression. Tissue array results showed that colon cancer patients with high expression of HSP27 exhibited poor prognosis. In addition, we found a reduction of calcium influx through a decrease in STIM1 protein after HSP27 was abolished. The formation of puncta was decreased in HSP27 knockdown (HSP27KD) cells after thapsigargin (TG) treatment. Finally, we confirmed that the reduction of STIM1 after HSP27 silencing may be due to a loss of STIM1 stability instead of transcription. HSP27 may interact with STIM1 but not Orai1, as shown by immunoprecipitation assays. HSP27 and STIM1 were co-expressed in CRC specimens. Our study showed that HSP27 is a key mediator in the progression and metastasis of CRC by regulating the store-operated calcium entry. This novel pathway may provide a new direction for development of therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Yu Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
23
|
Liang HH, Huang CY, Chou CW, Makondi PT, Huang MT, Wei PL, Chang YJ. Heat shock protein 27 influences the anti-cancer effect of curcumin in colon cancer cells through ROS production and autophagy activation. Life Sci 2018; 209:43-51. [PMID: 30056019 DOI: 10.1016/j.lfs.2018.07.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023]
Abstract
The problem of therapeutic resistance and chemotherapeutic efficacy is tricky and critical in the management of colorectal cancer (CRC). Curcumin is a promising anti-cancer agent. Heat shock protein 27 (HSP27) is correlated with CRC progression and is said to affect CRC response to different therapies. However, the role of HSP27 on the therapeutic efficacy of curcumin remains unknown. HSP27 was silenced using small hairpin RNA (shRNA) technique. The cytotoxic and apoptotic effects of curcumin were assessed by sulforhodamine B (SRB) colorimetric assay, flow cytometric cell cycle analysis, and annexin V/propidium iodide (PI) double-labeling assays. Total reactive oxygen species (ROS)/superoxide and autophagy detection were performed, and the levels of apoptosis-related proteins were examined by Western blotting. It was found that the silencing of HSP27 (HSP27-KD) resulted in increased treatment resistance to curcumin in CRC cells. In addition, cell cycle analysis showed that the curcumin treatment caused cell cycle arrest at the G2/M phase in the control group, and apoptosis was reduced in the HSP27-KD group. Curcumin treatment also resulted in a decrease in anti-apoptotic proteins, p-Akt, Akt, Bcl-2 and p-Bad, and increase in pro-apoptotic proteins Bad and c-PARP levels in the control cells but not in the HSP27-KD cells. This was also followed by low reactive oxygen/nitrogen species (ROS/RNS), superoxide and autophagy induction levels in the HSP27-KD cells as compared to the control cells. Therefore, as silencing of HSP27 increases curcumin resistance by reducing apoptosis and reactive oxidative stress production, HSP27 is a potential selective target for curcumin treatment in CRC.
Collapse
Affiliation(s)
- Hung-Hua Liang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ching-Wen Chou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Precious Takondwa Makondi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Te Huang
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Velayutham M, Cardounel AJ, Liu Z, Ilangovan G. Discovering a Reliable Heat-Shock Factor-1 Inhibitor to Treat Human Cancers: Potential Opportunity for Phytochemists. Front Oncol 2018; 8:97. [PMID: 29682483 PMCID: PMC5897429 DOI: 10.3389/fonc.2018.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/12/2023] Open
Abstract
Heat-shock factor-1 (HSF-1) is an important transcription factor that regulates pathogenesis of many human diseases through its extensive transcriptional regulation. Especially, it shows pleiotropic effects in human cancer, and hence it has recently received increased attention of cancer researchers. After myriad investigations on HSF-1, the field has advanced to the phase where there is consensus that finding a potent and selective pharmacological inhibitor for this transcription factor will be a major break-through in the treatment of various human cancers. Presently, all reported inhibitors have their limitations, made evident at different stages of clinical trials. This brief account summarizes the advances with tested natural products as HSF-1 inhibitors and highlights the necessity of phytochemistry in this endeavor of discovering a potent pharmacological HSF-1 inhibitor.
Collapse
Affiliation(s)
- Murugesan Velayutham
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Arturo J Cardounel
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Zhenguo Liu
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Govindasamy Ilangovan
- Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH, United States.,Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Okuno M, Yasuda I, Adachi S, Nakashima M, Kawaguchi J, Doi S, Iwashita T, Hirose Y, Kozawa O, Yoshimi N, Shimizu M, Moriwaki H. The significance of phosphorylated heat shock protein 27 on the prognosis of pancreatic cancer. Oncotarget 2017; 7:14291-9. [PMID: 26895107 PMCID: PMC4924715 DOI: 10.18632/oncotarget.7424] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/31/2016] [Indexed: 12/14/2022] Open
Abstract
Background and Aim The precise role of phosphorylated heat shock protein (HSP) 27 (p-HSP27) in pancreatic cancer remains to be elucidated. The aim of this study was to investigate whether the expression of p-HSP27 predicts the prognosis of patients with pancreatic cancer. Methods We retrospectively assessed 49 biopsied pancreatic cancer tissue samples that were obtained prior to the treatment with gemcitabine. The correlations between p-HSP27 and the clinicopathological characteristics were analyzed. Results p-HSP27 was not correlated with the response to chemotherapy or histological type. However, the median survival time was significantly longer in the patients with high p-HSP27 (275 days, n = 18) than those with low p-HSP27 (205 days, n = 31) (P = 0.0158). A multivariate Cox proportional hazards regression analysis revealed that low p-HSP27 predicted a worse prognosis. Conclusions Higher p-HSP27 expression before chemotherapy was correlated with better survival, indicating that p-HSP27 expression could be used to predict the prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Mitsuru Okuno
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Ichiro Yasuda
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Seiji Adachi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Masanori Nakashima
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Junji Kawaguchi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Shinpei Doi
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Takuji Iwashita
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical College, Takatsuki, Osaka, 569-8686, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Naoki Yoshimi
- Department of Pathology and Oncology, Graduate School of Medical Science, University of the Ryukyus, Nishihara-cho, Okinawa, 903-0215, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hisataka Moriwaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
26
|
Karam J, Fadous-Khalifé MC, Tannous R, Fakhreddine S, Massoud M, Hadchity J, Aftimos G, Hadchity E. Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx. Mol Clin Oncol 2017; 7:808-814. [PMID: 29181170 DOI: 10.3892/mco.2017.1412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Late detection and lack of standard treatment strategies in larynx cancer patients result in high levels of mortality and poor prognosis. Prognostic stratification of larynx cancer patients based on molecular prognostic tumor biomarkers may lead to more efficient clinical management. Krüppel-like factor 4 (KLF4) and Heat Shock Protein 27 (HSP27) have an important role in tumorigenesis and are considered promising candidate biomarkers for various types of cancer. However, their role in larynx carcinoma remains to be elucidated. The present study aimed to determine KLF4 and HSP27 expression profiles in laryngeal tumors. The protein and mRNA expression levels of KLF4 and HSP27 were evaluated by immunohistochemical and reverse transcription-polymerase chain reaction analyses in 44 larynx carcinoma samples and 21 normal tissue samples, and then correlated with clinical characteristics. A differential expression of KLF4 and HSP27 was observed between normal and tumor tissues. The protein and mRNA expression levels of KLF4 were significantly decreased in larynx squamous cell carcinoma (LSCC) compared with normal tissue, whereas HSP27 was significantly overexpressed in tumor tissues compared with normal tissues, at the protein and mRNA levels. KLF4 expression decreased gradually with tumor progression whereas HSP27 expression increased. A significant difference was observed between stages I and IV. KLF4 and HSP27 exhibit opposite functions and roles in the carcinogenic process of LSCC. Their role in laryngeal cancer initiation and progression emphasizes their use as potential future targets for prognosis and treatment. KLF4 and HSP27 expression levels may act as potential biomarkers in patients with cancer of the larynx.
Collapse
Affiliation(s)
- Jihad Karam
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marie Claude Fadous-Khalifé
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Rita Tannous
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Sally Fakhreddine
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marcel Massoud
- Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Joseph Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Department of Surgery, St. Therese Hospital, Hadat 1003, Lebanon
| | | | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| |
Collapse
|
27
|
Huang Z, Yang C, Sun S, Nan Y, Lang Z, Wang X, Zhao J, Liu Y. Heat Shock Protein 27, a Novel Regulator of Transforming Growth Factor β Induced Resistance to Cisplatin in A549 Cell. Pharmacology 2017; 100:283-291. [PMID: 28848138 DOI: 10.1159/000479320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Lung cancer is one of the major causes of cancer morbidity and mortality around the world, and the resistance to cisplatin is a critical issue to chemotherapy in lung cancer patients. Transforming growth factor β (TGF-β) signal pathway abnormality is widely observed in drug resistance during lung cancer chemotherapy. Here, we investigated the effects of heat-shock protein 27 (HSP27) in the TGF-β-induced cisplatin resistance in lung cancer cell. In this study, our results indicated that the mRNA and protein expression of HSP27 were significantly increased in human lung cancer tissues. TGF-β induced the mRNA and protein expression of HSP27 in human lung cancer cell (A549). Treatment of TGF-β-induced cisplatin resistance in A549 cell through blocking the cisplatin-induced apoptosis and cell death, which characterized as the increasing of cell viability and decreasing of PARP and caspase3 cleavage in the cisplatin-treated cell. Knockdown of SMAD3 attenuated the TGF-β-induced HSP27 expression and restored the TGF-β-induced cisplatin resistance in A549 cell. Additionally, the knockdown of HSP27 blocked TGF-β-induced cisplatin resistance via decreasing cell viability and increasing cell apoptosis in A549 cell. These data therefore suggested that HSP27 is critical to lung cancer progression and TGF-β-induced cisplatin resistance in human lung cancer cell, and may provide an effective clinical strategy in lung cancer patients with resistance to chemotherapy.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ishida T, Ishii Y, Tsuruta M, Okabayashi K, Akimoto S, Koishikawa K, Hasegawa H, Kitagawa Y. Cetuximab promotes SN38 sensitivity via suppression of heat shock protein 27 in colorectal cancer cells with wild-type RAS. Oncol Rep 2017; 38:926-932. [DOI: 10.3892/or.2017.5734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
29
|
Heat Shock Protein HSP27 Secretion by Ovarian Cancer Cells Is Linked to Intracellular Expression Levels, Occurs Independently of the Endoplasmic Reticulum Pathway and HSP27's Phosphorylation Status, and Is Mediated by Exosome Liberation. DISEASE MARKERS 2017; 2017:1575374. [PMID: 28325957 PMCID: PMC5343262 DOI: 10.1155/2017/1575374] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/05/2022]
Abstract
The heat shock protein HSP27 has been correlated in ovarian cancer (OC) patients with aggressiveness and chemoresistance and, therefore, represents a promising potential biomarker for OC diagnosis, prognosis, and treatment response. Notably, secretion of soluble HSP27 has been described by a few cell types and may take place as well in OC cells. Therefore, we studied HSP27 secretion mechanisms under diverse cellular conditions in an OC cell model system. Secretion of HSP27 was characterized after overexpression of HSP27 by transfected plasmids and after heat shock. Intra- and extracellular HSP27 amounts were assessed by Western blotting and ELISA. Protein secretion was blocked by brefeldin A and the impact of the HSP27 phosphorylation status was analyzed overexpressing HSP27 phosphomutants. The present study demonstrated that HSP27 secretion by OVCAR-3 and SK-OV-3 cells depends on intracellular HSP27 concentrations. Moreover, HSP27 secretion is independent of the endoplasmic reticulum secretory pathway and HSP27 phosphorylation. Notably, analysis of OC cell-born exosomes not only confirmed the concentration-dependent correlation of HSP27 expression and secretion but also demonstrated a concentration-dependent incorporation of HSP27 protein into exosomes. Thus, secreted HSP27 may become more important as an extracellular factor which controls the tumor microenvironment and might be a noninvasive biomarker.
Collapse
|
30
|
Hotte SJ. Addressing taxane resistance in metastatic castration-resistant prostate cancer: a focus on chaperone proteins. Future Oncol 2017; 13:369-379. [DOI: 10.2217/fon-2016-0279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite the significant survival benefit of taxane therapy in metastatic castration-resistant prostate cancer (mCRPC), all patients inevitably develop treatment resistance. An understanding of resistance mechanisms has led to new therapies for prostate cancer (cabazitaxel, abiraterone and enzalutamide), all of which have improved survival following first-line docetaxel. Another treatment, currently in development, targets the prosurvival molecule clusterin. Custirsen, an antisense molecule that inhibits clusterin production, has shown promise in combination with docetaxel in mCRPC patients at risk for poor outcomes. Although optimal sequence and combination of available therapies is unclear, the heterogeneity of mCRPC suggests a continuing need for personalized treatment regimens and improved abilities to predict which patients will respond to the available treatment options.
Collapse
Affiliation(s)
- Sebastien J Hotte
- Department of Oncology, Division of Medical Oncology, Juravinski Cancer Centre, 699 Concession Street, Hamilton, Ontario, L8V 5C2, Canada
| |
Collapse
|
31
|
Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer. Sci Rep 2016; 6:31842. [PMID: 27555231 PMCID: PMC4995483 DOI: 10.1038/srep31842] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/26/2016] [Indexed: 12/27/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a molecular chaperone highly expressed in aggressive cancers, where it is involved in numerous pro-tumorigenic signaling pathways. Using functional genomics we identified for the first time that Hsp27 regulates the gene signature of transcriptional co-activators YAP and TAZ, which are negatively regulated by the Hippo Tumor Suppressor pathway. The Hippo pathway inactivates YAP by phosphorylating and increasing its cytoplasmic retention with the 14.3.3 proteins. Gain and loss of function experiments in prostate, breast and lung cancer cells showed that Hsp27 knockdown induced YAP phosphorylation and cytoplasmic localization while overexpression of Hsp27 displayed opposite results. Mechanistically, Hsp27 regulates the Hippo pathway by accelerating the proteasomal degradation of ubiquitinated MST1, the core Hippo kinase, resulting in reduced phosphorylation/activity of LATS1 and MOB1, its downstream effectors. Importantly, our in vitro results were supported by data from human tumors; clinically, high expression of Hsp27 in prostate tumors is correlated with increased expression of YAP gene signature and reduced phosphorylation of YAP in lung and invasive breast cancer clinical samples. This study reveals for the first time a link between Hsp27 and the Hippo cascade, providing a novel mechanism of deregulation of this tumor suppressor pathway across multiple cancers.
Collapse
|
32
|
Weiss M, Ahrend H, Grossebrummel H, Ziegler P, Brandenburg LO, Walther R, Zimmermann U, Burchardt M, Stope MB. Cytochrome P450 17A1 Inhibitor Abiraterone Acetate Counteracts the Heat Shock Protein 27's Cell Survival Properties in Prostate Cancer Cells. Urol Int 2016; 97:112-7. [PMID: 27007943 DOI: 10.1159/000445251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Martin Weiss
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The Clinical Significance of Phosphorylated Heat Shock Protein 27 (HSPB1) in Pancreatic Cancer. Int J Mol Sci 2016; 17:ijms17010137. [PMID: 26805817 PMCID: PMC4730376 DOI: 10.3390/ijms17010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer is one of most aggressive forms of cancer. After clinical detection it exhibits fast metastatic growth. Heat shock protein 27 (HSP27; HSPB1) has been characterized as a molecular chaperone which modifies the structures and functions of other proteins in cells when they are exposed to various stresses, such as chemotherapy. While the administration of gemcitabine, an anti-tumor drug, has been the standard treatment for patients with advanced pancreatic cancer, accumulating evidence shows that HSP27 plays a key role in the chemosensitivity to gemcitabine. In addition, phosphorylated HSP27 induced by gemcitabine has been associated with the inhibition of pancreatic cancer cell growth. In this review, we summarize the role of phosphorylated HSP27, as well as HSP27, in the regulation of chemosensitivity in pancreatic cancer.
Collapse
|
34
|
Jump in the fire--heat shock proteins and their impact on ovarian cancer therapy. Crit Rev Oncol Hematol 2015; 97:152-6. [PMID: 26318096 DOI: 10.1016/j.critrevonc.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/05/2015] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer (OC) is a major problem in gynecological oncology. Options for diagnosis and treatment of advanced stages and thus for patient prognosis have not been improved substantially over the past decades. Heat shock proteins (HSP) are characterized as stress-induced molecular chaperones performing cell survival factor functions. In cancer cells, various crucial and clinically important cell responses are vitally influenced and modulated by HSPs, e.g., cell growth and treatment resistance. Despite the limited knowledge on HSPs in OC progression, their roles as biomarkers, prognostic factors and their drug target properties appears promising for future clinical applications and therapeutic approaches.
Collapse
|