1
|
Singh A, Singh L, Dalal D. Neuroprotective potential of hispidulin and diosmin: a review of molecular mechanisms. Metab Brain Dis 2025; 40:188. [PMID: 40257619 DOI: 10.1007/s11011-025-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Flavonoids are an important class of natural products, particularly, belong to a class of plant secondary metabolites having a polyphenolic structure. They are widely found in fruits, vegetables, and certain beverages. Hispidulin and diosmin are naturally occurring flavonoids recognized for their potential health benefits, such as antioxidant, anti-inflammatory, and neuroprotective properties. Hispidulin is present in several plants, including Arnica montana, Salvia officinalis (sage), and Eupatorium arnottianum. Diosmin is mainly extracted from citrus fruits like lemons and oranges and can also be synthesized from hesperidin, another flavonoid found in citrus fruits. Neurodegenerative diseases are characterized by complex signaling pathways that contribute to neuronal deterioration. The JAK/STAT pathway is involved in inflammatory responses, while the NF-κB/NLRP3 pathway is associated with metabolic stress and inflammation, both facilitating neurodegeneration. Conversely, the AMPK/pGSK3β pathway is crucial for neuroprotection, regulating cellular responses to oxidative stress and promoting neuronal survival. Additionally, the BACE/Aβ pathway exacerbates neuronal damage by triggering inflammatory and oxidative stress responses, highlighting critical targets for therapeutic strategies. Hispidulin and diosmin have emerged as promising agents in the modulation of mediators involved in neuroinflammation and neurodegenerative diseases. Oxidative stress and inflammatory pathways, including those driven by Aβ/BACE1 and JAK/STAT signaling, are central to neuronal damage and disease progression. Recent studies highlight that hispidulin and diosmin exhibit notable neuroprotective effects by targeting these mediators. Hispidulin has been shown to impact key inflammatory cytokines and adhesion molecules, while diosmin influences proinflammatory cytokine production and inflammasome activation. Both compounds offer potential therapeutic benefits by modulating crucial mediators linked to neuroinflammation and neurodegeneration. This review article is designed to explore the intricate mechanistic interplay underlying the neuroprotective effects of hispidulin and diosmin.
Collapse
Affiliation(s)
- Anish Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Diksha Dalal
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Wang X, Pan S, Chen L, Liang C, Zhu Y, Zhou K, Shi X. Sijunzi decoction enhances sensitivity of colon cancer cells to NK cell destruction by modulating P53 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118115. [PMID: 38580190 DOI: 10.1016/j.jep.2024.118115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sijunzi Decoction (SJZD), a traditional Chinese herbal remedy, is frequently employed in the treatment of various cancers, including colon cancer. Previous research suggests that SJZD plays a pivotal role in modulating the immune system and enhancing immunity against tumors. However, the precise role of SJZD in combating colon cancer and its potential molecular functions in regulating natural killer cells remain elusive. AIMS OF THE STUDY To elucidate the potential mechanism underlying the anticolon cancer effects of SJZD in synergy with natural killer (NK) cells through both in vivo and in vitro experiments. MATERIALS AND METHODS In vivo experiments: A subcutaneous tumor mouse model of colon cancer and in vivo NK cell depletion experiments were conducted to observe the anticolon cancer effects of SJZD. Flow cytometry assessed immune cell depletion in mouse spleens, while immunohistochemical (IHC) staining detected the expression of apoptotic genes in tumor tissues. In vitro experiments: The mechanism by which SJZD regulates the sensitization of colon cancer cells to NK cells was investigated using real-time polymerase chain reaction (RT-PCR), western blotting (WB), and co-culture experiments with NK cells. RESULTS Sijunzi Decoction (SJZD) significantly impeded tumor growth in mice; however, NK cell depletion markedly attenuated the tumor-suppressive effect of SJZD. Immunohistochemical (IHC) results indicated that SJZD increased the expression of P53, death receptor 4 (DR4), and death receptor 5 (DR5) in tumor tissues. In vitro experiments, 24 h SJZD-pretreated colon cancer cells showed a substantial elevation in P53, DR4, and DR5 levels, and the activity of colon cancer cells significantly diminished after co-culture with NK cells. These effects of SJZD were reversed with the addition of the P53 inhibitor pifithrin-α (PFT-α), resulting in reduced inhibition of colon cancer cells by NK cells. CONCLUSION SJZD enhances the levels of DR4 and DR5 through the modulation of P53 expression, consequently increasing the sensitivity of colon cancer cells to NK cell-mediated killing. These findings provide a theoretical foundation for the clinical application of SJZD in patients with colon cancer. In this study, we first investigated the effect of SJZD on subcutaneous tumor growth in mice with colon cancer using in vivo assays and assessed the impact of NK cells on the anticolon cancer effect of SJZD in vivo through NK cell depletion. In vitro experiments were conducted to explore the potential mechanism of action of SJZD in NK cell-mediated anticolon cancer effects.
Collapse
Affiliation(s)
- Xinxin Wang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Shufang Pan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Liangyan Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Chengchen Liang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Yueyi Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Ke Zhou
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Xiaolan Shi
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
3
|
Xie Z, Lin M, He X, Dong Y, Chen Y, Li B, Chen S, Lv G. Chemical Constitution, Pharmacological Effects and the Underlying Mechanism of Atractylenolides: A Review. Molecules 2023; 28:molecules28103987. [PMID: 37241729 DOI: 10.3390/molecules28103987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yigong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Qiao P, Tian Z. Atractylenolide I inhibits EMT and enhances the antitumor effect of cabozantinib in prostate cancer via targeting Hsp27. Front Oncol 2023; 12:1084884. [PMID: 36686743 PMCID: PMC9853281 DOI: 10.3389/fonc.2022.1084884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Objective To investigate the effect of Hsp27 and the inhibitory effect of Atractylenolide I (ATL-1) on the proliferation of prostate cancer cell DU145 and PC-3. Methods MTT assay was used to detect the inhibitory effect of silencing Hsp27 and ATL-1 on DU145 and PC-3 proliferation of prostate cancer cells. TUNEL detected the apoptosis rate of prostate cancer cell DU145 and PC-3 after silencing Hsp27 and ATL-1 treated. qRT-PCR was used to detect the changes of apoptosis related genes caspase-3, PARP, Bax and Bcl-2 in prostate cancer cell DU145 and PC-3 after the effect of silencing Hsp27 and ATL-1 treated. At the same time, the antitumor effect of ATL-1 combined with cabozantinib was analyzed. Results Hsp27 was highly expressed in human prostate cancer. MTT assay showed that ATL-1 inhibited the proliferation of prostate cancer cells DU145 and PC-3 compared with the control group. TUNEL results showed that silencing Hsp27 and ATL-1 treated could significantly promote the apoptosis of prostate cancer cells DU145 and PC-3 compared with the control group. qRT-PCR results showed that compared with the control group, ATL-1 could promote the expression of caspase-3, PARP and Bax in DU145 and PC-3 prostate cancer cells. Inhibition of Hsp27 by ATL-1 reduced cell viability and induced apoptosis. ATL-1 inhibits the antitumor effect of Hsp27 - enhanced cabozantinib. Hsp27 regulates eIF4E and mediates cell protection. Conclusion Silencing Hsp27 inhibits EMT. ATL-1 can inhibit the malignant evolution of prostate cancer cells by inhibiting Hsp27/eIF4E. ATL-1 also enhanced chemosensitization of cabozantinib in prostate cancer.
Collapse
Affiliation(s)
- Pengfei Qiao
- The Department of Urology Surgery, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhentao Tian
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,*Correspondence: Zhentao Tian,
| |
Collapse
|
5
|
Jiang Y, Guo K, Wang P, Zhu Y, Huang J, Ruan S. The antitumor properties of atractylenolides: Molecular mechanisms and signaling pathways. Biomed Pharmacother 2022; 155:113699. [PMID: 36116253 DOI: 10.1016/j.biopha.2022.113699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Drugs that exhibit a high degree of tumor cell selectivity while minimizing normal cell toxicity are an area of active research interest as a means of designing novel antitumor agents. The pharmacological benefits of Chinese herbal medicine-based treatments have been the focus of growing research interest in recent years. Sesquiterpenoids derived from the Atractylodes macrocephala volatile oil preparations exhibit in vitro and in vivo antitumor activity. Atracylenolides exhibit anti-proliferative, anti-metastatic, and immunomodulatory activity in a range of tumor cell lines in addition to being capable of regulating metabolic activity such that it is a promising candidate drug for the treatment of diverse cancers. The present review provides a summary of recent advances in Atractylenolide-focused antitumor research efforts.
Collapse
Affiliation(s)
- Yu Jiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Kaibo Guo
- Department of Oncology, Affilited Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Ying Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Jiaqi Huang
- Department of postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
6
|
Hao Z, Pan Z, Qian W. Atractylenolide I Inhibits Triple-Negative Breast Cancer Cell Proliferation and Promotes Apoptosis via Blocking the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive agent Atractylenolide I (AT-1) has been shown to possess therapeutic value for treating various malignancies. The purpose of the current study is to clarify the potential effect of AT-1 on the development of triple-negative breast cancer (TNBC) and to investigate relevant
signaling pathways involved in its mechanism. MTT assay was used to assess the effect of different concentrations of AT-1 on cell survival rate in MCF-10A normal breast epithelial cell line and MDA-MB-231 TNBC cell line. Exogenous IL-6 and WP1066 respectively acted as the agonist and the inhibitor
of JAK2/STAT3. Determination of MDA-MB-231 cell viability, proliferation and apoptosis employed MTT, colony formation assay and TUNEL. Western blotting was conducted to measure the expression of proliferation- and apoptosis-related proteins. The viability of MCF-10A cells was unaffected by
AT-1, whereas in MDA-MB-231 cells the proliferation level was decreased and the apoptosis level was increased after AT-1 treatment. IL-6 partially restored the expression of AT-1-blocked JAK2/STAT3, and WP1066 inhibited JAK2/STAT3 expression in combination with IL-6 and AT-1. Furthermore,
compared with the AT-1 group, co-incubation of IL-6 and AT-1 partially restored the proliferative capacity and reduced the apoptosis of MDA-MB-231 cells, while WP1066 reversed these effects in combination with IL-6 and AT-1. AT-1 suppressed proliferation and promoted apoptosis in TNBC cells
likely through inhibiting the activation of JAK2/STAT3 signaling pathway. The findings from this study may provide guidance for future studies on AT-1 and theoretical basis of AT-1 pharmacological activities.
Collapse
Affiliation(s)
- Zhiye Hao
- Department of Oncology, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing Province, 102618, China
| | - Zheng Pan
- Department of Respiratory Medicine, The Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin Province, 300162, China
| | - Wei Qian
- Department of Intensive Care Unit, Southern Branch of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Huangcun Town, Daxing District, Beijing, 102618, China
| |
Collapse
|
7
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Havelikova K, Smejkalova B, Jendelova P. Neurogenesis as a Tool for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms23073728. [PMID: 35409088 PMCID: PMC8998995 DOI: 10.3390/ijms23073728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.
Collapse
Affiliation(s)
- Katerina Havelikova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Barbora Smejkalova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic; (K.H.); (B.S.)
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
- Correspondence: ; Tel.: +420-24-106-2828
| |
Collapse
|
9
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch Pharm Res 2021; 44:633-654. [PMID: 34269984 DOI: 10.1007/s12272-021-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
10
|
Sun C, Zhang X, Yu F, Liu C, Hu F, Liu L, Chen J, Wang J. Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. J Int Med Res 2021; 49:300060521993315. [PMID: 33641489 PMCID: PMC7923999 DOI: 10.1177/0300060521993315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury causes various severe heart diseases, including myocardial infarction. This study aimed to determine the therapeutic effect of atractylenolide I (ATR-I), which is an active ingredient isolated from Atractylodes macrocephala, on myocardial I/R injury. METHODS Male Sprague-Dawley rats were randomly allocated to the five following groups (nine rats/group): control, I/R, and I/R + ATR-I preconditioning (10, 50, and 250 µg). The effects of ATR-I on rats with I/R injury were verified in cardiomyocytes with hypoxia/reoxygenation. Production of reactive oxygen species was determined. The proliferative ability of cardiomyocytes was detected using the bromodeoxyuridine assay. Mitochondrial membrane potential was measured using flow cytometry. Cellular apoptosis was assessed by flow cytometry and the terminal dUTP-digoxigenin nick end labeling assay. RESULTS I/R and hypoxia/reoxygenation injury increased mitochondrial dysfunction and activated caspase-3 and Bax/B cell lymphoma 2 expression in vitro and in vivo. ATR-I pretreatment dose-dependently significantly attenuated myocardial apoptosis and suppressed oxidative stress as reflected by increased mitochondrial DNA copy number and superoxide dismutase activity, and decreased reactive oxygen species and Ca2+ content. CONCLUSION ATR-I protects against I/R injury by protecting mitochondrial function and inhibiting activation of caspase-3.
Collapse
Affiliation(s)
- Caiqin Sun
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Xuesong Zhang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fei Yu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Chen Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fangbin Hu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Li Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jue Wang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| |
Collapse
|
11
|
Gonzalez de Mejia E, Castañeda-Reyes ED, Mojica L, Dia V, Wang H, Wang T, Johnson LA. Potential Health Benefits Associated with Lunasin Concentration in Dietary Supplements and Lunasin-Enriched Soy Extract. Nutrients 2021; 13:1618. [PMID: 34065911 PMCID: PMC8150303 DOI: 10.3390/nu13051618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022] Open
Abstract
Lunasin has demonstrated antioxidative, anti-inflammatory, and chemopreventive properties. The objectives were to evaluate the concentration of lunasin in different lunasin-based commercial dietary supplements, to produce a lunasin-enriched soy extract (LESE) using a two-step pilot-plant-based ultrafiltration process, and to evaluate their biological potential in vitro. LESE was produced using 30 and 1 kDa membranes in a custom-made ultrafiltration skid. Lunasin was quantified in eight products and LESE. Lunasin concentrations of the lunasin-based products ranged from 9.2 ± 0.6 to 25.7 ± 1.1 mg lunasin/g protein. The LESE extract contained 58.2 mg lunasin/g protein, up to 6.3-fold higher lunasin enrichment than lunasin-based dietary supplements. Antioxidant capacity ranged from 121.5 mmol Trolox equivalents (TE)/g in Now® Kids to 354.4 mmol TE/g in LESE. Histone acetyltransferase (HAT) inhibition ranged from 5.3% on Soy Sentials® to 38.3% on synthetic lunasin. ORAC and lunasin concentrations were positively correlated, and HAT and lunasin concentrations were negatively correlated (p < 0.05). Melanoma B16-F10 and A375 cells treated with lunasin showed dose-dependent inhibitory potential (IC50 equivalent to 330 and 370 μM lunasin, respectively). Lunasin showed protein kinase B expression (57 ± 14%) compared to the control (100%) in B16-F10. Lunasin concentration found in commercial products and lunasin-enriched soy extract could exert benefits to consumers.
Collapse
Affiliation(s)
- Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Erick Damian Castañeda-Reyes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Luis Mojica
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., CIATEJ, Guadalajara 44270, Mexico
| | - Vermont Dia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (E.D.C.-R.); (L.M.); (V.D.)
| | - Hui Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Toni Wang
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| | - Lawrence A. Johnson
- Center for Crops Utilization Research, Iowa State University, Ames, IA 50011, USA; (H.W.); (T.W.); (L.A.J.)
| |
Collapse
|
12
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
13
|
Huang S, Dong X, Wang J, Ding J, Li Y, Li D, Lin H, Wang W, Zhao M, Chang Q, Zhou N, Cui W, Huang C. Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway. Med Sci Monit 2018; 24:3564-3570. [PMID: 29807370 PMCID: PMC6004079 DOI: 10.12659/msm.909621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. MATERIAL AND METHODS We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. RESULTS Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. CONCLUSIONS These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells.
Collapse
Affiliation(s)
- Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Jia Wang
- Department of Clinical Laboratory, Meitan General Hospital, Beijing, China (mainland)
| | - Jie Ding
- State Key Laboratory of Cardiovascular Disease, Anesthesia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wenjie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ning Zhou
- The Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China (mainland)
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| |
Collapse
|
14
|
Schepetkin IA, Kirpotina LN, Mitchell PT, Kishkentaeva АS, Shaimerdenova ZR, Atazhanova GA, Adekenov SM, Quinn MT. The natural sesquiterpene lactones arglabin, grosheimin, agracin, parthenolide, and estafiatin inhibit T cell receptor (TCR) activation. PHYTOCHEMISTRY 2018; 146:36-46. [PMID: 29216473 PMCID: PMC5750123 DOI: 10.1016/j.phytochem.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 05/29/2023]
Abstract
Inhibition of the T cell receptor (TCR) pathway represents an effective strategy for the treatment of T cell-mediated inflammatory and autoimmune diseases. To identify natural compounds that could inhibit inflammatory T cell responses, we screened 13 sesquiterpene lactones, including achillin, arglabin, argolide, argracin, 3β-hydroxyarhalin, artesin, artemisinin, estafiatin, grosheimin, grossmisin, leucomisine, parthenolide, and taurine, for their ability to modulate activation-induced Ca2+ mobilization in Jurkat T cells. Five of the compounds (arglabin, grosheimin, argracin, parthenolide, and estafiatin) inhibited anti-CD3-induced mobilization of intercellular Ca2+ ([Ca2⁺]i) in Jurkat cells, with the most potent being parthenolide and argacin (IC50 = 5.6 and 6.1 μM, respectively). Likewise, phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in activated Jurkat cells was inhibited by these five compounds, with the most potent being parthenolide and estafiatin (IC50 = 13.8 and 15.4 μM, respectively). These compounds also inhibited ERK1/2 phosphorylation in primary human T cells and depleted intracellular glutathione. In contrast, none of the sesquiterpene lactones inhibited ERK1/2 phosphorylation in HL60 cells transfected with N-formyl peptide receptor 2 (FPR2) and stimulated with the FPR2 peptide agonist WKYMVM, indicating specificity for T cell activation. Estafiatin, a representative sesquiterpene lactone, was also profiled in a cell-based phosphokinase array for 43 kinase phosphorylation sites, as well as in a cell-free competition binding assay for its ability to compete with an active-site directed ligand for 95 different protein kinases. Besides inhibition of ERK1/2 phosphorylation, estafiatin also inhibited phosphorylation of p53, AMPKα1, CREB, and p27 elicited by TCR activation in Jurkat cells, but it did not bind to any of 95 kinases evaluated. These results suggest that arglabin, grosheimin, agracin, parthenolide, and estafiatin can selectively inhibit initial phases of TCR activation and may be natural compounds with previously undescribed immunotherapeutic properties.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Pete T Mitchell
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States
| | - Аnarkul S Kishkentaeva
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Zhanar R Shaimerdenova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Gayane A Atazhanova
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Sergazy M Adekenov
- International Research and Production Holding "Phytochemistry", Karaganda 100009, Kazakhstan
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
15
|
Cao R, Wang G, Qian K, Chen L, Qian G, Xie C, Dan HC, Jiang W, Wu M, Wu CL, Xiao Y, Wang X. Silencing of HJURP induces dysregulation of cell cycle and ROS metabolism in bladder cancer cells via PPARγ-SIRT1 feedback loop. J Cancer 2017; 8:2282-2295. [PMID: 28819432 PMCID: PMC5560147 DOI: 10.7150/jca.19967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022] Open
Abstract
Holliday Junction Recognition Protein (HJURP) is a centromeric histone chaperone involving in de novo histone H3 variant CenH3 (CENP-A) recruitment. Our transcriptome and in vivo study revealed that HJURP is significantly upregulated in bladder cancer (BCa) tissues at both mRNA and protein levels. Knockdown of HJURP inhibited proliferation and viability of BCa cell lines revealed by CCK-8, colony formation and Ki-67-staining assays, and induced apoptosis and reactive oxygen species (ROS) production, as well as triggered cell cycle arrest at G0/G1 phase possibly via loss of CENP-A. Interestingly, in the HJURP-reduced BCa cells the levels of PPARγ and acetylated-p53 were increased, while the ratio of phosphorylated/total SIRT1 protein was decreased. Moreover, after treatment of the BCa cells using PPARγ antagonist (GW9662) and SIRT1 agonist (resveratrol, RSV) respectively, thee phenotypes of cell cycle arrest, increased ROS production and inhibited proliferation rate were all rescued. Taken together, our results suggested that HJURP might regulate proliferation and apoptosis via the PPARγ-SIRT1 negative feedback loop in BCa cells.
Collapse
Affiliation(s)
- Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Han C. Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wei Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Min Wu
- College of Life Science, Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Zhang J, Zhou L, Zhao S, Dicker DT, El-Deiry WS. The CDK4/6 inhibitor palbociclib synergizes with irinotecan to promote colorectal cancer cell death under hypoxia. Cell Cycle 2017; 16:1193-1200. [PMID: 28486050 DOI: 10.1080/15384101.2017.1320005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxia is an inherent impediment to cancer therapy. Palbociclib, a highly selective inhibitor for CDK4/6, has been tested in numerous clinical trials and has been approved by the FDA. We previously reported that CDK inhibitors can destabilize HIF1α regardless of the presence of hypoxia and can sensitize tumor cells to TRAIL through dual blockade of CDK1 and GSK-3β. To translate this knowledge into a cancer therapeutic strategy, we investigated the therapeutic effects and molecular mechanisms of CDK inhibition against colon cancer cells under normoxia and hypoxia. We found that palbociclib sensitizes colon cancer cells to hypoxia-induced apoptotic resistance via deregulation of HIF-1α accumulation. In addition to inhibition of cell proliferation, we observed that palbociclib promotes colon cancer cell death regardless of the presence of hypoxia at a comparatively high concentration via regulating ERK/GSK-3β signaling and GSK-3β expression. Furthermore, palbociclib synergized with irinotecan in a variety of colon cancer cell lines with various molecular subtypes via deregulating irinotecan-induced Rb phosphorylation and reducing HIF-1α accumulation under normoxia or hypoxia. Collectively, our findings provide a novel combination therapy strategy against hypoxic colon cancer cells that may be further translated in the clinic.
Collapse
Affiliation(s)
- Jun Zhang
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Lanlan Zhou
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Shuai Zhao
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - David T Dicker
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| | - Wafik S El-Deiry
- a Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics Program , Fox Chase Cancer Center , Philadelphia , PA , USA
| |
Collapse
|
17
|
Long F, Wang T, Jia P, Wang H, Qing Y, Xiong T, He M, Wang X. Anti-Tumor Effects of Atractylenolide-I on Human Ovarian Cancer Cells. Med Sci Monit 2017; 23:571-579. [PMID: 28141785 PMCID: PMC5297331 DOI: 10.12659/msm.902886] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study was to investigate the effects of Atractylenolide-I (AT-I), a naturally occurring sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, on human ovarian cancer cells. Material/Methods The viability and anchorage-independent growth of ovarian cancer cells were evaluated using MTT and colony formation assay, respectively. Cell cycle and apoptosis were detected with flow cytometry analysis. The level of cyclin B1 and CDK1 was measured using qPCR and ELISA analysis. The expression of Bax, cleaved caspase-9, cleaved caspase-3, cytochrome c, AIF, and Bcl-2, and phosphorylation level of PI3K, AKT, and mTOR were determined with Western blot analysis. Results AT-I decreased the cell viability and suppressed anchorage-independent growth of A2780 cells. Cell cycle was arrested in G2/M phase transition by AT-I treatment, which was related to decreased expression of cyclin B1 and CDK1 in a dose-dependent manner. In addition, the treatment induced apoptosis, as shown by up-regulation of Bax, cleaved caspase-9, cleaved caspase-3, and cytosolic release of cytochrome c and AIF, and down-regulation of Bcl-2, in a dose-dependent manner. Then, the effects of AT-I on PI3K/Akt/mTOR pathways were examined to further investigate the underlying anti-cancer mechanism of AT-I, and the results showed that treatment with AT-I significantly decreased the phosphorylation level of PI3K, Akt, and mTOR. Conclusions This study demonstrated that AT-I induced cell cycle arrest and apoptosis through inhibition of PI3K/Akt/mTOR pathway in ovarian cancer cells. These results suggest that AT-I might be a potential therapeutic agent in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Fangyi Long
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Ting Wang
- Department of Pharmacy, Sichuan Cancer Hospital and Institution, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Ping Jia
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Huafei Wang
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Yi Qing
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Tingting Xiong
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Mengjie He
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| | - Xiaoli Wang
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
18
|
Yu R, Yu BX, Chen JF, Lv XY, Yan ZJ, Cheng Y, Ma Q. Anti-tumor effects of Atractylenolide I on bladder cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:40. [PMID: 26931119 PMCID: PMC4774103 DOI: 10.1186/s13046-016-0312-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/23/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atractylenolide I (ATR-1), an active component of Rhizoma Atractylodis Macrocephalae, possesses cytotoxicity against various carcinomas. However, little is known about the effects of ATR-1on bladder cancer. In the present study, the anti-tumor activity of ATR-1 was examined on bladder cancer cells both in vivo and in vitro. METHODS MTT assay was used to assess the cytotoxic effect of ATR-1. Cell cycle distribution and apoptosis levels were evaluated using flow cytometry. Western blotting assay was applied to measure the levels of proteins associated with the apoptotic pathway, cell cycle progression and PI3K/Akt/mTOR signaling pathway. Tumor models in nude mice were induced by injection of T-24 and 253J human bladder cancer cells. RESULTS ATR-1 inhibited bladder cancer cell proliferation, arrested cell cycle in G2/M phase through up-regulation of p21 and down-regulation of cyclin B1, CDK1 and Cdc25c. Meanwhile, ATR-1 also triggered cellular apoptosis depending on the activation of mitochondrial apoptotic pathway. Mechanism investigation indicated that ATR-1 exerts its anti-tumor effect also relies on the inhibition of PI3K/Akt/mTOR signaling pathway. Finally, mice studies showed that ATR-1 blocked the T-24 or 253J-induced xenograft tumor growth without noticeable toxicity. CONCLUSIONS ATR-1 may be served as a potential therapeutic agent for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Fenghua St., 315211, Ningbo, China
| | - Bi-Xia Yu
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Jun-Feng Chen
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Xiu-Yi Lv
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Ze-Jun Yan
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China
| | - Yue Cheng
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China. .,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.
| | - Qi Ma
- Translational Research Laboratory for Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China. .,Department of Urology, Ningbo First Hospital, The Affiliated Hospital of Ningbo University, Liuting St., 315010, Ningbo, China.
| |
Collapse
|