1
|
Ng D, Cyr D, Khan S, Dossa F, Swallow C, Kazazian K. Molecular mechanisms of metastatic peritoneal dissemination in gastric adenocarcinoma. Cancer Metastasis Rev 2025; 44:50. [PMID: 40317360 PMCID: PMC12049340 DOI: 10.1007/s10555-025-10265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Peritoneal dissemination portends a dismal prognosis in patients with gastric adenocarcinoma in the context of limited effective treatments. The underlying cellular processes that drive gastric peritoneal carcinomatosis remain unclear, limiting the application of novel targeted therapies. In this comprehensive review, we aimed to identify and summarize all existing context-dependent molecular mechanisms that have been implicated in peritoneal dissemination and peritoneal carcinomatosis establishment from primary gastric adenocarcinoma. We applied a multilevel examination including data from in vivo murine models using human gastric cancer cell lines, in vitro technique-based studies, ex vivo models, and genomic/proteomic and molecular profiling analyses to report on various aspects of gastric cancer peritoneal metastasis biology. Mechanisms promoting peritoneal dissemination were grouped into three main functional categories: (1) intrinsic cancer cell biology, (2) cancer cell-peritoneal surface adhesion, and (3) peritoneal tumor microenvironment. We identified significant overlap among the three categories, indicating a complex interplay between multiple molecular mechanisms. By interrupting these pathways, peritoneal-directed therapies have the potential to improve quality and length of life in patients with high-risk primary gastric cancer.
Collapse
Affiliation(s)
- Deanna Ng
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - David Cyr
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Shawn Khan
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Fahima Dossa
- Complex General Surgical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carol Swallow
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Karineh Kazazian
- Department of Surgery, University of Toronto, Toronto, Canada.
- Department of Surgical Oncology, Toronto General Hospital, University Health Network, 200 Elizabeth Street, 10 Eaton North, Room 219, Toronto, M5G 2 C4, Canada.
| |
Collapse
|
2
|
Jamialahmadi H, Nazari SE, TanzadehPanah H, Saburi E, Asgharzadeh F, Khojasteh-Leylakoohi F, Alaei M, Mirahmadi M, Babaei F, Asghari SZ, Mansouri S, Khalili-Tanha G, Maftooh M, Fiuji H, Hassanian SM, Ferns GA, Khazaei M, Avan A. Targeting transforming growth factor beta (TGF-β) using Pirfenidone, a potential repurposing therapeutic strategy in colorectal cancer. Sci Rep 2023; 13:14357. [PMID: 37658230 PMCID: PMC10474052 DOI: 10.1038/s41598-023-41550-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The modulating factors within the tumor microenvironment, for example, transforming growth factor beta (TGF-β), may limit the response to chemo and immunotherapy protocols in colorectal cancer (CRC). In the current study, the therapeutic potential of targeting the TGF-β pathway using Pirfenidone (PFD), a TGF-β inhibitor, either alone or in combination with five fluorouracil (5-FU) has been explored in preclinical models of CRC. The anti-proliferative and migratory effects of PFD were assessed by MTT and wound-healing assays respectively. Xenograft models were used to study the anti-tumor activity, histopathological, and side effects analysis. Targeting of TGF-β resulted in suppression of cell proliferation and migration, associated with modulation of survivin and MMP9/E-cadherin. Moreover, the PFD inhibited TGF-β induced tumor progression, fibrosis, and inflammatory response through perturbation of collagen and E-cadherin. Targeting the TGF-β pathway using PFD may increase the anti-tumor effects of 5-FU and reduce tumor development, providing a new therapeutic approach to CRC treatment.
Collapse
Affiliation(s)
- Hamid Jamialahmadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid TanzadehPanah
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mirahmadi
- Department of Pharmacology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Babaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Zahra Asghari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeide Mansouri
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
3
|
Li J, Wang YF, Shen ZC, Zou Q, Lin XF, Wang XY. Recent developments on natural polysaccharides as potential anti-gastric cancer substance: Structural feature and bioactivity. Int J Biol Macromol 2023; 232:123390. [PMID: 36706878 DOI: 10.1016/j.ijbiomac.2023.123390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Gastric cancer (GC) is being a serious threat to human health. Seeking safer and more effective ingredients for anti-GC is of significance. Increasing natural polysaccharides (NPs) have been demonstrated to possess anti-GC activity. However, the information on anti-GC NPs is scattered. For well-understanding the potential of NPs as anti-GC substances, the recent developments on structure, bioactivity and mechanism of anti-GC NPs were comprehensively reviewed in this article. Meanwhile, the structure-activity relationship was discussed. Recent studies indicated that anti-GC NPs could be mainly divided into glucan and heteropolysaccharide, whose structures affected by sources and protocols of extraction and purification. NPs exhibited anti-GC activities in cell and animal experiments as well as clinical trials, and the mechanisms might be anti-proliferation, inducing apoptosis, anti-metastasis and anti-invasion, inducing autophagy, boosting immunity, anti-angiogenesis, reducing drug resistance, anti-angiogenesis, improving antioxidant level and changing metabolites. Moreover, structural features included molecular weight, functional groups, uronic acid and monosaccharide composition, glycosidic linkage type, and degree of branching and conformation might influence the activities. Otherwise, modifications could enhance the anti-GC activity of NPs, and anti-GC NPs could be combinedly used with chemotherapeutic drugs. This review supports the applications of NPs in anti-GC and provides theoretical basis for future study.
Collapse
Affiliation(s)
- Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Mo J, Tong Y, Ma J, Wang K, Feng Y, Wang L, Jiang H, Jin C, Li J. The mechanism of flavonoids from Cyclocarya paliurus on inhibiting liver cancer based on in vitro experiments and network pharmacology. Front Pharmacol 2023; 14:1049953. [PMID: 36817123 PMCID: PMC9936097 DOI: 10.3389/fphar.2023.1049953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Cyclocarya paliurus (Batal.) Iljinsk., a subtropical tree belonging to the family Juglandaceae, is rich in polysaccharides, flavonoids, and terpenoids. It has important pharmacological effects such as lowering blood lipids, blood sugar, and blood pressure. However, little has been discerned regarding anti tumor effects and their potential mechanisms. Method: In vitro cell culture experiments were used to test the effect of C. paliurus total flavonoids (CTFs) extract on apoptosis mechanisms in HepG2 cells. Network pharmacology was applied to further explore the effects of CTFs on liver cancer as well as the mechanisms through which these effects might be achieved. Both 3 hydroxyflavone and luteolin were randomly selected to verify the effect on inducing apoptosis and inhibiting the proliferation of HepG2 cells. Results and Discussion: Network pharmacological analysis was applied to these 62 compounds and their targets, and 13 flavonoids were further screened for their potential anti liver cancer activity. These 13 flavonoids included: tangeretin, baicalein, 7,3'-dihydroxyflavone, velutin, 3-hydroxyflavone, chrysin, kumatakenin, tricin, luteolin, chrysoeriol, apigenin, pinocembrin, and butin. Together, these flavonoids were predicted to interact with AKT1, MAPK3, PIK3CA, EGFR, MAP2K1, SRC, IGF1R, IKBKB, MET, and MAPK14. It was predicted that the inhibitory effect on hepatocellular carcinoma would be accomplished by regulation of core proteins relating to such KEGG pathways as cancer, PI3K-Akt, proteoglycans in cancer, microRNAs in cancer, and endocrine resistance via core target proteins. Both 3-hydroxyflavone and luteolin were demonstrated to induce apoptosis and inhibit the proliferation of HepG2 cells. Our study provides scientific evidence supporting the use of CTFs for the treatment of liver cancer.
Collapse
Affiliation(s)
- Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yingpeng Tong
- School of Advanced Study, Taizhou University, Taizhou, China
| | - Junxia Ma
- Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Yifu Feng
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Liezhi Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang, China,*Correspondence: Chong Jin, ; Junmin Li,
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou, China,Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China,*Correspondence: Chong Jin, ; Junmin Li,
| |
Collapse
|
5
|
Chen L, He C, Zhou M, Long J, Li L. Research Progress on the Mechanisms of Polysaccharides against Gastric Cancer. Molecules 2022; 27:5828. [PMID: 36144560 PMCID: PMC9501385 DOI: 10.3390/molecules27185828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is a common type of cancer that poses a serious threat to human health. Polysaccharides are important functional phytochemicals, and research shows that polysaccharides have good anti-gastric cancer effects. We collated all relevant literature published from 2000 to 2020 and found that more than 60 natural polysaccharides demonstrate anti-gastric cancer activity. At the present, the sources of these polysaccharides include fungi, algae, tea, Astragalus membranaceus, Caulis Dendrobii, and other foods and Chinese herbal medicines. By regulating various signaling pathways, including the PI3K/AKT, MAPK, Fas/FasL, Wnt/β-catenin, IGF-IR, and TGF-β signaling pathways, polysaccharides induce gastric cancer cell apoptosis, cause cell cycle arrest, and inhibit migration and invasion. In addition, polysaccharides can enhance the immune system and killing activity of immune cells in gastric cancer patients and rats. This comprehensive review covers the extraction, purification, structural characterization, and mechanism of plant and fungal polysaccharides against gastric cancer. We hope this review is helpful for researchers to design, research, and develop plant and fungal polysaccharides.
Collapse
Affiliation(s)
- Liping Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Chunrong He
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Min Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jiaying Long
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
6
|
Hashemzehi M, Yavari N, Rahmani F, Asgharzadeh F, Soleimani A, Shakour N, Avan A, Hadizadeh F, Fakhraie M, Marjaneh RM, Ferns GA, Reisi P, Ryzhikov M, Khazaei M, Hassanian SM. Inhibition of transforming growth factor-beta by Tranilast reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI JOURNAL 2021; 20:601-613. [PMID: 33883985 PMCID: PMC8056055 DOI: 10.17179/excli2020-2932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Transforming Growth Factor-beta (TGF-β) is dysregulated in colorectal cancer and there is growing evidence that it is associated with a poor prognosis and chemo-resistance in several malignances, including CRC. In this study we have explored the therapeutic potential of targeting TGF-β using Tranilast in colon cancer. The anti-proliferative activity of Tranilast was evaluated in 2- and 3-dimensional cells. We used a xenograft model of colon cancer to investigate the activity of Tranilast alone or in combination with 5-FU on tumor growth using histological staining and biochemical studies, as well as gene expression analyses using RT-PCR and Western blotting. Tranilast alone or in combination with 5-FU inhibited tumor growth and was associated with a reduction of TGF-β expression and CD31 positive endothelial cells. Histological evaluation showed that Tranilast increased tumor necrosis and reduced tumor density and angiogenesis. Tranilast increased MDA and ROS production. It was also found that Tranilast reduced total thiol concentration and reduced SOD and catalase activity. Tranilast plus 5-FU was also found to attenuate collagen deposition, reducing tumor fibrosis in tumor xenografts. Our results show that Tranilast, a TGF inhibitor, in combination with 5-FU reduces tumor growth by inhibiting fibrosis and inducting ROS, thus supporting this therapeutic approach in CRC treatment.
Collapse
Affiliation(s)
- Milad Hashemzehi
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Negar Yavari
- Department of Medical Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Rahmani
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Fakhraie
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi Marjaneh
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Parham Reisi
- Department of Medical Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Majid Khazaei
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Wang J, Wang Y, Lou Y, Cui W, Zhang Y, Dong W, Sun J, Miao L. Effect of aquaporin 1 on mouse peritoneal mesothelial cells after a long-term peritoneal dialysis. Ther Apher Dial 2021; 25:88-96. [PMID: 32311233 DOI: 10.1111/1744-9987.13504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
Aquaporin 1 (AQP1) is one member of the aquaporin family, also the deeply studied one. It is widely located on the endothelial cells, but the effect of AQP1 on the peritoneal mesothelial cells (PMCs) after long-term peritoneal dialysis (PD) has not been reported before. We divided normal mice into two groups, control group and dialysis group, to confirm the fibrotic changes and expression of APQ1 on peritoneal mesothelial cells. Then we assigned normal mice and AQP1 knockout mice into four groups: Control group, normal dialysis group, AQP1 knockout control group and AQP1 knockout dialysis group. The two dialysis groups received 4.25% glucose dialysis for 28 days. We found that mice in both dialysis groups showed peritoneal fibrotic changes, which were most severe in the AQP1 knockout dialysis group; the peritoneal thickness in the AQP1 knockout dialysis group was also thicker than that in the dialysis group (P < .05). We used electron microscopy to detect ultrastructural changes and observed changes in microvilli and vacuolar degeneration in mesothelial cells from all groups except the control group. The basement membranes were damaged in the AQP1 knockout dialysis group, and peritoneal mesothelial cells were disrupted and detached in this group. Together our findings indicate that AQP1 plays an important role in maintaining the physiological functions of peritoneal mesothelial cells, and AQP1 can protect mesothelial cells during dialysis.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Yunfeng Zhang
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Dong
- Department of Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jing Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Anticancer Effects of Cyclocarya paliurus Polysaccharide (CPP) on Thyroid Carcinoma In Vitro and In Vivo. INT J POLYM SCI 2018. [DOI: 10.1155/2018/2768120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In this study, we explored the role and mechanisms of Cyclocarya paliurus polysaccharide on cell apoptosis in thyroid cancer (TC) cells. The apoptosis of thyroid cancer cells in vitro and tumor tissues in vivo induced by Cyclocarya paliurus polysaccharide was determined by MTT assay and flow cytometric assay. The downstream molecules including phosphop-protein kinase B (p-Akt), Akt, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) in tumor tissue were evaluated by western blotting. MTT and flow cytometry assay in vitro revealed Cyclocarya paliurus polysaccharide-induced apoptosis of thyroid cancer cell line in a manner of time-dependent and dose-dependent. In vivo assay showed 50 mg/kg and 100 mg/kg Cyclocarya paliurus polysaccharide significantly suppressed the proliferation of thyroid cancer in mice. Western blotting showed downregulation of p-Akt, Akt, and Bcl-2 and upregulation of Bax. These results suggest that Cyclocarya paliurus polysaccharide may enhance thyroid cancer cell apoptosis by suppressing the activation of p-Akt, Akt, and Bcl-2 and activating Bax, which provide a novel use of CPP as a thyroid cancer treatment.
Collapse
|
9
|
Kurata T, Fushida S, Kinoshita J, Oyama K, Yamaguchi T, Okazaki M, Miyashita T, Tajima H, Ninomiya I, Ohta T. Low-dose eribulin mesylate exerts antitumor effects in gastric cancer by inhibiting fibrosis via the suppression of epithelial-mesenchymal transition and acts synergistically with 5-fluorouracil. Cancer Manag Res 2018; 10:2729-2742. [PMID: 30147370 PMCID: PMC6101023 DOI: 10.2147/cmar.s167846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Characterized by aggressive proliferation, extensive stromal fibrosis, and resulting drug resistance, peritoneal dissemination in gastric cancer remains associated with poor prognosis. Interaction between cancer and stromal cells accelerates tumor progression via epithelial–mesenchymal transition (EMT), which is one of the major causes of tissue fibrosis, and human peritoneal mesothelial cells (HPMCs) play important roles as cancer stroma in peritoneal dissemination. Transforming growth factor-β (TGF-β) has a pivotal function in the progression of EMT, and Smad proteins play an important role in the TGF-β signaling pathway. Eribulin mesylate (eribulin), a nontaxane microtubule dynamics inhibitor used for the treatment of advanced breast cancer, inhibits EMT changes in triple-negative breast cancer cells. We examined its ability to inhibit tumor progression and EMT changes resulting from the interaction between gastric cancer cells and HPMCs and to act synergistically with 5-fluorouracil (5-FU), a key drug for gastric cancer. Materials and methods Proliferation of gastric cancer cells and HPMCs isolated from healthy omentum was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Following gastric cancer cell/HPMC coculture, EMT markers were detected by immunofluorescence, immunohistochemistry, and Western blotting; invasion assays were performed; and TGF-β and Smad phosphorylation were assessed by Western blotting and enzyme-linked immunosorbent assay. A mouse fibrotic tumor xenograft model was established using gastric cancer cell/HPMC cocultures. The effect of eribulin and/or 5-FU was tested in each case. Results Eribulin significantly suppressed gastric cancer cell proliferation and EMT changes in MKN-45 gastric cancer cells and HPMCs induced by their interaction in vitro. Eribulin inhibited EMT at much lower concentrations (≥0.5 nM for MKN-45 and ≥0.1 nM for HPMCs) than its half maximal inhibitory concentrations (2.2 nM for MKN-45 and 8.1 nM for HPMCs), and this resulted, at least partly, from the downregulation of TGF-β/Smad signaling. Eribulin administration of ≥0.1 mg/kg suppressed tumor progression (0.1 mg/kg, p=0.02), and fibrosis was inhibited by lower dose (0.05 mg/kg, p=0.008) in the xenograft model. Furthermore, 0.05 mg/kg administration with 5-FU brought about synergistic antitumor effects (p=0.006). Conclusion Low-dose eribulin combined with 5-FU might be a promising therapy for peritoneal dissemination in gastric cancer.
Collapse
Affiliation(s)
- Toru Kurata
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan,
| |
Collapse
|
10
|
Saito H, Fushida S, Harada S, Miyashita T, Oyama K, Yamaguchi T, Tsukada T, Kinoshita J, Tajima H, Ninomiya I, Ohta T. Importance of human peritoneal mesothelial cells in the progression, fibrosis, and control of gastric cancer: inhibition of growth and fibrosis by tranilast. Gastric Cancer 2018; 21:55-67. [PMID: 28540637 PMCID: PMC5741788 DOI: 10.1007/s10120-017-0726-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Scirrhous gastric cancer is an intractable disease with a high incidence of peritoneal dissemination and obstructive symptoms (e.g., ileus, jaundice, and hydronephrosis) arising from accompanying marked fibrosis. Microenvironmental interactions between cancer cells and cancer-associated fibroblasts are the suggested cause of the disease. We elucidated the mechanisms of tumor growth and fibrosis using human peritoneal mesothelial cells (HPMCs) and investigated the effects of tranilast treatment on cells and a xenograft mouse model of fibrosis. METHODS HPMCs were isolated from surgically excised omentum and their interaction with MKN-45 gastric cancer cells was investigated using co-culture. Furthermore, a fibrosis tumor model was developed based on subcutaneous transplantation of co-cultured cells into the dorsal side of nude mice to form large fibrotic tumors. Mice were subsequently treated with or without tranilast. RESULTS The morphology of HPMCs treated with transforming growth factor (TGF)-β1 changed from cobblestone to spindle-type. Moreover, E-cadherin was weakly expressed whereas high levels of α-smooth muscle actin expression were observed. TGF-β-mediated epithelial-mesenchymal transition-like changes in HPMCs were inhibited in a dose-dependent manner following tranilast treatment through inhibition of Smad2 phosphorylation. In the mouse model, tumor size decreased significantly and fibrosis was inhibited in the tranilast treatment group compared with that in the control group. CONCLUSIONS Tranilast acts on the TGF-β/Smad pathway to inhibit interactions between cancer cells and cancer-associated fibroblasts, thereby inhibiting tumor growth and fibrosis. This study supports the hypothesis that tranilast represents a novel strategy to prevent fibrous tumor establishment represented by peritoneal dissemination.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
11
|
Bioactive Molecules in Edible and Medicinal Mushrooms for Human Wellness. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54528-8_83-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Sun F, Feng M, Guan W. Mechanisms of peritoneal dissemination in gastric cancer. Oncol Lett 2017; 14:6991-6998. [PMID: 29344127 DOI: 10.3892/ol.2017.7149] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Peritoneal dissemination is the most frequent metastatic pattern of gastric cancer, but the mechanisms underlying peritoneal dissemination are yet to be elucidated. Paget's 'seed and soil' hypothesis is recognized as the fundamental theory of metastasis. The 'seeding' theory proposes that the formation of peritoneal dissemination is a multistep process, including detachment from the primary tumour, transmigration and attachment to the distant peritoneum, invasion into subperitoneal tissue and proliferation with blood vascular neogenesis. In the present review, the progress of each step is discussed. Milky spots, as a lymphatic apparatus, are indicative of lymphatic orifices on the surface of the peritoneum. These stomata are open gates for peritoneal-free cancer cells to migrate into the submesothelial space. Therefore, milky spots provide suitable 'soil' for cancer cells to implant. Other theories have also been proposed to clarify the peritoneal dissemination process, including the transvessel metastasis theory, which suggests that the peritoneal metastasis of gastric cancer develops via a vascular network mediated by hypoxia inducible factor-1α.
Collapse
Affiliation(s)
- Feng Sun
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
13
|
Okazaki M, Fushida S, Harada S, Tsukada T, Kinoshita J, Oyama K, Miyashita T, Ninomiya I, Ohta T. Establishing a xenograft mouse model of peritoneal dissemination of gastric cancer with organ invasion and fibrosis. BMC Cancer 2017; 17:23. [PMID: 28056854 PMCID: PMC5217597 DOI: 10.1186/s12885-016-2991-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/13/2016] [Indexed: 01/26/2023] Open
Abstract
Background The clinical prognosis of gastric cancer with peritoneal dissemination is poor because of its chemoresistance and rich fibrosis. While several gastric cancer cell lines have been used to establish models of peritoneal dissemination by intraperitoneal injection, most peritoneal tumors that form adopt a medullary pattern in microscopic appearance. This histological finding for the model differs from that in the clinical situation. This study was performed to demonstrate the contribution of human peritoneal mesothelial cells (HPMCs) to fibrotic tumor formation and to establish a new xenograft model with high potential for peritoneal dissemination with organ invasion and extensive fibrosis. Methods We established four types of xenograft model: i) intraperitoneal injection of MKN45-P cells alone (control group), ii) injection of MKN45-P cells co-cultured with HPMCs (co-cultured group), iii) scratching the parietal peritoneum (parietal group), and iv) scratching the visceral peritoneum (visceral group) with a cotton swab before injection of co-cultured cells. Fibrosis, α-smooth muscle actin expression, and organ invasion by tumor cells were all assessed by immunohistochemical examination. Results All mice developed abdominal swelling with peritoneal tumors and bloody ascites. Tumors of the control and co-cultured groups were not invasive or fibrotic. Contrastingly, tumors of the scratch groups exhibited rich stromal fibrosis and possessed increased α-smooth muscle actin (α-SMA) expression. In particular, the visceral group showed edematous and spreading tumors invading the intestinal wall. Conclusion We established a model of peritoneal dissemination with organ invasion and stromal fibrosis. Formation of peritoneal dissemination required a favorable environment for cell adhesion, invasion, and growth. This model may be useful for analyzing the pathogenesis and treatment of peritoneal dissemination of gastric cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2991-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan.
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Ishikawa, Japan
| |
Collapse
|
14
|
Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther 2015; 15:455-64. [PMID: 25645308 DOI: 10.1517/14712598.2015.1009886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Currently, joint arthroplasty remains the only definitive management of osteoarthritis, while other treatment modalities only provide temporary and symptomatic relief. The use of genetically engineered chondrocytes is currently undergoing clinical trials. Specifically, it has been designed to induce cartilage growth and differentiation in patients with degenerative arthritis, with the aim to play a curative role in the disease process. AREAS COVERED This treatment involves the incorporation of TGF-β1, which has been determined to play an influential role in chondrogenesis and extracellular matrix synthesis. Using genetic manipulation and viral transduction, TGF-β1 is incorporated into human chondrocytes and administered in a minimally invasive fashion directly to the affected joint. Following a database literature search, we evaluated the current evidence on this product and its outcomes. Furthermore, we also briefly reviewed other treatments developed for chondrogenesis and cartilage regeneration for comparison. EXPERT OPINION This treatment method has sustained positive effects on functional outcomes and cartilage growth in initial trials. It allows administration in a minimally invasive manner that does not require extended recovery time. Although several treatment modalities are currently under investigation and appear promising, we hope that these effects can be sustained in further studies. Ultimately, we anticipate that the results may be reproducible in many clinical settings and allow us to effectively treat cartilage damage in patients with degenerative arthritis.
Collapse
Affiliation(s)
- Randa K Elmallah
- Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Center for Joint Preservation and Replacement , 2401 West Belvedere Avenue, Baltimore, MD 21215 , USA +1 410 601 8500 ; +1 410 601 8501 ; ;
| | | | | | | | | | | |
Collapse
|