1
|
Lin Z, Liang F, Hong G, Jiang X, Zhang Q, Wang M. TACC3 enhances glycolysis in bladder cancer cells through inducing acetylation of c-Myc. Cell Death Dis 2025; 16:311. [PMID: 40246827 PMCID: PMC12006502 DOI: 10.1038/s41419-025-07645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
The proliferation of bladder cancer (BC) cells is driven by metabolic reprogramming, marked by a glycolytic dependency to sustain uncontrolled growth. While Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) is known to promote BC progression and correlate with poor prognosis, the mechanisms underlying its upregulation and role in aerobic glycolysis remain unclear. Here, we identify E2F3 as a direct transcriptional activator of TACC3, with its amplification in BC driving elevated TACC3 expression. TACC3 overexpression enhances glycolysis, increasing glucose consumption, lactate production, and expression of glycolytic enzymes (e.g., GLUT1, HK2, PFKFB3), while its knockdown suppresses these effects. Pharmacological inhibition of glycolysis abrogates TACC3-driven tumor growth in vitro and in vivo. Mechanistically, TACC3 interacts with c-Myc, promoting its acetylation at lysine 323 (K323) by recruiting the acetyltransferase PCAF and antagonizing the deacetylase SIRT1. This acetylation stabilizes c-Myc, amplifying its transcriptional activation of glycolytic targets. Our findings establish TACC3 as a critical regulator of c-Myc-driven metabolic reprogramming in BC, highlighting its potential as a therapeutic target to disrupt glycolysis and oncogenic c-Myc signaling.
Collapse
Affiliation(s)
- Zhirui Lin
- Institute of Medical Research, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Falian Liang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Gengde Hong
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Xizhen Jiang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Mengyao Wang
- Radiation Oncology Department, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510245, Guangdong Province, People's Republic of China.
| |
Collapse
|
2
|
Bai W, Zhao X, Ning Q. Development and validation of a radiomic prediction model for TACC3 expression and prognosis in non-small cell lung cancer using contrast-enhanced CT imaging. Transl Oncol 2025; 51:102211. [PMID: 39603208 PMCID: PMC11635781 DOI: 10.1016/j.tranon.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUNDS Non-small cell lung cancer (NSCLC) prognosis remains poor despite treatment advances, and classical prognostic indicators often fall short in precision medicine. Transforming acidic coiled-coil protein-3 (TACC3) has been identified as a critical factor in tumor progression and immune infiltration across cancers, including NSCLC. Predicting TACC3 expression through radiomic features may provide valuable insights into tumor biology and aid clinical decision-making. However, its predictive value in NSCLC remains unexplored. Therefore, we aimed to construct and validate a radiomic model to predict TACC3 levels and prognosis in patients with NSCLC. MATERIALS AND METHODS Genomic data and contrast-enhanced computed tomography (CT) images were sourced from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) database, and The Cancer Imaging Archive (TCIA). A total of 320 cases of lung adenocarcinoma from TCGA and 122 cases of NSCLC from GEO were used for prognostic analysis. Sixty-three cases from TCIA and GEO were included for radiomics feature extraction and model development. The radiomics model was constructed using logistic regression (LR) and support vector machine (SVM) algorithms. We predicted TACC3 expression and evaluated its correlation with NSCLC prognosis using contrast-enhanced CT-based radiomics. RESULTS TACC3 expression significantly influenced NSCLC prognosis. High TACC3 levels were associated with reduced overall survival, potentially mediated by immune microenvironment and tumor progression regulation. LR and SVM algorithms achieved AUC of 0.719 and 0.724, respectively, which remained at 0.701 and 0.717 after five-fold cross-validation. CONCLUSION Contrast-enhanced CT-based radiomics can non-invasively predict TACC3 expression and provide valuable prognostic information, contributing to personalized treatment strategies.
Collapse
Affiliation(s)
- Weichao Bai
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
3
|
Gedik ME, Saatci O, Oberholtzer N, Uner M, Akbulut Caliskan O, Cetin M, Aras M, Ibis K, Caliskan B, Banoglu E, Wiemann S, Üner A, Aksoy S, Mehrotra S, Sahin O. Targeting TACC3 Induces Immunogenic Cell Death and Enhances T-DM1 Response in HER2-Positive Breast Cancer. Cancer Res 2024; 84:1475-1490. [PMID: 38319231 PMCID: PMC11063689 DOI: 10.1158/0008-5472.can-23-2812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.
Collapse
Affiliation(s)
- Mustafa Emre Gedik
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Nathaniel Oberholtzer
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Mertkaya Aras
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| | - Kubra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Burcu Caliskan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), INF580, Heidelberg, Germany
| | - Ayşegül Üner
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Shikhar Mehrotra
- Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
4
|
Saatci O, Sahin O. TACC3: a multi-functional protein promoting cancer cell survival and aggressiveness. Cell Cycle 2023; 22:2637-2655. [PMID: 38197196 PMCID: PMC10936615 DOI: 10.1080/15384101.2024.2302243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
TACC3 is the most oncogenic member of the transforming acidic coiled-coil domain-containing protein (TACC) family. It is one of the major recruitment factors of distinct multi-protein complexes. TACC3 is localized to spindles, centrosomes, and nucleus, and regulates key oncogenic processes, including cell proliferation, migration, invasion, and stemness. Recently, TACC3 inhibition has been identified as a vulnerability in highly aggressive cancers, such as cancers with centrosome amplification (CA). TACC3 has spatiotemporal functions throughout the cell cycle; therefore, targeting TACC3 causes cell death in mitosis and interphase in cancer cells with CA. In the clinics, TACC3 is highly expressed and associated with worse survival in multiple cancers. Furthermore, TACC3 is a part of one of the most common fusions of FGFR, FGFR3-TACC3 and is important for the oncogenicity of the fusion. A detailed understanding of the regulation of TACC3 expression, its key partners, and molecular functions in cancer cells is vital for uncovering the most vulnerable tumors and maximizing the therapeutic potential of targeting this highly oncogenic protein. In this review, we summarize the established and emerging interactors and spatiotemporal functions of TACC3 in cancer cells, discuss the potential of TACC3 as a biomarker in cancer, and therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Matsuda K, Sugita Y, Furuta T, Moritsubo M, Ohshima K, Morioka M, Takahashi K, Higaki K, Kakita A. Elevated expression of transforming acidic coiled-coil-containing protein 3 (TACC3) reflects aggressiveness of primary central nervous system lymphomas. Pathol Int 2022; 72:437-443. [PMID: 35959857 DOI: 10.1111/pin.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
Transforming acidic coiled-coil-containing protein 3 (TACC3) plays an important role in centrosome/microtubule dynamics. Deregulation of centrosomes/microtubules causes mitotic spindle defects, leading to tumorigenesis. However, the correlation between TACC3 and primary central nervous system lymphomas (PCNSLs) is unknown. The present study investigated the association between the immunohistochemical expression of TACC3, p53, and Ki-67, and the clinical factors in 40 PCNSLs. We evaluated the staining of TACC3 based on the histoscore (H-score) that contains a semiquantitative evaluation of both the intensity of staining, and the percentage of positive cells. Expression level of each component was classified as low or high according to the median H-score value. Patients with PCNSLs were divided into groups depending on TACC3 expression levels (no expression and low expression, 18; high expression, 22). Disease-free survival and overall survival of patients with high TACC3 expression were significantly shorter (p < 0.01 and p < 0.05, respectively). These results suggest that elevated expression of TACC3 could reflects aggressiveness of primary central nervous system lymphomas.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan.,Department of Neuropathology, Neurology Center, St. Mary's Hospital, Kurume, Fukuoka, Japan
| | - Takuya Furuta
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Mayuko Moritsubo
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kenji Takahashi
- Department of Neurosurgery, St. Mary's Hospital, Kurume, Fukuoka, Japan
| | - Koichi Higaki
- Department of Pathology, St. Mary's Hospital, Kurume, Fukuoka, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Fukuoka, Japan
| |
Collapse
|
6
|
Wen YL, Yan SM, Wei W, Yang X, Zhang SW, Yun JP, Liu LL, Luo RZ. Transforming acidic coiled-coil protein-3: a novel marker for differential diagnosis and prognosis prediction in endocervical adenocarcinoma. Mol Med 2021; 27:60. [PMID: 34134633 PMCID: PMC8210387 DOI: 10.1186/s10020-021-00298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background Endocervical adenocarcinoma (ECA) is further classified as human papillomavirus (HPV)-associated (HPVA) or non-HPVA (NHPVA), per the International Endocervical Adenocarcinoma Criteria and Classification (IECC). HPVA is a glandular tumor with stromal invasion and/or exophytic expansile-type invasion, associated with the typical molecular characteristics of high-risk HPV (HR-HPV) infection. Transforming acidic coiled-coil protein-3 (TACC3),an oncogene that is frequently abnormally expressed,represents a vital biomarker for multiple human malignancies. This study aimed to examine the role of TACC3 in the diagnosis and prognosis of ECA. Methods We analyzed 264 patients with ECA who underwent surgical resection, classifying their tumors into HPVA and NHPVA subtypes. The expression levels of TACC3, P16, MLH1, PMS2, MSH2, MSH6 and Ki-67 in tumors were evaluated by tissue microarray using immunohistochemistry (IHC). HPV subtypes were identified in formalin-fixed paraffin-embedded (FFPE) ECA tissues by the polymerase chain reaction (PCR). Results ECA samples showed increased TACC3 expression relative to adjacent non-carcinoma samples. TACC3 expression was higher in HPVA than in NHPA. In the HPVA subtype, high TACC3 expression was significantly correlated with P16-positive, Ki-67-high expression. Furthermore, TACC3 levels were significantly related to tumor histological type (P = 0.006), nerve invasion (P = 0.003), differentiation (P = 0.004), surgical margin (P = 0.012), parametrium invasion (P = 0.040), P16 expression (P < 0.001), and Ki-67 (P = 0.004). Additionally, Kaplan–Meier analysis showed that TACC3 upregulation was associated with poor overall survival (OS, P = 0.001), disease-free survival (DFS, P < 0.001), and recurrence survival (P < 0.001). Multivariate analysis indicated that elevated TACC3 expression served as a marker to independently predict ECA prognosis. ROC curve analyses indicated that TACC3, P16, and HPV subtypes showed similar utility for distinguishing HPVA from NHPVA, with areas under the ROC curves of 0.640, 0.649, and 0.675, respectively. The combination of TACC3 and HPV subtypes improved the diagnostic performance of ECA compared with TACC3, P16, and HPV subtypes alone. Conclusions Taken together, our findings identify that TACC3 is a promising complementary biomarker for diagnosis and prognosis for patients with ECA. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00298-z.
Collapse
Affiliation(s)
- Yan-Lin Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shu-Mei Yan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Wei Wei
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Gynecological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xia Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Shi-Wen Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Jing-Ping Yun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China
| | - Li-Li Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| | - Rong-Zhen Luo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
7
|
Xing GQ, Yun T, Zhao GG. Relationship of TACC3 gene expression with prognosis in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:577-584. [DOI: 10.11569/wcjd.v29.i11.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transforming acidic coiled coil protein 3 (TACC3) is an important member of the TACC family. Studies have shown that TACC3 gene is highly expressed in breast cancer, non-small cell lung cancer, and gastric cancer, and is associated with poor prognosis. However, its expression in liver cancer and its relationship with prognosis are rarely reported.
AIM To explore the clinical significance of TACC3 gene expression in liver cancer.
METHODS The expression of TACC3 gene in normal human tissues, liver cancer tissues, and liver cancer cell lines was mined by searching databases including BioGPS, Oncomine, and Cancer Cell Line Encyclopedia (CCLE), respectively. Kaplan-Meier plotter and GEPIA were used to analyze the effect of TACC3 gene expression on the prognosis of liver cancer patients.
RESULTS BioGPS database analysis showed that TACC3 gene was expressed in all normal tissues and TACC3 gene expression in the liver was slightly higher than that in other normal tissues (median expression value, 8.95 vs 7.1). A total of 290 studies on TACC3 gene were retrieved from Oncomine database, showing four studies with high expression and one with low expression of TACC3 gene in liver cancer tissues. Meta-analysis showed that TACC3 gene was highly expressed in liver cancer tissues compared with normal liver tissues (Median rank = 442.5, P < 0.05). CCLE database analysis showed that TACC3 mRNA was highly expressed in liver cancer cell lines. The survival analysis results by Kaplan-Meier plotter based on the GEPIA database showed that the overall survival time (OS) and progression-free survival time (PFS) of liver cancer patients in the TACC3 high expression group were worse than those of the low expression group (P < 0.05).
CONCLUSION TACC3 gene is highly expressed in liver cancer tissues. And the high expression of TACC3 gene is associated with poor survival prognosis in liver cancer patients.
Collapse
Affiliation(s)
- Guo-Qiang Xing
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Tao Yun
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| | - Guo-Gang Zhao
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin 300450, China
| |
Collapse
|
8
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Caignard G, Vitour D, Richardson J, Lacour S, Attoui H, Bell-Sakyi L, Allain E, Nijhof AM, Militzer N, Pinecki Socias S, de la Fuente J. Tick Importin-α Is Implicated in the Interactome and Regulome of the Cofactor Subolesin. Pathogens 2021; 10:457. [PMID: 33920361 PMCID: PMC8069720 DOI: 10.3390/pathogens10040457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ticks and tick-borne diseases (TBDs) represent a burden for human and animal health worldwide. Currently, vaccines constitute the safest and most effective approach to control ticks and TBDs. Subolesin (SUB) has been identified as a vaccine antigen for the control of tick infestations and pathogen infection and transmission. The characterization of the molecular function of SUB and the identification of tick proteins interacting with SUB may provide the basis for the discovery of novel antigens and for the rational design of novel anti-tick vaccines. In the present study, we used the yeast two-hybrid system (Y2H) as an unbiased approach to identify tick SUB-interacting proteins in an Ixodes ricinus cDNA library, and studied the possible role of SUB as a chromatin remodeler through direct interaction with histones. The Y2H screening identified Importin-α as a potential SUB-interacting protein, which was confirmed in vitro in a protein pull-down assay. The sub gene expression levels in tick midgut and fat body were significantly higher in unfed than fed female ticks, however, the importin-α expression levels did not vary between unfed and fed ticks but tended to be higher in the ovary when compared to those in other organs. The effect of importin-α RNAi was characterized in I. ricinus under artificial feeding conditions. Both sub and importin-α gene knockdown was observed in all tick tissues and, while tick weight was significantly lower in sub RNAi-treated ticks than in controls, importin-α RNAi did not affect tick feeding or oviposition, suggesting that SUB is able to exert its function in the absence of Importin-α. Furthermore, SUB was shown to physically interact with histone 4, which was corroborated by protein pull-down and western blot analysis. These results confirm that by interacting with numerous tick proteins, SUB is a key cofactor of the tick interactome and regulome. Further studies are needed to elucidate the nature of the SUB-Importin-α interaction and the biological processes and functional implications that this interaction may have.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.)
- Biochemistry Section, Faculty of Science and Chemical Technologies, and Regional Centre for Biomedical Research (CRIB), University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France;
| | - Grégory Caignard
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Damien Vitour
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Jennifer Richardson
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Sandrine Lacour
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Houssam Attoui
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Lesley Bell-Sakyi
- Tick Cell Biobank, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK;
| | - Eleonore Allain
- UMR 1161 Virologie, Laboratoire de Santé Animale, ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Paris-Est Sup, 94700 Maisons-Alfort, France; (G.C.); (D.V.); (J.R.); (S.L.); (H.A.); (E.A.)
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.M.N.); (N.M.); (S.P.S.)
| | - Nina Militzer
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.M.N.); (N.M.); (S.P.S.)
| | - Sophia Pinecki Socias
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany; (A.M.N.); (N.M.); (S.P.S.)
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; (S.A.-J.); (M.V.)
- Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
9
|
TACC3 is a prognostic biomarker for kidney renal clear cell carcinoma and correlates with immune cell infiltration and T cell exhaustion. Aging (Albany NY) 2021; 13:8541-8562. [PMID: 33714201 PMCID: PMC8034911 DOI: 10.18632/aging.202668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/13/2020] [Indexed: 01/27/2023]
Abstract
Growing evidence has demonstrated that transforming acidic coiled-coil protein 3 (TACC3), a member of the TACC family, may be involved in regulating cell mitosis, transcription, and tumorigenesis. However, the role of TACC3 in kidney renal clear cell carcinoma (KIRC) remains unknown. In this study, multiple databases were used to determine the pattern of TACC3 in KIRC. We found that high TACC3 expression was associated with poor overall survival (OS) in stage I, II, IV and grade 3 KIRC patients. Univariate and multivariate Cox regression analyses showed that TACC3 was an independent risk factor for OS among KIRC patients. Moreover, TACC3 expression correlated with immune cell infiltration levels of B cells, T cells (CD8+, CD4+, follicular helper, regulatory and gamma delta), total and resting natural killer cells, total and activated dendritic cells, and resting mast cells. Furthermore, T cell exhaustion markers, such as PD1, CTLA4, LAG3 and TIM-3 were highly expressed in TACC3 overexpressing tissues. In addition, GSEA analysis revealed that the role of TACC3 in KIRC may be closely linked to immune-associated pathways. Therefore, our study reveals that TACC3 is a prognostic biomarker for OS among KIRC patients and may be associated with immune cell infiltration and T cell exhaustion.
Collapse
|
10
|
Functional genetic variants in centrosome-related genes CEP72 and YWHAG confer susceptibility to gastric cancer. Arch Toxicol 2020; 94:2861-2872. [PMID: 32535685 DOI: 10.1007/s00204-020-02782-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Structural and numeric centrosome aberrations can induce chromosome segregation errors and promote tumor development and progression. We systematically evaluated associations of 19,603 single nucleotide polymorphisms (SNPs) across 136 centrosome-related genes with gastric cancer (GC) risk using four GWAS datasets with a total of 3771 cases and 5426 controls. We identified two loci at 15p13.3 and 7q11.23 significantly associated with GC risk, whose risk alleles were correlated with increased mRNA expression of CEP72 (P = 7.30 × 10-4) and YWHAG (P = 1.60 × 10-3), respectively. Dual-luciferase reporter assays confirmed that the risk T allele of rs924607 at 15p13.3 significantly increased a promoter activity of the reporter gene, leading to a higher CEP72 expression level. At 7q11.23, the risk haplotype of rs2961037 [G]-rs2961038 [G] significantly elevated an enhancer activity and the expression of YWHAG. Both the mRNA and protein levels of CEP72 and YWHAG were overexpressed in GC tumor tissues compared with peritumor tissues and overexpression of either gene showed an unfavorable prognosis of GC patients. Moreover, knockdown of either CEP72 or YWHAG inhibited GC cell proliferation, migration and invasion and promoted GC cell apoptosis. The genes coexpressed with CEP72 or YWHAG in GC tumor tissues were enriched in the Ras signaling pathway, which was confirmed that knockdown of either one decreased the expression of cyclin D1 but increased the expression of p21 and p27. In conclusion, genetic variants at 15p13.3 and 7q11.23 may confer GC risk via modulating the biological functions of CEP72 and YWHAG, respectively, suggesting the importance of centrosome-regulated genes in GC development.
Collapse
|
11
|
RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia. Cell Stem Cell 2020; 27:64-80.e9. [PMID: 32402250 DOI: 10.1016/j.stem.2020.04.009] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/26/2020] [Accepted: 04/15/2020] [Indexed: 02/09/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in mRNA, has been implicated in tumorigenesis. As an m6A demethylase, ALKBH5 has been shown to promote the development of breast cancer and brain tumors. However, in acute myeloid leukemia (AML), ALKBH5 was reported to be frequently deleted, implying a tumor-suppressor role. Here, we show that ALKBH5 deletion is rare in human AML; instead, ALKBH5 is aberrantly overexpressed in AML. Moreover, its increased expression correlates with poor prognosis in AML patients. We demonstrate that ALKBH5 is required for the development and maintenance of AML and self-renewal of leukemia stem/initiating cells (LSCs/LICs) but not essential for normal hematopoiesis. Mechanistically, ALKBH5 exerts tumor-promoting effects in AML by post-transcriptional regulation of its critical targets such as TACC3, a prognosis-associated oncogene in various cancers. Collectively, our findings reveal crucial functions of ALKBH5 in leukemogenesis and LSC/LIC self-renewal/maintenance and highlight the therapeutic potential of targeting the ALKBH5/m6A axis.
Collapse
|
12
|
Shakya M, Zhou A, Dai D, Zhong Q, Zhou Z, Zhang Y, Li X, Bholee AK, Chen M. High expression of TACC2 in hepatocellular carcinoma is associated with poor prognosis. Cancer Biomark 2018; 22:611-619. [PMID: 29843208 PMCID: PMC6130418 DOI: 10.3233/cbm-170091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND: Transforming acidic coiled-coil protein 2 (TACC2) is a member of TACC family proteins which is mainly involved in the stabilization of spindles and regulation of microtubule dynamics through interactions with molecules involved in centrosomes/microtubules. TACC2 is involved in tumorigenesis of variety of cancers but the clinical significance of TACC2 protein in hepatocellular carcinoma (HCC) is still unclear. OBJECTIVE: This study aims to investigate the expression of TACC2 in HCC and determine if clinical significance and prognostic relevance exists. METHODS: We performed quantitative PCR (qPCR) and western blot to examine TACC2 mRNA and protein expression in paired HCC tissues and matched adjacent non-cancerous tissues. Immunohistochemistry was performed in 106 postoperative HCC samples. RESULTS: There was higher expression of TACC2 protein and mRNA in HCC tissue. Immunohistochemistry analysis showed high expression of TACC2 in HCC tissue and was significantly associated with the capsular extension, tumor recurrence and shortened overall and disease free survival. The Cox regression analysis suggested that a high expression of TACC2 was an independent prognostic factor for HCC patients. CONCLUSION: This finding suggests that TACC2 may be a useful tool as a candidate biomarker to predict the recurrence and prognosis of HCC.
Collapse
Affiliation(s)
- Manjul Shakya
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Aijun Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Danian Dai
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.,Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qian Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zhongguo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaojun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ashwin Kumar Bholee
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minshan Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Analysis of cyclin E co-expression genes reveals nuclear transcription factor Y subunit alpha is an oncogene in gastric cancer. Chronic Dis Transl Med 2018; 5:44-52. [PMID: 30993263 PMCID: PMC6449734 DOI: 10.1016/j.cdtm.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 12/12/2022] Open
Abstract
Objective To explore genes potentially co-expressed with cyclin E in gastric cancer and discover possible targets for gastric cancer treatment. Methods The Cancer Genome Atlas (TCGA) stomach adenocarcinoma sequencing data were used to predict genes co-expressed with cyclin E. Co-expression genes predicted by cBioPortal online analysis with Pearson correlation coefficient ≥0.4 were analyzed by gene ontology (GO) enrichment annotation using the PANTHER online platform (Ver. 7). Interactions between proteins encoded by these genes were analyzed using the STRING online platform (Ver. 10.5) and Cytoscape software (Ver. 3.5.1). Genes displaying a high degree of connection were analyzed by transcription factor enrichment prediction using FunRich software (Ver. 3). The significant transcription factor and cyclin E expression levels and their impact on gastric cancer progression were analyzed by Western blotting and Kaplan–Meier survival curve analysis. Results After filtering the co-expression gene prediction results, 78 predicted genes that included 73 protein coding genes and 5 non-coding genes with Pearson correlation coefficient ≥0.4 were selected. The expressions of the genes were considered to be correlated with cyclin E expression. Among the 78 genes co-expressed with cyclin E, 19 genes at the central of the regulatory network associated with cyclin E were discovered. Nuclear transcription factor Y subunit alpha (NF-YA) was identified as a significant transcription factor associated with cyclin E co-expressing genes. Analysis of specimen donors’ clinical records revealed that high expression of NF-YA tended to be associated with increased cyclin E expression. The expression of both was associated with progression of gastric cancer. Western blotting results showed that compared with normal tissues, NF-YA and cyclin E were highly expressed in tumor tissues (P < 0.001). Survival curve analysis clearly demonstrated relatively poor overall survival of gastric cancer patients with high cyclin E or high NF-YA expression level, compared to patients with low cyclin E or NF-YA expression (P < 0.05). Conclusions NF-YA may promote gastric cancer progression by increasing the transcription of cyclin E and other cell cycle regulatory genes. NF-YA might be a potential therapeutically useful prognostic factor for gastric cancer.
Collapse
|
14
|
Elevated Expression of Transforming Acidic Coiled-Coil Containing Protein 3 (TACC3) Is Associated With a Poor Prognosis in Osteosarcoma. Clin Orthop Relat Res 2018; 476:1848-1855. [PMID: 30024460 PMCID: PMC6259806 DOI: 10.1097/corr.0000000000000379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transforming acidic coiled-coil containing protein 3 (TACC3) is expressed during the mitotic phase of nuclear division and regulates microtubules. Recently, high TACC3 expression in tumor cells of various cancers including soft tissue sarcoma has been reported. However, its role in osteosarcoma remains unknown. Because we have few prognostic markers for survival in osteosarcoma, we wanted to investigate the potential role of TACC3 in human osteosarcoma and determine if it is associated with survival. QUESTIONS/PURPOSES (1) Is there a relationship between TACC3 expression and clinicopathologic characteristics such as sex, age (< 20 or ≥ 20 years), histologic type (osteoblastic or others), tumor location (femur or others), American Joint Committee on Cancer staging system (AJCC stage IIA or IIB), tumor necrosis percentage after chemotherapy (< 90% or ≥ 90%), p53 expression (low or high), and Ki-67 expression (low or high)? (2) Is TACC3 expression associated with event-free and overall survival in patients with osteosarcoma? METHODS Forty-six conventional patients with osteosarcoma were treated at our institution from 1989 to 2013. Patients were excluded because of unresectable primary site (two patients) and no chemotherapy (two patients). Patients with metastasis at the initial visit (five patients), without pretreatment biopsy samples (two patients), or clinical charts (two patients) were also excluded. The left 33 patients who received neoadjuvant and adjuvant chemotherapy, which consisted of cisplatin/doxorubicin/methotrexate or cisplatin/doxorubicin/methotrexate/ifosfamide, and completed surgical resection with histologic wide tumor margins. Primary tumor samples before chemotherapy were used in this study. We investigated TACC3 expression using immunohistochemical staining and statistically analyzed the TACC3 expression, clinicopathologic characteristics, and event-free and overall survival in patients with osteosarcoma. RESULTS High TACC3 expression was observed in 19 of 33 osteosarcoma specimens (58%), and this was associated with larger tumor size (ie, AJCC stage IIB in this study; p = 0.002), higher p53 expression (p = 0.007), and higher Ki-67 expression (p = 0.002). The estimated metastasis-free survival at 5 years was 21% (95% confidence interval [CI], 7%-41%) in patients with high TACC3 expression and 79% (95% CI, 47%-93%) in patients with low TACC3 expression (p < 0.001), and the estimated overall survival at 5 years was 34% (95% CI, 13%-56%) in patients with high TACC3 expression and 86% (95% CI, 54%-96%) in patients with low TACC3 expression (p < 0.001). Furthermore, high TACC3 expression was an independent poor prognostic factor for metastasis-free survival with a hazard ratio of 3.89 (95% CI, 1.07-19.78; p = 0.039) as well as overall survival with 4.41 (95% CI, 1.01-32.97; p = 0.049). CONCLUSIONS High TACC3 expression was associated with aggressive clinicopathologic features and unfavorable prognosis in these patients with osteosarcoma. Our preliminary results suggest that further analysis about mutation or an inactive form of TACC3 would be useful to understand the mechanism of abnormal TACC3 expression in patients with osteosarcoma. If these findings are substantiated in larger studies, TACC3 might be useful for predicting survival and a potential therapeutic target for osteosarcoma. LEVEL OF EVIDENCE Level III, therapeutic study.
Collapse
|
15
|
Zhao C, He X, Li H, Zhou J, Han X, Wang D, Tian G, Sui F. Downregulation of TACC3 inhibits tumor growth and migration in osteosarcoma cells through regulation of the NF-κB signaling pathway. Oncol Lett 2018; 15:6881-6886. [PMID: 29725420 PMCID: PMC5920203 DOI: 10.3892/ol.2018.8262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
TACC3, a member of the transforming acidic coiled-coil protein (TACC) family, is a multifunctional protein that is involved in various biological functions, including proliferation and differentiation of tumor cells, cancer progression and metastasis. The aims of the present study were to examine whether TACC3 expression is associated with the proliferation and migration of osteosarcoma (OS) cells and to investigate the potential underlying molecular mechanisms of TACC3 in OS. First, the levels of mRNA and protein expression in OS cell lines by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively were examined. Second, the effects of TACC3 knockdown and overexpression on the proliferative, migratory and invasive capacities of OS cells were investigated. Finally, western blot analysis was employed to detect the potential mechanism of TACC3 in osteosarcoma. TACC3 expression was significantly increased in osteosarcoma tissues and cell lines, compared to matched controls. The knockdown of TACC3 was able to significantly inhibit the proliferation, migration and invasion of osteosarcoma cells, whereas the overexpression of TACC3 was able to promote cell proliferation and migration. Mechanistically, TACC3 may promote the migration and invasion of osteosarcoma cells via through nuclear factor-κB signaling. These data suggest that TACC3 has an important part in the progression of osteosarcoma and may serve as a potential target for gene therapy.
Collapse
Affiliation(s)
- Congran Zhao
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiaofeng He
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Heng Li
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Jihui Zhou
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Xiuying Han
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Dongjun Wang
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Guofeng Tian
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Fuge Sui
- Department of Orthopedics, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| |
Collapse
|
16
|
Abstract
Transforming acidic coiled-coil protein 3 (TACC3) is a member of the TACC family and plays an important role in regulating cell mitosis, transcription, and tumorigenesis. However, the expression pattern and roles of TACC3 in renal cell carcinoma (RCC) remain unclear. The aim of this study was to investigate the role of TACC3 in RCC. We demonstrated overexpression of TACC3 in human RCC cell lines at both RNA and protein levels. Moreover, knockdown of TACC3 repressed RCC cell proliferation, migration, and invasion in vitro. In addition, knockdown of TACC3 inactivated PI3K/Akt signaling in RCC cells. Furthermore, knockdown of TACC3 significantly reduced tumor growth in xenograft tumor-bearing mice. Taken together, our findings showed that TACC3 was increased in human RCC cell lines, and knockdown of TACC3 inhibited the ability of cell proliferation, migration, invasion, and tumorigenesis in vivo. Therefore, TACC3 may act as a therapeutic target for the treatment of human RCC.
Collapse
Affiliation(s)
- Feng Guo
- Department of Urology, The Central Hospital of Wuhan, Wuhan, P.R. China
| | - Yaquan Liu
- Department of Urology, The Central Hospital of Wuhan, Wuhan, P.R. China
| |
Collapse
|
17
|
Zhu X, Shen X, Qu J, Straubinger RM, Jusko WJ. Proteomic Analysis of Combined Gemcitabine and Birinapant in Pancreatic Cancer Cells. Front Pharmacol 2018. [PMID: 29520231 PMCID: PMC5827530 DOI: 10.3389/fphar.2018.00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is characterized by mutated signaling pathways and a high incidence of drug resistance. Comprehensive, large-scale proteomic analysis can provide a system-wide view of signaling networks, assist in understanding drug mechanisms of action and interactions, and serve as a useful tool for pancreatic cancer research. In this study, liquid chromatography-mass spectrometry-based proteomic analysis was applied to characterize the combination of gemcitabine and birinapant in pancreatic cancer cells, which was shown previously to be synergistic. A total of 4069 drug-responsive proteins were identified and quantified in a time-series proteome analysis. This rich dataset provides broad views and accurate quantification of signaling pathways. Pathways relating to DNA damage response regulations, DNA repair, anti-apoptosis, pro-migration/invasion were implicated as underlying mechanisms for gemcitabine resistance and for the beneficial effects of the drug combination. Promising drug targets were identified for future investigation. This study also provides a database for systems mathematical modeling to relate drug effects and interactions in various signaling pathways in pancreatic cancer cells.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Xiaomeng Shen
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
18
|
Du Y, Liu L, Wang C, Kuang B, Yan S, Zhou A, Wen C, Chen J, Wu Y, Yang X, Feng G, Liu B, Iwamoto A, Zeng M, Wang J, Zhang X, Liu H. TACC3 promotes colorectal cancer tumourigenesis and correlates with poor prognosis. Oncotarget 2018; 7:41885-41897. [PMID: 27248823 PMCID: PMC5173103 DOI: 10.18632/oncotarget.9628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/04/2016] [Indexed: 12/11/2022] Open
Abstract
Colorectal carcinoma (CRC) is a malignant epithelial tumour with tremendous invasion and metastatic capacity. Transforming acidic coiled-coil protein-3 (TACC3), a frequently aberrantly expressed oncogene, is an important biomarker in various human cancers. Our study aimed to investigate the expression and function of TACC3 in human CRC. We found that TACC3 was over-expressed at both the mRNA and protein levels in CRC cells and in biopsies of CRC tissues compared with normal controls as determined by qRT-PCR, western blot and immunohistochemical (IHC) staining assays. IHC staining of samples from 161 patients with CRC also revealed that TACC3 expression was significantly correlated with clinical stage (P = 0.045), T classification (P = 0.029) and M classification (P = 0.020). Multivariate analysis indicated that high TACC3 expression was an independent prognostic marker for CRC. Patients who had high TACC3 expression had significantly poorer overall survival (OS, P = 0.023) and disease-free survival (DFS, P = 0.019) compared to patients who had low TACC3 expression. Furthermore, TACC3 knockdown attenuated CRC cell proliferation, colony formation capability, migration and invasion capability, and tumourigenesis in nude mice; these properties were measured using a real-time cell analyser (RTCA), clonogenicity analysis, and transwell and xenograft assays, respectively. These data indicate that TACC3 promotes CRC progression and could be an independent prognostic factor and a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yong Du
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lili Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Departments of Pathology and Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chenliang Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bohua Kuang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shumei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Departments of Pathology and Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Aijun Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junxiong Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guokai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Bin Liu
- Department of Emergency, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Aikichi Iwamoto
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Current affiliation: Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianping Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huanliang Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology and The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Human Virology and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Matsuda K, Miyoshi H, Hiraoka K, Yokoyama S, Haraguchi T, Hashiguchi T, Hamada T, Shiba N, Ohshima K. Clinicopathological and prognostic value of transforming acidic coiled-coil-containing protein 3 (TACC3) expression in soft tissue sarcomas. PLoS One 2017; 12:e0188096. [PMID: 29135996 PMCID: PMC5685599 DOI: 10.1371/journal.pone.0188096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 12/02/2022] Open
Abstract
Transforming acidic coiled-coil-containing protein 3 (TACC3), a microtubule regulator, is associated with various cancers. However, the relationship between TACC3 and soft tissue sarcomas (STS) remains unclear. We investigated the expression of TACC3 in 136 STS patient samples using immunohistochemical (IHC) staining, and the statistical associations between TACC3 expression and clinicopathological characteristics were evaluated. Additionally, the expression levels of the tumor suppressor p53 and of the cell proliferation marker Ki-67 were also assessed by IHC. High TACC3 expression was detected in 94/136 of STS cases (69.1%), and significantly correlated with higher grade according to the French Fédération Nationale des Centres de Lutte Contre le Cancer system (P<0.0001), poorer tumor differentiation (P<0.0001), increased mitotic counts (P<0.0001), advanced stage per American Joint Committee on Cancer guidelines (P<0.0001), higher p53 expression (P = 0.0487), higher Ki-67 expression (P<0.0001), and undergoing postoperative therapy (P = 0.0001). Disease-free survival (DFS) and overall survival (OS) of patients with high TACC3 expression were significantly shorter (P<0.0001 and P<0.0001, respectively). On multivariate analyses, high TACC3 expression was an independent negative prognostic factor for both DFS and OS (hazard ratio [HR]: 3.074; P = 0.0235 and HR: 8.521; P = 0.0415, respectively). Our results suggest that TACC3 is an independent prognostic factor and may be a novel therapeutic target for the treatment of STS.
Collapse
Affiliation(s)
- Kotaro Matsuda
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Hiroaki Miyoshi
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
- * E-mail:
| | - Koji Hiraoka
- Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shintaro Yokoyama
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshiaki Haraguchi
- Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshihiro Hashiguchi
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Tetsuya Hamada
- Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Naoto Shiba
- Department of Orthopedic Surgery, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
20
|
Wang J, Du S, Fan W, Wang P, Yang W, Yu M. TACC3 as an independent prognostic marker for solid tumors: a systematic review and meta-analysis. Oncotarget 2017; 8:75516-75527. [PMID: 29088887 PMCID: PMC5650442 DOI: 10.18632/oncotarget.20466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022] Open
Abstract
Recent studies have showed that the transforming acidic coiled coil 3 (TACC3), was aberrantly up-regulated in various solid tumors and was reported to be correlated with unfavorable prognosis in cancer patients. This study aimed to examine the relationship between TACC3 and relevant clinical outcomes. Pubmed, Web of Science, Embase and Cochrane Library were systematically searched to obtain all eligible articles. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the influence of TACC3 expression on overall survival (OS) and disease-free survival (DFS) in solid tumors patients. A total of 1943 patients from 11 articles were included. The result indicated that a significantly shorter OS was observed in patients with high expression level of TACC3 (HR=1.90, 95% CI=1.63-2.23). In the subgroup analysis, the association was also observed in patients with cancers of digestive system (HR=1.85, 95% CI=1.53-2.24). Statistical significance was also observed in subgroup meta-analysis stratified by the cancer type, analysis type and sample size. Furthermore, poorer DFS was observed in patients with high expression level of TACC3 (HR=2.67, 95% CI=2.10-3.40). Additionally, the pooled odds ratios (ORs) showed that increased TACC3 expression was also related to positive lymph node metastasis (OR=1.68, 95% CI=1.26-2.25), tumor differentiation (OR=1.90, 95% CI=1.25-2.88) and TNM stage (OR=1.66, 95% CI=1.25-2.20). In conclusion, the increased expression level of TACC3 was associated with unfavorable prognosis, suggesting that it was a valuable prognosis biomarker or a promising therapeutic target of solid tumors. Further studies should be conducted to confirm the clinical utility of TACC3 in human solid tumors.
Collapse
Affiliation(s)
- June Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Shenlin Du
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Wei Fan
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ping Wang
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weiqing Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China
| | - Mingxia Yu
- Department of Clinical Laboratory & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
22
|
Overexpression of Transforming Acidic Coiled Coil‑Containing Protein 3 Reflects Malignant Characteristics and Poor Prognosis of Glioma. Int J Mol Sci 2017; 18:ijms18030235. [PMID: 28273854 PMCID: PMC5372487 DOI: 10.3390/ijms18030235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
Gliomas are malignant primary brain tumors with poor prognosis. Recently, research was indicative of a tight connection between tumor malignancy and genetic alterations. Here, we propose an oncogenic implication of transforming acidic coiled-coil-containing protein 3 (TACC3) in gliomas. By comprehensively analyzing the Chinese glioma genome atlas (CGGA) and publicly available data, we demonstrated that TACC3 were overexpressed along with glioma grade and served as an independent negative prognostic biomarker for glioma patients. Functions’ annotations and gene sets’ enrichment analysis suggested that TACC3 may participate in cell cycle, DNA repair, epithelium-mesenchymal transition and other tumor-related biological processes and molecular pathways. Patients with high TACC3 expression showed CD133+ stem cell properties, glioma plasticity and shorter overall survival time under chemo-/radio-therapy. Additionally, a TACC3 associated the miRNA-mRNA network was constructed based on in silico prediction and expression pattern, which provide a foundation for further detection of TACC3-miRNA-mRNA axis function. Collectively, our observations identify TACC3 as an oncogene of tumor malignancy, as well as a prognostic and motoring biomarker for glioma patients.
Collapse
|
23
|
Abstract
The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| | - Harold I Saavedra
- Department of Pharmacology, Ponce Health Sciences University-School of Medicine, Ponce Research Institute, Ponce, Puerto Rico
| |
Collapse
|
24
|
He JC, Yao W, Wang JM, Schemmer P, Yang Y, Liu Y, Qian YW, Qi WP, Zhang J, Shen Q, Yang T. TACC3 overexpression in cholangiocarcinoma correlates with poor prognosis and is a potential anti-cancer molecular drug target for HDAC inhibitors. Oncotarget 2016; 7:75441-75456. [PMID: 27705912 PMCID: PMC5342751 DOI: 10.18632/oncotarget.12254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023] Open
Abstract
Histone deacetylases (HDACs) have been implicated in multiple malignant tumors, and HDAC inhibitors (HDACIs) exert anti-cancer effects. However, the expression of HDACs and the anti-tumor mechanism of HDACIs in cholangiocarcinoma (CCA) have not yet been elucidated. In this study, we found that expression of HDACs 2, 3, and 8 were up-regulated in CCA tissues and those patients with high expression of HDAC2 and/or HDAC3 had a worse prognosis. In CCA cells, two HDACIs, trichostatin (TSA) and vorinostat (SAHA), suppressed proliferation and induced apoptosis and G2/M cycle arrest. Microarray analysis revealed that TACC3 mRNA was down-regulated in CCA cells treated with TSA. TACC3 was highly expressed in CCA tissues and predicted a poor prognosis in CCA patients. TACC3 knockdown induced G2/M cycle arrest and suppressed the invasion, metastasis, and proliferation of CCA cells, both in vitro and in vivo. TACC3 overexpression reversed the effects of its knockdown. These findings suggest TACC3 may be a useful prognostic biomarker for CCA and is a potential therapeutic target for HDACIs.
Collapse
Affiliation(s)
- Jun-chuang He
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Yao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian-ming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Yan Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Liu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya-wei Qian
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei-peng Qi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jian Zhang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qi Shen
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|