1
|
Capasso L, De Masi L, Sirignano C, Maresca V, Basile A, Nebbioso A, Rigano D, Bontempo P. Epigallocatechin Gallate (EGCG): Pharmacological Properties, Biological Activities and Therapeutic Potential. Molecules 2025; 30:654. [PMID: 39942757 PMCID: PMC11821029 DOI: 10.3390/molecules30030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Epigallocatechin gallate (EGCG), the predominant catechin in green tea, comprises approximately 50% of its total polyphenol content and has garnered widespread recognition for its significant therapeutic potential. As the principal bioactive component of Camellia sinensis, EGCG is celebrated for its potent antioxidant, anti-inflammatory, cardioprotective, and antitumor properties. The bioavailability and metabolism of EGCG within the gut microbiota underscore its systemic effects, as it is absorbed in the intestine, metabolized into bioactive compounds, and transported to target organs. This compound has been shown to influence key physiological pathways, particularly those related to lipid metabolism and inflammation, offering protective effects against a variety of diseases. EGCG's ability to modulate cell signaling pathways associated with oxidative stress, apoptosis, and immune regulation highlights its multifaceted role in health promotion. Emerging evidence underscores EGCG's therapeutic potential in preventing and managing a range of chronic conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and metabolic syndromes. Given the growing prevalence of lifestyle-related diseases and the increasing interest in natural compounds, EGCG presents a promising avenue for novel therapeutic strategies. This review aims to summarize current knowledge on EGCG, emphasizing its critical role as a versatile natural bioactive agent with diverse clinical applications. Further exploration in both experimental and clinical settings is essential to fully unlock its therapeutic potential.
Collapse
Affiliation(s)
- Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and BioResources (IBBR), Via Università 133, 80055 Portici, Italy;
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Viviana Maresca
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165 Rome, Italy;
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (L.C.); (A.N.)
| |
Collapse
|
2
|
Ferrari E, Bettuzzi S, Naponelli V. The Potential of Epigallocatechin Gallate (EGCG) in Targeting Autophagy for Cancer Treatment: A Narrative Review. Int J Mol Sci 2022; 23:ijms23116075. [PMID: 35682754 PMCID: PMC9181147 DOI: 10.3390/ijms23116075] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an evolutionarily conserved process for the degradation of redundant or damaged cellular material by means of a lysosome-dependent mechanism, contributing to cell homeostasis and survival. Autophagy plays a multifaceted and context-dependent role in cancer initiation, maintenance, and progression; it has a tumor suppressive role in the absence of disease and is upregulated in cancer cells to meet their elevated metabolic demands. Autophagy represents a promising but challenging target in cancer treatment. Green tea is a widely used beverage with healthy effects on several diseases, including cancer. The bioactive compounds of green tea are mainly catechins, and epigallocatechin-gallate (EGCG) is the most abundant and biologically active among them. In this review, evidence of autophagy modulation and anti-cancer effects induced by EGCG treatment in experimental cancer models is presented. Reviewed articles reveal that EGCG promotes cytotoxic autophagy often through the inactivation of PI3K/Akt/mTOR pathway, resulting in apoptosis induction. EGCG pro-oxidant activity has been postulated to be responsible for its anti-cancer effects. In combination therapy with a chemotherapy drug, EGCG inhibits cell growth and the drug-induced pro-survival autophagy. The selected studies rightly claim EGCG as a valuable agent in cancer chemoprevention.
Collapse
|
3
|
Kumazoe M, Fujimura Y, Yoshitomi R, Shimada Y, Tachibana H. Fustin, a Flavanonol, Synergically Potentiates the Anticancer Effect of Green Tea Catechin Epigallocatechin-3- O-Gallate with Activation of the eNOS/cGMP Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3458-3466. [PMID: 35212538 DOI: 10.1021/acs.jafc.1c07567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG), a catechin present in green tea, selectively elicits apoptosis in multiple myeloma cells by activating the endothelial nitric oxide synthase (eNOS)/cyclic guanosine monophosphate (cGMP) axis. However, the effects of EGCG alone are limited. Herein, we revealed that fustin, a flavanonol, enhances the EGCG-elicited activation of the cGMP/eNOS axis in multiple myeloma cells. Isobologram analysis demonstrated that EGCG/fustin synergistically elicited cell death in multiple myeloma cells. Importantly, this chemical combination significantly promoted cell death without affecting the normal cells. To assess the effects of EGCG and fustin in vivo, female BALB/c mice were inoculated with multiple myeloma MPC11 cells and then treated with each compound. The combination of EGCG/fustin suppressed tumor growth in vivo without affecting alanine aminotransferase/aspartate aminotransferase levels, the dose-limiting toxicity of EGCG. Consistent with in vitro findings, this combination increased eNOS phosphorylation at Ser1177 in the tumor. Collectively, fustin amplified EGCG-induced activation of the eNOS/cGMP axis.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Alam M, Ali S, Ashraf GM, Bilgrami AL, Yadav DK, Hassan MI. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem 2022; 379:132135. [PMID: 35063850 DOI: 10.1016/j.foodchem.2022.132135] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022]
Abstract
Epigallocatechin 3-gallate (EGCG) possesses various biological functions, including anti-cancer and anti-inflammatory properties. EGCG is an abundant polyphenolic component originating from green tea extract that has exhibited versatile bioactivities in combating several cancers. This review highlights the pharmacological features of EGCG and its therapeutic implications in cancer and other metabolic diseases. It modulates numerous signaling pathways, regulating cells' undesired survival and proliferation, thus imparting strong tumor chemopreventive and therapeutic effects. EGCG initiates cell death through the intrinsic pathway and causes inhibition of EGFR, STAT3, and ERK pathways in several cancers. EGCG alters and inhibits ERK1/2, NF-κB, and Akt-mediated signaling, altering the Bcl-2 family proteins ratio and activating caspases in tumor cells. This review focuses on anti-cancer, anti-oxidant, anti-inflammatory, anti-angiogenesis, and apoptotic effects of EGCG. We further highlighted the potential of EGCG in different types of cancer, emphasizing clinical trials formulations that further improve our understanding of the therapeutic management of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Kumazoe M, Takamatsu K, Horie F, Yoshitomi R, Hamagami H, Tanaka H, Fujimura Y, Tachibana H. Methylated (-)-epigallocatechin 3-O-gallate potentiates the effect of split vaccine accompanied with upregulation of Toll-like receptor 5. Sci Rep 2021; 11:23101. [PMID: 34845235 PMCID: PMC8630126 DOI: 10.1038/s41598-021-02346-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Split-virus vaccine serves as a major countermeasure against influenza virus, but its effectiveness and protective action are not complete. We previously demonstrated the effect of Benifuuki, a green tea cultivar in Japan, on enhancing the split-virus vaccine-elicited immune response. However, little is known about the detail mechanisms. Here, we show that EGCG3"Me intake significantly potentiated the vaccine-elicited hemagglutination inhibition titer increase. Flow cytometry analysis revealed the increased Toll-like receptor 5 (TLR5) expression after EGCG3"Me treatment in lamina propria dendritic cells (LPDCs) and macrophages, which play crucial roles in the humoral immune system. TLR5 expression correlated with the level of interleukin-6 (IL-6)/C-C chemokine type receptor 5, which are important mediators of the humoral immunity. Taken together, In vivo and ex vivo studies showed that EGCG3"Me potentiated the split-virus vaccine-elicited immune response accompanied with the upregulation of TLR5 in intestine and splenocyte macrophages.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kanako Takamatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuyumi Horie
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroki Hamagami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Hiroshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8552, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
6
|
Glucosyl-hesperidin enhances the cyclic guanosine monophosphate-inducing effect of a green tea polyphenol EGCG. J Nat Med 2021; 75:1037-1042. [PMID: 34100197 DOI: 10.1007/s11418-021-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Animal and clinical studies have revealed that (-)-epigallocatechin-3-O-gallate (EGCG), one of the major bioactive polyphenols in green tea, showed several pharmacological effects including anti-obesity effect and anti-inflammatory effect. We previously reported that the second messenger cyclic guanosine monophosphate (cGMP) mediates its anti-inflammatory and anti-cancer properties. Here we demonstrated that glucosyl-hesperidin, enhances the cGMP-inducing effects of green tea extract in vivo. Moreover, glucosyl-hesperidin intake potentiated the green tea-elicited upregulation of the anti-inflammatory factor, toll-interacting protein.
Collapse
|
7
|
The Anti-Leukemic Activity of Natural Compounds. Molecules 2021; 26:molecules26092709. [PMID: 34063044 PMCID: PMC8124534 DOI: 10.3390/molecules26092709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
The use of biologically active compounds has become a realistic option for the treatment of malignant tumors due to their cost-effectiveness and safety. In this review, we aimed to highlight the main natural biocompounds that target leukemic cells, assessed by in vitro and in vivo experiments or clinical studies, in order to explore their therapeutic potential in the treatment of leukemia: acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), and chronic lymphocytic leukemia (CLL). It provides a basis for researchers and hematologists in improving basic and clinical research on the development of new alternative therapies in the fight against leukemia, a harmful hematological cancer and the leading cause of death among patients.
Collapse
|
8
|
Kumazoe M, Kadomatsu M, Bae J, Otsuka Y, Fujimura Y, Tachibana H. Src Mediates Epigallocatechin-3- O-Gallate-Elicited Acid Sphingomyelinase Activation. Molecules 2020; 25:molecules25225481. [PMID: 33238540 PMCID: PMC7700551 DOI: 10.3390/molecules25225481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Epigallocatechin-3-O-gallate (EGCG) is one of the major bioactive compounds known to be present in green tea. We previously reported that EGCG shows selective toxicity through activation of the protein kinase B (Akt)/cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase (ASM) axis via targeting its receptor 67-kDa laminin receptor (67LR), which is overexpressed in cancer. However, little is known about upstream mechanisms of EGCG-elicited ASM activation. In this study we show that the proto-oncogene tyrosine-protein kinase Src, also known as c-src, plays a crucial role in the anticancer effect of EGCG. We showed that EGCG elicits phosphorylation of Src at Tyr 416, a crucial phosphorylation site for its activity, and that the pharmacological inhibition of Src impedes the upstream events in EGCG-induced cell death signaling including upregulation of Akt activity, increase in cGMP levels, and activation of ASM. Moreover, focal adhesion kinase (FAK), which is involved in the phosphorylation of Src, is colocalized with 67LR. EGCG treatment enhanced interaction of FAK and 67LR. Consistent with these findings, pharmacological inhibition of FAK significantly neutralized EGCG-induced upregulation of Akt activity and activation of ASM. Taken together, FAK/Src play crucial roles in the upstream signaling of EGCG.
Collapse
|
9
|
Wang R, Zhu W, Peng J, Li K, Li C. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Crit Rev Food Sci Nutr 2020; 62:311-324. [PMID: 32951435 DOI: 10.1080/10408398.2020.1815171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Polyphenols have attracted a lot of global attention due to their diverse biological actions against cancer, obesity, and cardiovascular diseases. Although extensive research has been carried out to elucidate the mechanisms of pleiotropic actions of polyphenols, this remains unclear. Lipid rafts are distinct nanodomains enriched in cholesterol and sphingolipids, present in the inner and outer leaflets of cell membranes, forming functional platforms for the regulation of cellular processes and diseases. Recent studies focusing on the interaction between polyphenols and cellular lipid rafts shed new light on the pleiotropic actions of polyphenols. Polyphenols are postulated to interact with lipid rafts in two ways: first, they interfere with the structural integrity of lipid rafts, by disrupting their structure and clustering of the ordered domains; second, they modulate the downstream signaling pathways mediated by lipid rafts, by binding to receptor proteins associated with lipid rafts, such as the 67 kDa laminin receptor (67LR), epidermal growth factor receptor (EGFR), and others. This study aims to elaborate the mechanism of interaction between polyphenols and lipid rafts, and describe pleiotropic preventive effects of polyphenols.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinming Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Ministry of Education, Wuhan, China
| |
Collapse
|
10
|
Preta G. New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Dev Biol 2020; 8:571237. [PMID: 32984352 PMCID: PMC7492565 DOI: 10.3389/fcell.2020.571237] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Modulation of membrane lipid composition and organization is currently developing as an effective therapeutic strategy against a wide range of diseases, including cancer. This field, known as membrane-lipid therapy, has risen from new discoveries on the complex organization of lipids and between lipids and proteins in the plasma membranes. Membrane microdomains present in the membrane of all eukaryotic cells, known as lipid rafts, have been recognized as an important concentrating platform for protein receptors involved in the regulation of intracellular signaling, apoptosis, redox balance and immune response. The difference in lipid composition between the cellular membranes of healthy cells and tumor cells allows for the development of novel therapies based on targeting membrane lipids in cancer cells to increase sensitivity to chemotherapeutic agents and consequently defeat multidrug resistance. In the current manuscript strategies based on influencing cholesterol/sphingolipids content will be presented together with innovative ones, more focused in changing biophysical properties of the membrane bilayer without affecting the composition of its constituents.
Collapse
Affiliation(s)
- Giulio Preta
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Kumazoe M, Fujimura Y, Tachibana H. 67-kDa Laminin Receptor Mediates the Beneficial Effects of Green Tea Polyphenol EGCG. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40495-020-00228-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Antiepithelial-Mesenchymal Transition of Herbal Active Substance in Tumor Cells via Different Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9253745. [PMID: 32377312 PMCID: PMC7183534 DOI: 10.1155/2020/9253745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a biological process through which epithelial cells differentiate into mesenchymal cells. EMT plays an important role in embryonic development and wound healing; however, EMT also contributes to some pathological processes, such as tumor metastasis and fibrosis. EMT mechanisms, including gene mutation and transcription factor regulation, are complicated and not yet well understood. In this review, we introduce some herbal active substances that exert antitumor activity through inhibiting EMT that is induced by hypoxia, high blood glucose level, lipopolysaccharide, or other factors.
Collapse
|
13
|
Kumazoe M, Hiroi S, Tanimoto Y, Miyakawa J, Yamanouchi M, Suemasu Y, Yoshitomi R, Murata M, Fujimura Y, Takahashi T, Tanaka H, Tachibana H. Cancer cell selective probe by mimicking EGCG. Biochem Biophys Res Commun 2020; 525:974-981. [DOI: 10.1016/j.bbrc.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/28/2023]
|
14
|
Bae J, Kumazoe M, Murata K, Fujimura Y, Tachibana H. Procyanidin C1 Inhibits Melanoma Cell Growth by Activating 67-kDa Laminin Receptor Signaling. Mol Nutr Food Res 2020; 64:e1900986. [PMID: 32103628 DOI: 10.1002/mnfr.201900986] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Indexed: 12/11/2022]
Abstract
SCOPE Procyanidin C1 (PC1) is an epicatechin trimer found mainly in grapes that is reported to provide several health benefits. However, little is known about the molecular mechanisms underlying these benefits. The aim of this study is to demonstrate the molecular mechanisms by which PC1 operates. METHODS AND RESULTS A 67-kDa laminin receptor (67LR) is identified as a cell surface receptor of PC1, with a Kd value of 2.8 µm. PC1 induces an inhibitory effect on growth, accompanied by dephosphorylation of the C-kinase potentiated protein phosphatase-1 inhibitor protein of 17 kDa (CPI17) and myosin regulatory light chain (MRLC) proteins, followed by actin cytoskeleton remodeling in melanoma cells. These actions are mediated by protein kinase A (PKA) and protein phosphatase 2A (PP2A) activation once PC1 is bound to 67LR. CONCLUSION It is demonstrated that PC1 elicits melanoma cell growth inhibition by activating the 67LR/PKA/PP2A/CPI17/MRLC pathway.
Collapse
Affiliation(s)
- Jaehoon Bae
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kyosuke Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Molecular Targets of Epigallocatechin-Gallate (EGCG): A Special Focus on Signal Transduction and Cancer. Nutrients 2018; 10:nu10121936. [PMID: 30563268 PMCID: PMC6315581 DOI: 10.3390/nu10121936] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Green tea is a beverage that is widely consumed worldwide and is believed to exert effects on different diseases, including cancer. The major components of green tea are catechins, a family of polyphenols. Among them, epigallocatechin-gallate (EGCG) is the most abundant and biologically active. EGCG is widely studied for its anti-cancer properties. However, the cellular and molecular mechanisms explaining its action have not been completely understood, yet. EGCG is effective in vivo at micromolar concentrations, suggesting that its action is mediated by interaction with specific targets that are involved in the regulation of crucial steps of cell proliferation, survival, and metastatic spread. Recently, several proteins have been identified as EGCG direct interactors. Among them, the trans-membrane receptor 67LR has been identified as a high affinity EGCG receptor. 67LR is a master regulator of many pathways affecting cell proliferation or apoptosis, also regulating cancer stem cells (CSCs) activity. EGCG was also found to be interacting directly with Pin1, TGFR-II, and metalloproteinases (MMPs) (mainly MMP2 and MMP9), which respectively regulate EGCG-dependent inhibition of NF-kB, epithelial-mesenchimal transaction (EMT) and cellular invasion. EGCG interacts with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which modulates epigenetic changes. The bulk of this novel knowledge provides information about the mechanisms of action of EGCG and may explain its onco-suppressive function. The identification of crucial signalling pathways that are related to cancer onset and progression whose master regulators interacts with EGCG may disclose intriguing pharmacological targets, and eventually lead to novel combined treatments in which EGCG acts synergistically with known drugs.
Collapse
|
16
|
Sugiyama I, Kaihatsu K, Soma Y, Kato N, Sadzuka Y. Dual-effect liposomes with increased antitumor effects against 67-kDa laminin receptor-overexpressing tumor cells. Int J Pharm 2018; 541:206-213. [DOI: 10.1016/j.ijpharm.2018.02.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 12/01/2022]
|
17
|
Rashidi B, Malekzadeh M. Evaluation of Endometrial Angiogenesis in Mice Uterus Before Implantation in Natural Cycles Followed by Use of Human Menopausal Gonadotropin - Human Chorionic Gonadotropin Drugs and Epigallocatechin Gallate. Adv Biomed Res 2017; 6:138. [PMID: 29279836 PMCID: PMC5698980 DOI: 10.4103/2277-9175.218029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Angiogenesis plays a major role in endometrial receptivity and thickening of the endometrium immediately before implantation. The aim of the present work was to evaluate the antiangiogenic properties of epigallocatechin-3-gallate (EGCG) from green tea in angiogenesis of endometrium. Materials and Methods: In this study, forty adult female NMARI mice randomly divided into four groups. Control group received vehicle; human menopausal gonadotropin/human chorionic gonadotropin (HMG/HCG) group received 7.5 IU HMG intraperitoneal (IP) and 48 h later 7.5 IU HCG was injected (IP) for ovarian stimulation; HMG/HCG + EGCG group received HMG and HCG in the same manner as the previous group and also received 5 mg/kg EGCG at 0, 24, 48, and 72 h after injection of HMG; and the group EGCG received 5 mg/kg EGCG. A male mouse was kept with two female animals in the same cage for mating. Mice were dissected 96 h after administration of HMG (immediately before implantation) and tissue processing was carried out for the uterine specimens. CD31-positive cells were counted by use of histological and immunohistochemical methods. Results: Angiogenesis in EGCG-treated group was less than that of control and gonadotropin group (P < 0.05). The number of endothelial cells was counted by CD31 marker under a light microscope and showed significant differences between all groups (P < 0.05). Conclusion: EGCG significantly inhibited the angiogenesis in endometrium (in natural cycles) through antiangiogenic effects.
Collapse
Affiliation(s)
- Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Yao S, Zhong L, Chen M, Zhao Y, Li L, Liu L, Xu T, Xiao C, Gan L, Shan Z, Liu B. Epigallocatechin-3-gallate promotes all-trans retinoic acid-induced maturation of acute promyelocytic leukemia cells via PTEN. Int J Oncol 2017; 51:899-906. [PMID: 28766684 DOI: 10.3892/ijo.2017.4086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia (AML) in which the hybrid protein promyelocytic leukemia protein/retinoic acid receptor α (PML/RARα) acts as a transcriptional repressor impairing the expression of genes that are critical to myeloid cell mutation. We aimed at explaining the molecular mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) enhancement of ATRA-induced APL cell line differentiation. Tumor suppressor phosphatase and tensin homolog (PTEN) was found downregulated in NB4 cells and rescued by proteases inhibitor MG132. A significant increase of PTEN levels was found in NB4, HL-60 and THP-1 cells upon ATRA combined with EGCG treatment, paralleled by increased myeloid differentiation marker CD11b. EGCG in synergy with ATRA promote degradation of PML/RARα and restores PML expression, and increase the level of nuclear PTEN. Pretreatment of PTEN inhibitor SF1670 enhances the PI3K signaling pathway and represses NB4 cell differentiation. Moreover, the induction of PTEN attenuated the Akt phosphorylation levels, pretreatment of PI3K inhibitor LY294002 in NB4 cells, significantly augmented the cell differentiation and increased the expression of PTEN. These results therefore indicate that EGCG targets PML/RARα oncoprotein for degradation and potentiates differentiation of promyelocytic leukemia cells in combination with ATRA via PTEN.
Collapse
Affiliation(s)
- Shifei Yao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Min Chen
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Yi Zhao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lianwen Li
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lu Liu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Xu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Chunlan Xiao
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Liugen Gan
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zhiling Shan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Beizhong Liu
- Central Laboratory of Yong-Chuan Hospital, Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
19
|
Hydrogen sulphide donors selectively potentiate a green tea polyphenol EGCG-induced apoptosis of multiple myeloma cells. Sci Rep 2017; 7:6665. [PMID: 28751723 PMCID: PMC5532223 DOI: 10.1038/s41598-017-06879-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/20/2017] [Indexed: 01/03/2023] Open
Abstract
Hydrogen sulphide (H2S) is a colourless gas with the odour of rotten eggs and has recently been recognized as a signal mediator in physiological activities related with the regulation of homeostasis, the vascular system and the inflammatory system. Here we show that H2S donors, including sodium hydrogen sulphide (NaHS), GYY 4137 and diallyltrisulfide (DATS), synergistically enhanced the anti-cancer effect of a green tea polyphenol (−)-epigallocatechin-3-O-gallate (EGCG) against multiple myeloma cells without affecting normal cells. NaHS significantly potentiated the anti-cancer effect of EGCG and prolonged survival in a mouse xenograft model. In this mechanism, H2S enhanced apoptotic cell death through cyclic guanosine monophosphate (cGMP)/acid sphingomyelinase pathway induced by EGCG. Moreover, NaHS reduced the enzyme activity of cyclic nucleotide phosphodiesterase that is known as cGMP negative regulator. In conclusion, we identified H2S as a gasotransmitter that potentiates EGCG-induced cancer cell death.
Collapse
|
20
|
Transcriptome analysis reveals a role for the endothelial ANP-GC-A signaling in interfering with pre-metastatic niche formation by solid cancers. Oncotarget 2017; 8:65534-65547. [PMID: 29029451 PMCID: PMC5630351 DOI: 10.18632/oncotarget.18032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer establishes a microenvironment called the pre-metastatic niche in distant organs where disseminated cancer cells can efficiently metastasize. Pre-metastatic niche formation requires various genetic factors. Previous studies suggest that inhibiting a single niche-factor is insufficient to completely block pre-metastatic niche formation especially in human patients. Here we show that the atrial natriuretic peptide (ANP), an endogenous hormone produced by the heart, inhibits pre-metastatic niche formation and metastasis of murine solid cancer models when pharmacologically supplied in vivo. On the basis of a wealth of comprehensive RNA-seq data, we demonstrated that ANP globally suppressed expression of cancer-induced genes including known niche-factors in the lung. The lungs of mice overexpressing GC-A, a receptor for ANP in endothelial cells, were conferred resistance against pre-metastatic niche formation. Importantly, neither ANP administration nor GC-A overexpression had a detrimental effect on lung gene expression in a cancer-free condition. The current study establishes endothelial ANP-GC-A signaling as a therapeutic target to control the pre-metastatic niche.
Collapse
|
21
|
Montuori N, Pesapane A, Giudice V, Serio B, Rossi FW, De Paulis A, Selleri C. 67 kDa laminin receptor (67LR) in normal and neoplastic hematopoietic cells: is its targeting a feasible approach? Transl Med UniSa 2016; 15:8-14. [PMID: 27896222 PMCID: PMC5120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The 67 kDa laminin receptor (67LR) is a non-integrin cell surface receptor for laminin (LM) that derives from a 37 kDa precursor (37LRP). 67LR expression is increased in neoplastic cells and correlates with an enhanced invasive and metastatic potentialin many human solid tumors, recommending this receptor as a new promising target for cancer therapy. This is supported by in vivo studies showing that 67LR downregulation reduces tumour cell proliferation and tumour formation by inducing apoptosis. 67LR association with the anti-apoptotic protein PED/PEA-15 activates a signal transduction pathway, leading to cell proliferation and resistance to apoptosis. However, the main function of 67LR is to enhance tumor cell adhesion to the LM of basement membranes and cell migration, two crucial events in the metastasis cascade. Thus, inhibition of 67LR binding to LM has been proved to be a feasible approach to block metastatic cancer cell spread. Despite accumulating evidences on 67LR overexpression in hematologic malignancies, 67LR role in these diseases has not been clearly defined. Here, we review 67LR expression and function in normal and malignant hematopoietic cells, 67LR role and prognostic impact in hematological malignancies and first attempts in targeting its activity.
Collapse
Affiliation(s)
- Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy,()
| | - Ada Pesapane
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Giudice
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Bianca Serio
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Francesca W Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmine Selleri
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| |
Collapse
|
22
|
Tsukamoto S, Kumazoe M, Huang Y, Lesnick C, Kay NE, Shanafelt TD, Tachibana H. SphK1 inhibitor potentiates the anti-cancer effect of EGCG on leukaemia cells. Br J Haematol 2016; 178:155-158. [DOI: 10.1111/bjh.14119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shuntaro Tsukamoto
- Division of Applied Biological Chemistry; Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry; Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | - Yuhui Huang
- Division of Applied Biological Chemistry; Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; Fukuoka Japan
| | | | - Neil E. Kay
- Department of Medicine; Mayo Clinic; Rochester MN USA
| | | | - Hirofumi Tachibana
- Division of Applied Biological Chemistry; Department of Bioscience and Biotechnology; Faculty of Agriculture; Kyushu University; Fukuoka Japan
| |
Collapse
|
23
|
Kim YH, Won YS, Yang X, Kumazoe M, Yamashita S, Hara A, Takagaki A, Goto K, Nanjo F, Tachibana H. Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3591-3597. [PMID: 27112424 DOI: 10.1021/acs.jafc.6b01115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tea catechins, such as (-)-epigallocatechin-3-O-gallate (EGCG), have been shown to effectively enhance immune activity and prevent cancer, although the underlying mechanism is unclear. Green tea catechins are instead converted to catechin metabolites in the intestine. Here, we show that these green tea catechin metabolites enhance CD4(+) T cell activity as well as natural killer (NK) cell activity. Our data suggest that the absence of a 4'-hydroxyl on this phenyl group (B ring) is important for the effect on immune activity. In particular, 5-(3',5'-dihydroxyphenyl)-γ-valerolactone (EGC-M5), a major metabolite of EGCG, not only increased the activity of CD4(+) T cells but also enhanced the cytotoxic activity of NK cells in vivo. These data suggest that EGC-M5 might show immunostimulatory activity.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
- Department of Food and Nutrition, College of Engineering, Daegu University , Gyeongsan 712-714, Korea
| | - Yeong-Seon Won
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Xue Yang
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| | - Aya Hara
- Food Research Laboratories, Mitsui Norin Company, Limited , 223-1 Miyabara, Fujieda-shi, Shizuoka 426-0133, Japan
| | - Akiko Takagaki
- Food Research Laboratories, Mitsui Norin Company, Limited , 223-1 Miyabara, Fujieda-shi, Shizuoka 426-0133, Japan
| | - Keiichi Goto
- Food Research Laboratories, Mitsui Norin Company, Limited , 223-1 Miyabara, Fujieda-shi, Shizuoka 426-0133, Japan
| | - Fumio Nanjo
- Food Research Laboratories, Mitsui Norin Company, Limited , 223-1 Miyabara, Fujieda-shi, Shizuoka 426-0133, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan
| |
Collapse
|