1
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Li K, Bian J, Xiao Y, Wang D, Han L, He C, Gong L, Wang M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. Int J Mol Sci 2023; 24:ijms24043513. [PMID: 36834922 PMCID: PMC9962587 DOI: 10.3390/ijms24043513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
In recent years, there has been a significant increase in age-related diseases due to the improvement in life expectancy worldwide. The pancreas undergoes various morphological and pathological changes with aging, such as pancreatic atrophy, fatty degeneration, fibrosis, inflammatory cell infiltration, and exocrine pancreatic metaplasia. Meanwhile, these may predispose the individuals to aging-related diseases, such as diabetes, dyspepsia, pancreatic ductal adenocarcinoma, and pancreatitis, as the endocrine and exocrine functions of the pancreas are significantly affected by aging. Pancreatic senescence is associated with various underlying factors including genetic damage, DNA methylation, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and inflammation. This paper reviews the alternations of morphologies and functions in the aging pancreas, especially β-cells, closely related to insulin secretion. Finally, we summarize the mechanisms of pancreatic senescence to provide potential targets for treating pancreatic aging-related diseases.
Collapse
Affiliation(s)
- Kailin Li
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Da Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Caian He
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, Xianyang 712100, China
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
3
|
Co-Occurrence of Hepatitis A Infection and Chronic Liver Disease. Int J Mol Sci 2020; 21:ijms21176384. [PMID: 32887515 PMCID: PMC7504211 DOI: 10.3390/ijms21176384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis A virus (HAV) infection occasionally leads to a critical condition in patients with or without chronic liver diseases. Acute-on-chronic liver disease includes acute-on-chronic liver failure (ACLF) and non-ACLF. In this review, we searched the literature concerning the association between HAV infection and chronic liver diseases in PubMed. Chronic liver diseases, such as metabolic associated fatty liver disease and alcoholic liver disease, coinfection with other viruses, and host genetic factors may be associated with severe hepatitis A. It is important to understand these conditions and mechanisms. There may be no etiological correlation between liver failure and HAV infection, but there is an association between the level of chronic liver damage and the severity of acute-on-chronic liver disease. While the application of an HAV vaccination is important for preventing HAV infection, the development of antivirals against HAV may be important for preventing the development of ACLF with HAV infection as an acute insult. The latter is all the more urgent given that the lives of patients with HAV infection and a chronic liver disease of another etiology may be at immediate risk.
Collapse
|
4
|
Jiang X, Li D, Wang G, Liu J, Su X, Yu W, Wang Y, Zhai C, Liu Y, Zhao Z. Thapsigargin promotes colorectal cancer cell migration through upregulation of lncRNA MALAT1. Oncol Rep 2020; 43:1245-1255. [PMID: 32323831 PMCID: PMC7057937 DOI: 10.3892/or.2020.7502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common tumor in the world; however, the role and mechanism of endoplasmic reticulum (ER) stress in CRC metastasis remains largely unclear. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA), which has previously been associated with CRC metastasis. It has been suggested that ER stress pathways regulate lncRNA expression; however, the effect of ER stress on MALAT1 expression in cancer is unknown. The present study aimed to investigate the relationship between ER stress pathways, MALAT1 expression and cell migration in CRC cells. ER stress was induced by thapsigargin (TG); low dose TG induced the migration of HT29 and HCT116 cells, but not SW1116 and SW620 cells. This effect was associated with increased expression levels of MALAT1, as the knockdown of MALAT1 prevented TG-induced cell migration. TG-induced MALAT1 expression was associated with inositol-requiring enzyme 1 (IRE1) expression and activation of the protein kinase R (PKR)-like ER kinase (PERK) signaling pathway. X-box-binding protein 1 (XBP1) and activating transcription factor 4 (ATF4) binding sites were predicted to be located in the MALAT1 gene promoter regions and the expression of MALAT1 was positively associated with XBP1 and ATF4 expression levels in CRC tissue samples. Thus, these findings indicated that ER stress may promote the migration of CRC cells and contribute to the progression of CRC through the activation of the IRE1/XBP1 and PERK/eIF2α/ATF4 signaling pathways. In conclusion, to the best of our knowledge, this study is the first report that lncRNA MALAT1 expression is regulated by the IRE1/XBP1 pathway in CRC.
Collapse
Affiliation(s)
- Xia Jiang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Dongyun Li
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guiqi Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Jue Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xingkai Su
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuanyuan Wang
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Congjie Zhai
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Yuegeng Liu
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zengren Zhao
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
5
|
Chen JL, Hung CT, Keller JJ, Lin HC, Wu YJ. Proteomic analysis of retinal pigment epithelium cells after exposure to UVA radiation. BMC Ophthalmol 2019; 19:168. [PMID: 31375076 PMCID: PMC6679551 DOI: 10.1186/s12886-019-1151-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Age-related macular degeneration (AMD) is the primary cause of blindness and severe vision loss in developed countries and is responsible for 8.7% of blindness globally. Ultraviolet radiation can induce DNA breakdown, produce reactive oxygen species, and has been implicated as a risk factor for AMD. This study investigated the effects of UVA radiation on Human retinal pigment epithelial cell (ARPE-19) growth and protein expression. Methods ARPE-19 cells were irradiated with a UVA lamp at different doses (5, 10, 20, 30 and 40 J/cm2) from 10 cm. Cell viability was determined by MTT assay. Visual inspection was first achieved with inverted light microscopy and then the DeadEnd™ Fluorometric TUNEL System was used to observe nuclear DNA fragmentation. Flow cytometry based-Annexin V-FITC/PI double-staining was used to further quantify cellular viability. Mitochondrial membrane potential was assessed with JC-1 staining. 2D electrophoresis maps of exposed cells were compared to nonexposed cells and gel images analyzed with PDQuest 2-D Analysis Software. Spots with greater than a 1.5-fold difference were selected for LC-MS/MS analysis and some confirmed by western blot. We further investigated whether caspase activation, apoptotic-related mitochondrial proteins, and regulators of ER stress sensors were involved in UVA-induced apoptosis. Results We detected 29 differentially expressed proteins (9 up-regulated and 20 down-regulated) in the exposed cells. Some of these proteins such as CALR, GRP78, NPM, Hsp27, PDI, ATP synthase subunit alpha, PRDX1, and GAPDH are associated with anti-proliferation, induction of apoptosis, and oxidative-stress protection. We also detected altered protein expression levels among caspases (caspase 3 and 9) and in the mitochondrial (cytosolic cytochrome C, AIF, Mcl-1, Bcl-2, Bcl-xl, Bax, Bad, and p-Bad) and ER stress-related (p-PERK, p-eIF2α, ATF4 and CHOP) apoptotic pathways. Conclusions UVA irradiation suppressed the proliferation of ARPE-19 cells in a dose-dependent manner, caused quantitative loses in transmembrane potential (ΔΨm), and induced both early and late apoptosis.
Collapse
Affiliation(s)
- Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chun-Tzu Hung
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Joseph Jordan Keller
- College of Medicine, The Ohio State University, Columbus, OH, USA.,School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.,International Master's Program, College of Health Technology, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsien-Chung Lin
- Department of Ophthalmology, Yuan's General Hospital, Kaohsiung, Taiwan. .,Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung, Taiwan.
| |
Collapse
|
6
|
Clarke WR, Amundadottir L, James MA. CLPTM1L/CRR9 ectodomain interaction with GRP78 at the cell surface signals for survival and chemoresistance upon ER stress in pancreatic adenocarcinoma cells. Int J Cancer 2019; 144:1367-1378. [PMID: 30468251 DOI: 10.1002/ijc.32012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022]
Abstract
Altered regulation of endoplasmic reticulum (ER) homeostasis has been implicated in many cancers and has recently become a therapeutic and chemosensitization target of interest. We have identified Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L)/Cisplatin Resistance Related Protein 9 (CRR9) as an ER stress related mediator of cytoprotection in pancreatic cancer. We recently demonstrated that CLPTM1L is highly expressed in pancreatic ductal adenocarcinoma and associated with poor outcome. Furthermore, we have discovered that CLPTM1L interacts with phosphoinositol-3-kinase-alpha at the tumor cell surface and causes up-regulation of Bcl-xL and pAkt mediated survival signaling. Here, we demonstrate surface relocalization and survival signaling by CLPTM1L triggered by endoplasmic reticular (ER) stress. We demonstrate the interaction of CLPTM1L with the central ER stress survival mediator, Glucose Regulated Protein 78 (GRP78)/Binding Immunoglobulin Protein (BiP) and PI3K-alpha /p110α. This interaction and surface relocalization of CLPTM1L and GRP78 is induced by ER stress, including that caused by treatment with gemcitabine. We demonstrate that the extracellular loop of CLPTM1L is required for gemcitabine resistance and interaction with GRP78. This interaction and the chemoresistance effect conferred by this pathway is targetable with our recently developed inhibitory CLPTM1L antibodies, which may represent novel modalities of chemosensitization and treatment of pancreatic adenocarcinoma. Anchorage independent growth, GRP78-mediated chemoresistance, and Akt phosphorylation were abrogated by inhibition of CLPTM1L. These findings demonstrate a novel and potentially targetable mechanism of cytoprotection and chemoresistance in pancreatic tumors.
Collapse
Affiliation(s)
- William R Clarke
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Laufey Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Gaithersburg, Maryland, USA
| | - Michael A James
- Department of Surgery, Division of Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Zhang X, Zhang S, Sun Q, Jiao W, Yan Y, Zhang X. Compound K Induces Endoplasmic Reticulum Stress and Apoptosis in Human Liver Cancer Cells by Regulating STAT3. Molecules 2018; 23:E1482. [PMID: 29921768 PMCID: PMC6099685 DOI: 10.3390/molecules23061482] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
The ginsenoside compound K (20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol; CK) is an intestinal bacterial metabolite of ginseng protopanaxadiol saponin that has been reported to induce apoptosis in many cancer cells; however, the precise mechanisms of its activity in human hepatocellular carcinoma (HCC) cells remain unclear. Herein, we demonstrated that CK inhibited the growth and colony formation of HepG2 and SMMC-7721 cells, phenotypes that were mediated by inducing apoptosis. Meanwhile, CK showed lower toxicity in normal hepatoma cells. After treating HepG2 and SMMC-7721 cells with CK, p-STAT3 levels decreased, the three branches of the unfolded protein response were activated, and levels of endoplasmic reticulum stress (ERS)-related proteins were increased. We also revealed that CK decreased the DNA-binding capacity of STAT3. Moreover, silencing STAT3 with CRISPR/Cas9 technology enhanced CK-induced ERS and apoptosis. Finally, we showed that CK inhibited the growth of liver cancer xenografts with little toxicity. Mice bearing human HCC xenografts that were treated with CK showed increased GRP78 expression and decreased p-STAT3 levels. Taken together, these data showed that CK induced ERS and apoptosis by inhibiting p-STAT3 in human liver cancer cells; thus, CK might be a potential therapeutic candidate for human HCC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Medicine, Yanbian University, Yanji 133000, China.
| | - Silin Zhang
- College of Medicine, Yanbian University, Yanji 133000, China.
| | - Qitong Sun
- College of Medicine, Yanbian University, Yanji 133000, China.
| | - Wenjun Jiao
- College of Medicine, Yanbian University, Yanji 133000, China.
| | - Yan Yan
- College of Medicine, Yanbian University, Yanji 133000, China.
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji 133000, China.
| |
Collapse
|
8
|
Wang Y, Wang JH, Zhang XL, Wang XL, Yang L. Endoplasmic reticulum chaperone glucose-regulated protein 78 in gastric cancer: An emerging biomarker. Oncol Lett 2018; 15:6087-6093. [PMID: 29616092 DOI: 10.3892/ol.2018.8114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the principal organelle responsible for the synthesis, initial post-translational modification, folding, export and secretion of proteins. It is also responsible for the maintenance of cellular homeostasis. In response to cellular stress conditions including glucose deprivation, hypoxia and changes in calcium homeostasis, ER stress machinery is activated and triggers the unfolded protein response, resulting in the restoration of homeostasis or activation of cell death. Glucose-regulated protein 78 (GRP78), a molecular chaperone, may be induced by ER stress at the transcriptional and translational level. A number of studies have demonstrated that GRP78 serves an important role in tumor cell proliferation, metastasis, angiogenesis and drug-resistance. The present review systematically describes the association between GRP78 expression and gastric cancer pathogenesis, and emphasizes that GRP78 is a novel diagnostic and therapeutic biomarker of gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Jian-Hong Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Xun-Lei Zhang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Xiao-Li Wang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Lei Yang
- Department of Medical Oncology, Nantong University Affiliated Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
9
|
Wu LL, Lin DN, Yu LH, Yang LH. Endoplasmic reticulum stress plays an important role in methotrexate-related cognitive impairment in adult rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10252-10260. [PMID: 31966359 PMCID: PMC6965786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/01/2017] [Indexed: 06/10/2023]
Abstract
The patients receiving methotrexate (MTX) treatment are inclined to suffer from cognition impairment, since MTX can induce apoptosis of neurons, while the underlying molecular mechanisms remain unknown. Thus we hypothesized that MTX-induced apoptosis of hippocampal neurons via activating endoplasmic reticulum stress (ERS) pathway, which leads to cognitive impairment in adult rats. In order to confirm our hypothesis, twenty male Sprague-Dawley rats weighting 180-220 g were divided into two groups: the control group (physiological saline) and the MTX60 group (MTX 60 mg/kg). Spatial memory was assayed by the Morris water maze test (MWM). In the mean time, another twenty-four rats were divided into four groups: the control group (physiological saline), MTX60 (MTX, 60 mg/kg), MTX100 (MTX, 100 mg/kg) and MTX250 (MTX, 250 mg/kg). Then, we observed the pathological changes of the hippocampus by hematoxylin-eosin stained. The expressions of C/EBP homologous protein (CHOP) and caspase-12 in the hippocampus were determined by Western blot and immunofluorescence. The apoptosis of neurons were assessed by TUNEL assay. The Morris water maze test showed that MTX induced spatial memory impairment in adult rats (P<0.05). The degenerated or apoptotic neurons were condensed and the number of neurons with nuclear pyknosis increased significantly in hippocampus CA1 area of rats in MTX groups. Additionally, both protein expressions of CHOP and caspase-12 and number of TUNEL positive cells were significantly increased in these MTX groups (P<0.05). The present results suggested that ERS mediated by apoptosis of hippocampal neurons might play an important role in the mechanism of MTX-induced cognitive impairment in adult rats.
Collapse
Affiliation(s)
- Li-Li Wu
- Pediatric Center of Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Dan-Na Lin
- Pediatric Center of Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Li-Hua Yu
- Pediatric Center of Zhujiang Hospital, Southern Medical University Guangzhou, China
| | - Li-Hua Yang
- Pediatric Center of Zhujiang Hospital, Southern Medical University Guangzhou, China
| |
Collapse
|
10
|
Xiao B, Liu C, Liu BT, Zhang X, Liu RR, Zhang XW. TTF1-NPs Induce ERS-Mediated Apoptosis and Inhibit Human Hepatoma Cell Growth In Vitro and In Vivo. Oncol Res 2017; 23:311-20. [PMID: 27131317 PMCID: PMC7838666 DOI: 10.3727/096504016x14567549091341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone (TTF1) is the primary anticancer constituent of the traditional Chinese medicinal plant Sorbaria sorbifolia (SS), which has been applied to treat cancer in China. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of small-molecule TTF1 nanoparticles (TTF1-NPs). The effects of TTF1-NPs on cell growth and apoptosis were investigated using human hepatoma cells. The molecular changes associated with the effects of TTF1-NPs were analyzed by immunocytochemistry and Western blot analysis. The in vivo effect of TTF1-NPs was investigated using the HepG2 tumor xenograft model. We found that TTF1-NPs exhibited antitumor effects in vitro accompanied by induction of apoptosis in human hepatoma cells. Mechanistically, our data showed that TTF1-NPs induced apoptosis via endoplasmic reticulum stress (ERS) pathway in hepatoma cells. Moreover, inhibition of ERS activation blocked TTF1-NP-induced apoptosis in HepG2 cells. Finally, TTF1-NPs inhibited the growth of HepG2 xenograft tumors. Taken together, our results demonstrated that TTF1-NP-induced apoptosis was mediated at least in part by the ERS pathway and thus inhibited hepatoma tumor growth.
Collapse
Affiliation(s)
- Bin Xiao
- College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
11
|
Zhou LX, Yang AN, Chen JK, Zhao L, Wang YH, Liu XM, Cai X, Zhang MH, Jiang YD, Cao J. Endoplasmic reticulum oxidoreductin 1α mediates homocysteine-induced hepatocyte endoplasmic reticulum stress. Shijie Huaren Xiaohua Zazhi 2014; 22:5228-5234. [DOI: 10.11569/wcjd.v22.i34.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the role of endoplasmic reticulum oxidoreductin 1α (ERO1α) in homocysteine (Hcy)-induced endoplasmic reticulum stress (ERS).
METHODS: Hepatocytes were cultured in the presence or absence of Hcy (100 μmol/L), and ELISA was used to determine the concentrations of of glucose-regulated protein 78 (GRP78), X-box binding protein-1 (XBP-1), protein kinase RNA-like endoplasmic reticulum kinase (PERK) and activating transcription factor 6 (ATF6). Hepatocytes were then cultured with different concentrations of Hcy (0, 50, 100, 200, 500 μmol/L) and 100 μmol/L Hcy plus folic acid and vitamin B12, and the expression of ERO1α was detected by qRT-PCR and Western blot. ERO1α recombinant plasmid and ERO1α small interfering RNAs were then used to transfect hepatocytes, and the expression of ERO1α and the concentrations of GRP78, PERK, ATF6 and XBP-1 were measured.
RESULTS: Compared with non-treated cells, the concentrations of GRP78, PERK, ATF6 and XBP-1 significantly increased in Hcy-treated cells (P < 0.01, P < 0.01, P < 0.05, P < 0.01). Hcy decreased the expression of ERO1α at mRNA and protein levels (P < 0.01) in a dose-dependent manner. Transfection with ERO1α recombinant plasmid significantly increased the expression of ERO1α (P < 0.01), while transfection with three ERO1α small interfering RNAs significantly decreased the expression of ERO1α, with siRNA2 having the most significant effect (P < 0.01). Compared with the Hcy group, the concentrations of GRP78, PERK, ATF6 and XBP-1 significantly decreased in the Hcy + pERO1α recombinant plasmid group (P < 0.05), but increased in the Hcy + siRNA2 group (P < 0.01).
CONCLUSION: ERO1α may be involved in Hcy-induced hepatocyte ERS possibly by regulation of the GRP78-XBP-1/PERK/ATF6 signal pathway.
Collapse
|