1
|
Hosseinpour-Soleimani F, Salmasi Z, Ghasemi Y, Tajbakhsh A, Savardashtaki A. MicroRNAs and proteolytic cleavage of receptors in cancers: A comprehensive review of regulatory interactions and therapeutic implications. Heliyon 2024; 10:e28167. [PMID: 38560206 PMCID: PMC10979173 DOI: 10.1016/j.heliyon.2024.e28167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
- Infertility Research Center, Shiraz University Med Ical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
3
|
İlhan A, Golestani S, Shafagh SG, Asadi F, Daneshdoust D, Al-Naqeeb BZT, Nemati MM, Khalatbari F, Yaseri AF. The dual role of microRNA (miR)-20b in cancers: Friend or foe? Cell Commun Signal 2023; 21:26. [PMID: 36717861 PMCID: PMC9885628 DOI: 10.1186/s12964-022-01019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs, as non-coding transcripts, modulate gene expression through RNA silencing under normal physiological conditions. Their aberrant expression has strongly associated with tumorigenesis and cancer development. MiR-20b is one of the crucial miRNAs that regulate essential biological processes such as cell proliferation, apoptosis, autophagy, and migration. Deregulated levels of miR-20b contribute to the early- and advanced stages of cancer. On the other hand, investigations emphasize the tumor suppressor ability of miR-20b. High-throughput strategies are developed to identify miR-20b potential targets, providing the proper insight into its molecular mechanism of action. Moreover, accumulated results suggest that miR-20b exerts its effects through diverse signaling pathways, including PI3K/AKT/mTOR and ERK axes. Restoration of the altered expression levels of miR-20b induces cell apoptosis and reduces invasion and migration. Further, miR-20b can be used as a biomarker in cancer. The current comprehensive review could lead to a better understanding of the miR-20b in either tumorigenesis or tumor regression that may open new avenues for cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Ahmet İlhan
- grid.98622.370000 0001 2271 3229Department of Medical Biochemistry, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Shayan Golestani
- grid.411757.10000 0004 1755 5416Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Seyyed Ghavam Shafagh
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asadi
- grid.488474.30000 0004 0494 1414Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Danyal Daneshdoust
- grid.411495.c0000 0004 0421 4102School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Mohammed Mahdi Nemati
- grid.412763.50000 0004 0442 8645Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fateme Khalatbari
- grid.411768.d0000 0004 1756 1744Department of Pathology, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Fakhre Yaseri
- grid.412606.70000 0004 0405 433XDepartment of Genetic, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Song JH, Hwang B, Kim SB, Choi YH, Kim WJ, Moon SK. Bisphenol A modulates proliferation, apoptosis, and wound healing process of normal prostate cells: Involvement of G2/M-phase cell cycle arrest, MAPK signaling, and transcription factor-mediated MMP regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114358. [PMID: 36508820 DOI: 10.1016/j.ecoenv.2022.114358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Bisphenol A (BPA) is commonly used to produce epoxy resins and polycarbonate plastics. BPA is an endocrine-disrupting chemical that is leaked from the polymer and absorbed into the body to disrupt the endocrine system. Although BPA may cause cytotoxicity in the prostate, a hormone-dependent reproductive organ, its underlying mechanism has not yet been elucidated. Here, we investigated the effects of BPA on cell proliferation, apoptosis, and the wound healing process using prostate epithelial cells (RWPE-1) and stromal cells (WPMY-1). Observations revealed that BPA induced G2/M cell cycle arrest in both cell types through the ATM-CHK1/CHK2-CDC25c-CDC2 signaling pathway, and the IC50 values were estimated to be 150 μM. Furthermore, BPA was found to induce caspase-dependent apoptosis through initiator (caspase-8 and -9) and executioner (caspase-3 and -7) caspase cascades. In addition, BPA interfered with the wound healing process through inhibition of MMP-2 and - 9 expression, accompanied by reductions in the binding activities of AP-1 as well as NF-κB motifs. Phosphorylation of MAPKs was associated with the BPA-mediated toxicity of prostate cells. These results suggest that BPA exhibits prostate toxicity by inhibiting cell proliferation, inducing apoptosis, and interfering with the wound healing process. Our study provided new insights into the precise molecular mechanisms of BPA-induced toxicity in human prostate cells.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su-Bin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
5
|
Abedi Z, MotieGhader H, Hosseini SS, Sheikh Beig Goharrizi MA, Masoudi-Nejad A. mRNA-miRNA bipartite networks reconstruction in different tissues of bladder cancer based on gene co-expression network analysis. Sci Rep 2022; 12:5885. [PMID: 35393513 PMCID: PMC8991185 DOI: 10.1038/s41598-022-09920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/24/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer (BC) is one of the most important cancers worldwide, and if it is diagnosed early, its progression in humans can be prevented and long-term survival will be achieved accordingly. This study aimed to identify novel micro-RNA (miRNA) and gene-based biomarkers for diagnosing BC. The microarray dataset of BC tissues (GSE13507) listed in the GEO database was analyzed for this purpose. The gene expression data from three BC tissues including 165 primary bladder cancer (PBC), 58 normal looking-bladder mucosae surrounding cancer (NBMSC), and 23 recurrent non-muscle invasive tumor tissues (RNIT) were used to reconstruct gene co-expression networks. After preprocessing and normalization, deferentially expressed genes (DEGs) were obtained and used to construct the weighted gene co-expression network (WGCNA). Gene co-expression modules and low-preserved modules were extracted among BC tissues using network clustering. Next, the experimentally validated mRNA-miRNA interaction information were used to reconstruct three mRNA-miRNA bipartite networks. Reactome pathway database and Gene ontology (GO) was subsequently performed for the extracted genes of three bipartite networks and miRNAs, respectively. To further analyze the data, ten hub miRNAs (miRNAs with the highest degree) were selected in each bipartite network to reconstruct three bipartite subnetworks. Finally, the obtained biomarkers were comprehensively investigated and discussed in authentic studies. The obtained results from our study indicated a group of genes including PPARD, CST4, CSNK1E, PTPN14, ETV6, and ADRM1 as well as novel miRNAs (e.g., miR-16-5p, miR-335-5p, miR-124-3p, and let-7b-5p) which might be potentially associated with BC and could be a potential biomarker. Afterward, three drug-gene interaction networks were reconstructed to explore candidate drugs for the treatment of BC. The hub miRNAs in the mRNA-miRNA bipartite network played a fundamental role in BC progression; however, these findings need further investigation.
Collapse
Affiliation(s)
- Zahra Abedi
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Habib MotieGhader
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Sahar Sadat Hosseini
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
6
|
MicroRNA-517c Functions as a Tumor Suppressor in Hepatocellular Carcinoma via Downregulation of KPNA2 and Inhibition of PI3K/AKT Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7026174. [PMID: 35075389 PMCID: PMC8783737 DOI: 10.1155/2022/7026174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a kind of solid and highly aggressive malignant tumor with poor prognosis. MicroRNA (miRNA/miR) has been confirmed to be involved in HCC development. The current study focused on the functions and mechanisms of miR-517c in HCC. METHODS Expressions of miR-517c and Karyopherin α2 (KPNA2) mRNA in HCC cell lines and tissue samples were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was conducted for detections of epithelial-to-mesenchymal transition (EMT) and PI3K/AKT markers. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell assays were utilized to investigate the influence of miR-517c on HCC cell proliferation, invasion, and migration. TargetScan and luciferase reporter assay were performed to search for the potential target gene of miR-517c. RESULTS We demonstrated that miR-517c expressions were decreased in HCC tissues and cells. Moreover, the clinical analysis showed that decreased miR-517c expressions in HCC tissues correlated with shorter overall survival and malignant clinicopathologic features of HCC patients. MTT assay showed that miR-517c upregulation prominently repressed HCC cell proliferation. In addition, miR-517c restoration could significantly suppress HCC cell invasion and migration as demonstrated by Transwell assays. We also found that miR-517c directly targeted KPNA2 and regulated the PI3K/AKT pathway and EMT, exerting prohibitory functions in HCC. CONCLUSION Taken together, this study stated that miR-517c inhibited HCC progression via regulating the PI3K/AKT pathway and EMT and targeting KPNA2 in HCC, providing a novel insight into HCC treatment.
Collapse
|
7
|
Zhong Q, Xiong Y, Ling C, Qian Y, Zhao X, Yang H. Enhancing the sensitivity of ovarian cancer cells to olaparib via microRNA-20b-mediated cyclin D1 targeting. Exp Biol Med (Maywood) 2021; 246:1297-1306. [PMID: 34092127 PMCID: PMC8371305 DOI: 10.1177/1535370221994077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/21/2021] [Indexed: 02/05/2023] Open
Abstract
We previously reported that cyclin D1 silencing interferes with RAD51 accumulation and increases the sensitivity of BRCA1 wild-type ovarian cancer cells to olaparib. However, the mechanisms associated with cyclin D1 overexpression in ovarian cancer are not fully understood. TargetScan predicted the potential binding sites for microRNA-20b (miR-20b) and the 3'-untranslated region of cyclin D1 mRNA; thus, we used luciferase reporter assay to verify those binding sites. The Kaplan-Meier method and log-rank test were used to examine the relationship between miR-20b and progression-free survival of ovarian cancer patients in The Cancer Genome Atlas (n = 367) dataset. In vitro experiments were performed to evaluate the effects of miR-20b on cyclin D1 expression, cell cycle and response to olaparib. A peritoneal cavity metastasis model of ovarian cancer was established to determine the effect of miR-20b on the sensitivity of olaparib. Immunohistochemistry was performed to evaluate molecular mechanisms. In this work, we demonstrated that miR-20b down-regulates cyclin D1, increases the sensitivity of ovarian cancer cells to olaparib, reduces the expression of RAD51, and induces cell cycle arrest in G0/G1 phase. Ovarian cancer patients with higher expression of miR-20b had significantly longer progression-free survival. These results indicate that miR-20b may be a potential clinical indicator for the sensitivity of ovarian cancer to olaparib and the survival of ovarian cancer patients. Our findings suggest that miR-20b may have therapeutic value in combination with olaparib treatment for ovarian cancer.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Ying Xiong
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Chen Ling
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Chengdu, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, P.R. China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
8
|
Rodrigues-Junior DM, Pelarin MFDA, Nader HB, Vettore AL, Pinhal MAS. MicroRNA-1252-5p Associated with Extracellular Vesicles Enhances Bortezomib Sensitivity in Multiple Myeloma Cells by Targeting Heparanase. Onco Targets Ther 2021; 14:455-467. [PMID: 33488100 PMCID: PMC7814994 DOI: 10.2147/ott.s286751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease, and patient survival requires a better understanding of this malignancy's molecular aspects. Heparanase (HPSE) is highly expressed in aggressive MM cells and related to tumor growth, metastasis, and bortezomib (BTZ) resistance. Thus, targeting HPSE seems to be a promising approach for MM treatment, and because microRNAs (miRNAs) have emerged as potential regulators of HPSE expression, the use of extracellular vesicles (EVs) can allow the efficient delivery of therapeutic miRNAs. METHODS We used prediction algorithms to identify potential miRNAs that regulate negatively HPSE expression. RT-qPCR was performed to assess miRNAs and HPSE expression in MM lines (U266 and RPMI-8226). Synthetic miRNA mimics were electroporated in MM cells to understand the miRNA contribution in HPSE expression, glycosaminoglycans (GAGs) profile, cell proliferation, and cell death induced by BTZ. EVs derived from HEK293T cells were engineered with miRNAs to evaluate their therapeutic potential combined with BTZ. RESULTS It revealed a direct association between BTZ sensitivity, HPSE, and miR-1252-5p expressions. Moreover, overexpression of miR-1252-5p significantly reduced HPSE expression and HPSE enzymatic activity in MM cells. The higher level of miR-1252-5p was correlated with a reduction of cell viability and higher sensitivity to BTZ. Further, EVs carrying miR-1252-5p increased MM cells' sensitivity to BTZ treatment. CONCLUSION These results showed that miR-1252-5p could negatively regulate HPSE in MM, indicating the use of EVs carrying miR-1252-5p as a potential novel BTZ sensitization approach in MM cells.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Institute of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - André Luiz Vettore
- Department of Biological Science, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Maria Aparecida Silva Pinhal
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Biochemistry, Faculdade de Medicina do ABC, Santo André, Brazil
| |
Collapse
|
9
|
Yang H, Lin J, Jiang J, Ji J, Wang C, Zhang J. miR-20b-5p functions as tumor suppressor microRNA by targeting cyclinD1 in colon cancer. Cell Cycle 2020; 19:2939-2954. [PMID: 33044899 DOI: 10.1080/15384101.2020.1829824] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNA functions as an oncogenic regulator or tumor suppressor in various human tumors. Although bioinformatics analysis suggested that miRNA-20b-5p may be associated with the tumorigenesis, its role in colon cancer remains elusive. To investigate the role of miRNA-20b-5p, HCT116 cell, a human colon cancer cell line used in therapeutic research and drug screenings, was chosen as a model system for our in vitro studies. We first carried out bioinformatics and microarray analysis. To gain further mechanism insight, flow cytometry was performed to determine cell apoptosis and cell cycle, and western blot or immunohistochemistry were employed to check the expression of CCND1/CDK/FOXM1 axis in HCT116 cells. In addition, wound-healing migration assay and transwell assay were conducted to uncover the effect of miR-20b-5p on tumor migration and invasion. Finally, we examined the role of miR-20b-5p by subcutaneous xenograft mouse models. Our data have shown that miRNA-20b-5p inhibited the cell cycle, migration, and invasion in HCT116 cells, but had no effect on cell apoptosis. CyclinD1 (CCND1) was identified as a direct target of miR-20b-5p. Overexpression of miRNA-20b-5p downregulated CCND1 level in HCT-116 cells. Mechanically, the inhibition of cell cycle, migration, and invasion of CC cells mediated by miRNA-20b-5p are through regulating the CCND1/CDK4/FOXM1 axis. Furthermore, miRNA-20b-5p inhibited the tumorigenesis in Balb/c nude mice CC xenograft models. Our data demonstrated that miR-20b-5p may serve as a tumor suppressor in colon cancer by negatively regulating CCND1, implying that miR-20b-5p could be a potential therapeutic target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Hui Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jian Lin
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology , Shanghai, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jun Ji
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China.,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine , Shanghai, China
| |
Collapse
|
10
|
Pantazis TL, Giotakis AI, Karamagkiolas S, Giotakis I, Konstantoulakis M, Liakea A, Misiakos EP. Low expression of miR-20b-5p indicates favorable prognosis in laryngeal squamous cell carcinoma, especially in patients with non-infiltrated regional lymph nodes. Am J Otolaryngol 2020; 41:102563. [PMID: 32521298 DOI: 10.1016/j.amjoto.2020.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Tumor recurrence and distant metastasis are very common in laryngeal squamous cell carcinoma (LSCC). In this study, we examined the potential prognostic value of microRNA-20b-5p (miR-20b-5p), a component of the tumor-related miR-106a/363 cluster. MATERIALS AND METHODS Total RNA was purified from 105 tissue specimens resected from patients having undergone surgical treatment for primary LSCC. After in vitro polyadenylation and reverse transcription, a sensitive real-time quantitative polymerase chain reaction (qPCR) methodology was applied for the relative quantification of miR-20b-5p levels. Then, we proceeded with biostatistical analysis, seeking to assess the prognostic value of miR-20b-5p expression in LSCC. RESULTS miR-20b-5p positivity constitutes a predictor of inferior DFS and OS in LSCC (P < 0.001 and P = 0.002, respectively). The significant prognostic value of miR-20b-5p expression status seems to be independent of tumor size, histological grade, and TNM stage, as revealed by the multivariate bootstrap Cox regression analysis. Kaplan-Meier survival analysis showed also that miR-20b-5p expression status can stratify LSCC patients with non-infiltrated regional lymph nodes (N0) into two subgroups with distinct prognosis (P = 0.004 and P = 0.004, respectively). CONCLUSIONS The miR-20b-5p expression status is a promising molecular tissue biomarker in LSCC, with an independent prognostic value, and thus merits further validation in larger cohorts of patients.
Collapse
Affiliation(s)
- Theodwros-Leonidas Pantazis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Aris I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Konstantoulakis
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aliki Liakea
- First Department of Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Evangelos P Misiakos
- Third Department of Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Lei T, Yin L, Zhang H, Wei B, Chen H, Pu T, Yang L, Ye F, Zhang Z, Bu H. High expression of microRNA20b is associated with malignant clinicopathological features and poor prognosis in breast phyllodes tumor. Int J Clin Oncol 2020; 25:2025-2034. [PMID: 32803488 DOI: 10.1007/s10147-020-01769-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND microRNAs, which expound the transcriptional regulation of gene expression, have been validated as prognostic markers in many tumors. The deregulated expression of microRNAs has been shown to aid classification of tumors and predict outcome in many tumors including breast PTs. The aim of our study is to investigate the clinical significance and prognostic value of microRNAs in PTs to identify a biomarker which has the potential for predicting prognosis and target therapy. METHODS Quantitative real-time PCR (qRT-PCR) was used to detect the expression level of microRNA20b in 123 breast PTs patients. The correlations between the expression of microRNA20b and clinicopathological parameters were investigated. The prognostic significance of microRNA20b was investigated by the Kaplan-Meier survival and Cox proportional hazards regression model. RESULTS The expression level of microRNA20b increased with the increase in the tumor grade (p < 0.05). High expression of microRNA20b correlated with stromal overgrowth, marked stromal cellularity, high atypia of stromal cells, infiltrative tumor margin, high mitotic activity, tumor grade, local recurrence and metastasis (p < 0.05). High expression of microRNA20b correlated with the shorter disease-free survival (DFS) (log-rank test, p < 0.001). Multivariate Cox regression analysis showed that microRNA20b was an independent prognostic indicator for breast PTs patients. CONCLUSION The study demonstrated the promising potential of applying microRNA20b as a prognostic biomarker in PT patients.
Collapse
Affiliation(s)
- Ting Lei
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,Laboratory of Pathology, Clinical Research Centre for Breast, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lijuan Yin
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Bing Wei
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Tianjie Pu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,Laboratory of Pathology, Clinical Research Centre for Breast, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,Laboratory of Pathology, Clinical Research Centre for Breast, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Ye
- Laboratory of Pathology, Clinical Research Centre for Breast, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.,Laboratory of Pathology, Clinical Research Centre for Breast, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
12
|
Zhang R, Li F, Wang Y, Yao M, Chi C. Prognostic value of microRNA-20b expression level in patients with prostate cancer. Histol Histopathol 2020; 35:827-831. [PMID: 32286677 DOI: 10.14670/hh-18-216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND miR-20b is a member of the miR-106a-363 gene cluster located in the mammalian X chromosome, the larger miR-17 family, and the miR-17-92 and miR-106b-25 gene clusters. Previous studies have indicated that miR-20b may function as oncogene or tumor suppressor in different types of cancers. The present study analyzed the association between miR-20b and clinicopathological characteristics of patients with prostate cancer. METHODS A total of 127 pairs of prostate cancer tissue samples and adjacent prostate tissue samples were collected from April 2013 to March 2018. The associations between miR-20b expression levels and clinicopathological factors were assessed using the χ2‑test. Survival was estimated using the Kaplan-Meier method, and the differences in survival according to miR-20b expression were compared using the log-rank test. Prognostic values of miR-20b expression and clinical outcomes were evaluated by Cox regression analysis. RESULTS The relative expression of miR-20b in prostate cancer tissues was significantly higher than that in adjacent noncancerous prostate tissues (P<0.001). miR-20b expression was observed to be significantly associated with Gleason score (P<0.001), lymph node metastasis (P<0.001), and TNM stage (P=0.002). The log-rank test indicated that patients with increased miR-20b expression experienced poor overall survival (P=0.037). Multivariate Cox regression analysis showed that miR-20b expression level (HR=2.181, 95% CI: 1.772-9.021, P=0.016) was an independent factor in predicting the overall survival of prostate cancer patients. CONCLUSION The present study demonstrated that tissue miR-20b expression level could be a promising biomarker of prognosis in prostate cancer.
Collapse
Affiliation(s)
- Rongkui Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Fuwei Li
- Operating Room, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yuchong Wang
- Department of Magnetic Resonance, Jilin Province FAW General Hospital, Changchun, Jilin, PR China
| | - Ming Yao
- Department of Radiology, Jilin Cancer Hospital, Changchun, Jilin, PR China
| | - Changliang Chi
- Department of Urology Surgery, The First Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
13
|
Qi JC, Yang Z, Zhang YP, Lu BS, Yin YW, Liu KL, Xue WY, Qu CB, Li W. miR-20b-5p, TGFBR2, and E2F1 Form a Regulatory Loop to Participate in Epithelial to Mesenchymal Transition in Prostate Cancer. Front Oncol 2020; 9:1535. [PMID: 32010624 PMCID: PMC6974577 DOI: 10.3389/fonc.2019.01535] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
The transcription factor E2F1 regulates the expression of the miR-20b-5p precursor and is involved in epithelial-to-mesenchymal transition (EMT). Transforming growth factor-β1 (TGF-β1) induces EMT in prostate cancer (PCa) by binding to TGF-beta receptor 2 (TGFBR2) to activate TGF-β signaling. However, the relationship between TGFBR2, E2F1, and miR-20b-5p in the modulation of EMT in PCa cells remains unknown. In this study, we found that the level of miR-20b-5p expression was significantly lower in PC3 and DU145 cells than that in prostate epithelial (RWPE-1) cells, and TGF-β1 treatment further down-regulated miR-20b-5p expression in these two cell lines. Functional studies showed that miR-20b-5p suppressed TGF-β1-induced migration and invasion of PC3 and DU145 cells by up-regulating E-cadherin and down-regulating vimentin, leading to TGF-β1-induced inhibition of EMT. Using gain and loss of function experiments, it was shown that E2F1 mediated TGF-β1 regulation of miR-20b-5p expression. Further, a luciferase activity assay showed that TGFBR2 was a direct target of miR-20b-5p in PCa cells. These results suggest that miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to modulate EMT induced by TGF-β1. A novel regulatory mechanism underlying the miR-20b-5p/TGFBR2/E2F1 axis is involved in TGF-β1-induced EMT of PCa cells, and miR-20b-5p may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Yong Xue
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Cai Z, Zhang F, Chen W, Zhang J, Li H. miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer. Onco Targets Ther 2019; 12:11805-11816. [PMID: 32099386 PMCID: PMC6997227 DOI: 10.2147/ott.s231489] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is an important cancer treatment method. Tumor chemotherapy resistance is one of the main factors leading to tumor progression. Like other malignancies, bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance. Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate gene expression at the posttranscriptional level, which results in the inhibition of translation or the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the expression of genes related to tumor resistance, thereby promoting the progression of tumors. In bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer. Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer and improving the efficacy of chemotherapy and patient survival. In this article, we review the role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fa Zhang
- Department of Urology, First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Weijie Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, People's Republic of China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
15
|
Zhang M, Jiang Y, Guo X, Zhang B, Wu J, Sun J, Liang H, Shan H, Zhang Y, Liu J, Wang Y, Wang L, Zhang R, Yang B, Xu C. Long non-coding RNA cardiac hypertrophy-associated regulator governs cardiac hypertrophy via regulating miR-20b and the downstream PTEN/AKT pathway. J Cell Mol Med 2019; 23:7685-7698. [PMID: 31465630 PMCID: PMC6815784 DOI: 10.1111/jcmm.14641] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022] Open
Abstract
Pathological cardiac hypertrophy (CH) is a key factor leading to heart failure and ultimately sudden death. Long non‐coding RNAs (lncRNAs) are emerging as a new player in gene regulation relevant to a wide spectrum of human disease including cardiac disorders. Here, we characterize the role of a specific lncRNA named cardiac hypertrophy‐associated regulator (CHAR) in CH and delineate the underlying signalling pathway. CHAR was found markedly down‐regulated in both in vivo mouse model of cardiac hypertrophy induced by pressure overload and in vitro cellular model of cardiomyocyte hypertrophy induced by angiotensin II (AngII) insult. CHAR down‐regulation alone was sufficient to induce hypertrophic phenotypes in healthy mice and neonatal rat ventricular cells (NRVCs). Overexpression of CHAR reduced the hypertrophic responses. CHAR was found to act as a competitive endogenous RNA (ceRNA) to down‐regulate miR‐20b that we established as a pro‐hypertrophic miRNA. We experimentally established phosphatase and tensin homolog (PTEN), an anti‐hypertrophic signalling molecule, as a target gene for miR‐20b. We found that miR‐20b induced CH by directly repressing PTEN expression and indirectly increasing AKT activity. Moreover, CHAR overexpression mitigated the repression of PTEN and activation of AKT by miR‐20b, and as such, it abrogated the deleterious effects of miR‐20b on CH. Collectively, this study characterized a new lncRNA CHAR and unravelled a new pro‐hypertrophic signalling pathway: lncRNA‐CHAR/miR‐20b/PTEN/AKT. The findings therefore should improve our understanding of the cellular functionality and pathophysiological role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiaofei Guo
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiangjiao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiabin Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Ying Wang
- Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| | - Lu Wang
- Department of Urology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Rong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chaoqian Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Center of Chronic Diseases and Drug Research of Mudanjiang Medical, University of Alliance of Sino-Russian Medical Universities, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
16
|
Yu LZ, Dai DP, Xiang XY. MiR-20b reverses 5-FU resistance in colon cancer cells by inhibiting JAK/STAT3 signaling pathway. Shijie Huaren Xiaohua Zazhi 2019; 27:544-550. [DOI: 10.11569/wcjd.v27.i9.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon cancer is a common disease that seriously threatens human life and health. In recent years, the incidence of colon cancer has been increasing significantly. Recurrence, metastasis, and chemotherapy resistance are the main obstacles to long-term survival of patients with colorectal cancer. More and more studies suggest that microRNAs are involved in the pathogenesis and drug resistance of colon cancer.
AIM To investigate the role of microRNA-20b in drug resistance of colon cancer cells and the underlying mechanism.
METHODS The resistance of common colon cancer cells (SW480) and drug-resistant cells (SW480/5-FU) to 5-fluorouracil (5-FU) was confirmed by MTT assay. The expression of microRNA-20b in SW480/5-FU cells was detected by reverse transcription-polymerase chain reaction (RT-PCR). SW480/5-FU cells were transfected with exogenous microRNA-20b, and their drug resistance, migration, and invasion were observed. Finally, we detected the changes of several members of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway by immunoblotting.
METHODS Compared with the normal colon cancer cell line (SW480), the drug-resistant cell line (SW480/5-FU) showed obvious resistance to 5-FU. The expression of microRNA-20b in SW480/5-FU cells was significantly down-regulated. When exogenous microRNA-20b was transfected into SW480/5-FU cells, the drug resistance, migration, and invasion of SW480/5-FU cells decreased significantly. Immunoblotting assay showed that the phosphorylation of JAK and STAT in SW480/5-FU cells transfected with microRNA-20b was decreased. The JAK/STAT3 signaling pathway was inhibited after transfection with microRNA-20b.
CONCLUSION The resistance of SW480/5-FU to 5-FU is mediated by microRNA-20b, which may be related to the inhibition of the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Ling-Zhi Yu
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| | - Dan-Ping Dai
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| | - Xiu-Yao Xiang
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| |
Collapse
|
17
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
18
|
Saeki N, Saito A, Sugaya Y, Amemiya M, Sasaki H. Indirect Down-regulation of Tumor-suppressive let-7 Family MicroRNAs by LMO1 in Neuroblastoma. Cancer Genomics Proteomics 2018; 15:413-420. [PMID: 30194082 DOI: 10.21873/cgp.20100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Overall survival for the high-risk group of neuroblastoma (NB) patients still remains at 40-50%, necessitating the establishment of a curable treatment. LIM domain only 1 (LMO1) gene encoding a transcriptional regulator is an NB-susceptibility gene with a tumor-promoting activity. Previously we conducted chromatin immunoprecipitation and DNA sequencing analyses on NB cell lines and identified 3 protein-coding genes regulated by LMO1. In this study, we extended our analyses to capture microRNA genes directly or indirectly regulated by LMO1. MATERIALS AND METHODS Using microarrays, we conducted a comparative gene expression analysis on an NB cell line SK-N-SH; between the cells with and without LMO1 suppression. RESULTS Overall, 18 microRNAs were identified to be indirectly down-regulated by LMO1 including 7 microRNAs of the let-7 family, whose cell proliferation inhibitory activity was observed. CONCLUSION Target genes of the LMO1-regulated microRNAs and their relevant pathways may be a potential therapeutic target.
Collapse
Affiliation(s)
- Norihisa Saeki
- Division of Anatomy and Physiology, Okinawa Prefectural College of Nursing, Okinawa, Japan
| | - Akira Saito
- Statistical Genetics Analysis Division, StaGen Co. Ltd., Tokyo, Japan
| | - Yuki Sugaya
- Statistical Genetics Analysis Division, StaGen Co. Ltd., Tokyo, Japan
| | - Mitsuhiro Amemiya
- Statistical Genetics Analysis Division, StaGen Co. Ltd., Tokyo, Japan
| | - Hiroki Sasaki
- Department of Translational Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
19
|
Peng M, Wang J, Zhang D, Jin H, Li J, Wu XR, Huang C. PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene 2018; 37:5735-5748. [PMID: 29930380 PMCID: PMC6202328 DOI: 10.1038/s41388-018-0374-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) is a tumor suppressor that catalyzes the de-phosphorylation of the AGC kinases, while p27 acts as a tumor suppressor that regulates cell cycle, apoptosis, and cell motility. Our previous studies have identified that PHLPP2 participates in inhibition of transformation of human bronchial epithelial cells following lung carcinogen B[a]P/B[a]PDE exposure. However, nothing was known about the association of p27 with regulation of PHLPP2 expression and the role of PHLPP2 in bladder cancer (BC) invasion. In our current studies, we demonstrated that PHLPP2 inhibited BC invasion through promoting MMP2 degradation via p62-mediated autophagy; and p27 expression was able to stabilize PHLPP2 protein by inhibiting protein degradation of Hsp90, which could directly bind to PHLPP2 and protect it from degradation. More in-depth studies discovered that stabilization of Hsp90 by p27 was mediated by calpain1 proteolysis system, whereas p27 inhibited calpain1 gene transcription by attenuating Jak1/Stat1 cascade in human invasive BC cells. Collectively, we for the first time revealed PHLPP2 downregulation in BCs and its participating in promotion of BC invasion, as well as novel role of p27 and mechanisms underlying its regulation of PHLPP2 protein degradation through Hsp90-dependent manner. Our findings improve our understanding of p27 and PHLPP2 roles and their crosstalk in regulation of BC invasion, which further contributes to improve the current strategy for invasive bladder cancer therapy.
Collapse
Affiliation(s)
- Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
20
|
Guo X, Huang H, Jin H, Xu J, Risal S, Li J, Li X, Yan H, Zeng X, Xue L, Chen C, Huang C. ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3β-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:337-349. [PMID: 30195772 PMCID: PMC6037888 DOI: 10.1016/j.omtn.2018.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 05/02/2018] [Accepted: 05/20/2018] [Indexed: 01/23/2023]
Abstract
Our most recent studies demonstrate that miR-137 is downregulated in human bladder cancer (BC) tissues, while treatment of human BC cells with isorhapontigenin (ISO) elevates miR-137 abundance. Since ISO showed a strong inhibition of invasive BC formation in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced invasive BC mouse model, the elucidation of a potential biological effect of miR-137 on antagonizing BC invasion and molecular mechanisms underlying ISO upregulation of miR-137 are very important. Here we discovered that ectopic expression of miR-137 led to specific inhibition of BC invasion in human high-grade BC T24T and UMUC3 cells, while miR-137 deletion promoted the invasion of both cells, indicating the inhibitory effect of miR-137 on human BC invasion. Mechanistic studies revealed that ISO treatment induced miR-137 transcription by promoting c-Jun phosphorylation and, in turn, abolishing matrix metalloproteinase-2 (MMP-2) abundance and invasion in BC cells. Moreover, miR-137 was able to directly bind to the 3' UTR of Glycogen synthase kinase-3β (GSK3β) mRNA and inhibit GSK3β protein translation, consequently leading to a reduction of heat shock protein-70 (HSP70) translation via targeting the mTOR/S6 axis. Collectively, our studies discover an unknown function of miR-137, directly targeting the 3' UTR of GSK3β mRNA and, thereby, inhibiting GSK3β protein translation, mTOR/S6 activation, and HSP70 protein translation and, consequently, attenuating HSP70-mediated MMP-2 expression and invasion in human BC cells. These novel discoveries provide a deep insight into understanding the biomedical significance of miR-137 downregulation in invasive human BCs and the anti-cancer effect of ISO treatment on mouse invasive BC formation.
Collapse
Affiliation(s)
- Xirui Guo
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Haishan Huang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sanjiv Risal
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Xin Li
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiying Yan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Lei Xue
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| |
Collapse
|
21
|
Elevated miR-20b-5p expression in peripheral blood mononuclear cells: A novel, independent molecular biomarker of favorable prognosis in chronic lymphocytic leukemia. Leuk Res 2018; 70:1-7. [PMID: 29715621 DOI: 10.1016/j.leukres.2018.04.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNA-20b-5p (miR-20b-5p) is part of the miR-106a/363 cluster and a member of the cancer-related miR-17 family. miR-20b-5p regulates important transcription factors, including hypoxia-inducible factor 1 (HIF1) and signal transducer and activator of transcription 3 (STAT3). Recently, the dysregulation of miR-20b-5p expression has been observed in many B-cell lymphomas and T-cell leukemias. In this research study, we examined the putative prognostic value of miR-20b-5p in CLL. Therefore, total RNA was isolated from peripheral blood mononuclear cells (PBMCs) collected from 88 CLL patients; next, total RNA was polyadenylated and first-strand cDNA was synthesized, using an oligo-dT-adapter primer. miR-20b-5p expression was quantified using an in-house-developed real-time quantitative PCR assay. Kaplan-Meier OS analysis and bootstrap univariate Cox regression showed that high miR-20b-5p expression predicts better OS for CLL patients (p < 0.001). Interestingly, miR-20b-5p overexpression retains its favorable prognostic role in CLL patients of intermediate risk or stratified according to established prognostic factors [CD38 expression and mutational status of the immunoglobulin heavy chain variable (IGHV) region]. In conclusion, miR-20b-5p is a potential independent molecular biomarker of favorable prognosis in CLL.
Collapse
|
22
|
A six-microRNA signature in plasma was identified as a potential biomarker in diagnosis of esophageal squamous cell carcinoma. Oncotarget 2018; 8:34468-34480. [PMID: 28380431 PMCID: PMC5470983 DOI: 10.18632/oncotarget.16519] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
The differential expression of microRNAs (miRNAs) in plasma of esophageal squamous cell carcinoma (ESCC) patients may serve as a diagnostic biomarker. A four-stage study was conducted to identify plasma miRNAs with potential in detecting ESCC. Exiqon panels (2 ESCC pools vs. 1 normal control (NC) pool) were applied in the screening phase to obtain miRNA profiles. The identified miRNAs were further evaluated through training (36 ESCC VS. 42 NCs) and testing stages (101 ESCC VS. 113 NCs) with qRT-PCR assays. A six-miRNA signature including up-regulated miR-106a, miR-18a, miR-20b, miR-486-5p, miR-584 and down-regulated miR-223-3p in ESCC was identified. The signature could accurately discriminate ESCC patients from NCs with areas under the receiver operating characteristic curve of 0.935, 0.959 and 0.966 for the training, testing and the additional validation stage (41 ESCC VS. 50 NCs), respectively. MiR-106a and miR-584 were significantly up-regulated in tumor tissues with qRT-PCR assays. And miR-584 was also up-regulated in ESCC tissues from TCGA database. In addition, exosomal miR-223-3p and miR-584 were consistently dysregulated with those in plasma and could also act as biomarkers in diagnosis of ESCC. In conclusion, we identified a six-miRNA signature in plasma which could act as a non-invasive biomarker in detection of ESCC.
Collapse
|
23
|
MicroRNA-20b-5p inhibits platelet-derived growth factor-induced proliferation of human fetal airway smooth muscle cells by targeting signal transducer and activator of transcription 3. Biomed Pharmacother 2018; 102:34-40. [PMID: 29549727 DOI: 10.1016/j.biopha.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023] Open
Abstract
Pediatric asthma is still a health threat to the pediatric population in recent years. The airway remodeling induced by abnormal airway smooth muscle (ASM) cell proliferation is an important cause of asthma. MicroRNAs (miRNAs) are important regulators of ASM cell proliferation. Numerous studies have reported that miR-20b-5p is a critical regulator for cell proliferation. However, whether miR-20b-5p is involved in regulating ASM cell proliferation remains unknown. In this study, we aimed to investigate the potential role of miR-20b-5p in regulating the proliferation of fetal ASM cell induced by platelet-derived growth factor (PDGF). Here, we showed that miR-20b-5p was significantly decreased in fetal ASM cells treated with PDGF. Biological experiments showed that the overexpression of miR-20b-5p inhibited the proliferation while miR-20b-5p inhibition markedly promoted the proliferation of fetal ASM cells. Bioinformatics analysis and luciferase reporter assay showed that miR-20b-5p directly targeted the 3'-UTR of signal transducer and activator of transcription 3 (STAT3). Further data showed that miR-20b-5p negatively regulated the expression of STAT3 in fetal ASM cells. Moreover, miR-20b-5p regulates the transcriptional activity of STAT3 in fetal ASM cells. Overexpression of STAT3 reversed the inhibitory effect of miR-20b-5p overexpression on fetal ASM cell proliferation while the knockdown of STAT3 abrogated the promoted effect of miR-20b-5p inhibition on fetal ASM cell proliferation. Overall, our results show that miR-20b-5p impedes PDGF-induced proliferation of fetal ASM cells through targeting STAT3. Our study suggests that miR-20b-5p may play an important role in airway remodeling during asthma and suggests that miR-20b-5p may serve as a potential therapeutic target for pediatric asthma.
Collapse
|
24
|
Kawano M, Tanaka K, Itonaga I, Iwasaki T, Tsumura H. MicroRNA-20b promotes cell proliferation via targeting of TGF-β receptor II and upregulates MYC expression in Ewing's sarcoma cells. Int J Oncol 2017; 51:1842-1850. [PMID: 29039480 DOI: 10.3892/ijo.2017.4155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/06/2017] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-β receptor II (TGFBR2) is implicated in various types of cancer. Most molecules involved in the TGF-β pathway can be degraded by one or more microRNAs (miRNAs). In the present study, we show that miRNA plays an important role in downregulating TGFBR2 expression in Ewing's sarcoma (ES) cells. Microarray-based analyses revealed that the expression of miR-20b was significantly increased, whereas TGFBR2 and MYC were significantly downregulated and upregulated, respectively, in all ES cells compared to their expression in human mesenchymal stem cells (hMSCs). In ES cell lines, anti-miR-20b increased TGFBR2 expression and significantly decreased MYC expression, showing an inverse relationship with TGFBR2. The induction by anti-miR-20b further prohibited ES cell growth and cell cycle progression. Moreover, decreased miR-20b in ES cells significantly inhibited tumor growth in vivo. Taken together, these results suggest that miR-20b behaves as an oncogene in ES when its overexpression is unregulated by targeting TGFBR2. Because downstream TGFBR2 and TGF-β signaling regulate cell cycle, apoptosis, and tumor proliferation via MYC, our findings may contribute to new targeted therapies for ES.
Collapse
Affiliation(s)
- Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| |
Collapse
|
25
|
Wang X, Lin B, Nie L, Li P. microRNA-20b contributes to high glucose-induced podocyte apoptosis by targeting SIRT7. Mol Med Rep 2017; 16:5667-5674. [DOI: 10.3892/mmr.2017.7224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 06/15/2017] [Indexed: 11/06/2022] Open
|
26
|
Eismann J, Hirschfeld M, Erbes T, Rücker G, Jäger M, Ritter A, Weiss D, Gitsch G, Mayer S. Hypoxia- and acidosis-driven aberrations of secreted microRNAs in endometrial cancer in vitro. Oncol Rep 2017. [PMID: 28627686 DOI: 10.3892/or.2017.5717] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to their post-transcriptional regulatory impact on gene expression, microRNAs (miRNA, miRs) influence decisively cellular processes of differentiation, proliferation and apoptosis. In oncogenic pathways various miRNAs exert either oncogenic or tumor suppressor activities in a stage-specific manner. Dysregulation of miRNA expression pattern has been associated with several human cancers including endometrial cancer (EC). In the present study, expression profile alterations of EC associated secreted miRNAs were determined under the microenvironmental stress situations hypoxia and acidosis occurring in tumor progression and metastasis. The potential influence of hypoxia and acidosis vs. control conditions on the expression levels of 24 EC-relevant miRNA types was quantitatively accessed via real-time PCR in three established EC in vitro models. Expression data were analyzed statistically. In vitro application of hypoxia resulted in downregulation of miR-15a, miR-20a, miR-20b and miR-128-1 in Ishikawa cells (type I EC) and upregulation of miR-21 in EFE-184 cells (type I EC). Acidosis triggered upregulation of tumor promoting miR-125b in AN3-CA cell (type II EC), whereas in Ishikawa cells (type I EC) miRNAs with tumor suppressive function were found altered in divergent directions, both up- (let-7a) and down- (miR-22) regulated. Our current findings emphasize the functional importance of secreted miRNAs in the immediate response of EC cells to exogenic stress situations such as the typical tumor epiphenomena hypoxia and acidosis. Focusing on the specific potential of secreted, thus circulating miRNA molecules, alterations in expression levels not only influence intracellular gene expression and signaling cascades, but also transfer the induction of (tumor)biological cellular changes to adjacent cells.
Collapse
Affiliation(s)
- Julia Eismann
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Institute for Medical Biometry and Statistics, Medical Center - University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Gerald Gitsch
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Obstetrics and Gynecology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Chen G, Yue Y, Qin J, Xiao X, Ren Q, Xiao B. Plumbagin suppresses the migration and invasion of glioma cells via downregulation of MMP-2/9 expression and inaction of PI3K/Akt signaling pathway in vitro. J Pharmacol Sci 2017; 134:59-67. [DOI: 10.1016/j.jphs.2017.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
|
28
|
Fu Q, Cheng J, Zhang J, Zhang Y, Chen X, Luo S, Xie J. miR-20b reduces 5-FU resistance by suppressing the ADAM9/EGFR signaling pathway in colon cancer. Oncol Rep 2016; 37:123-130. [PMID: 27878272 DOI: 10.3892/or.2016.5259] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/29/2016] [Indexed: 12/14/2022] Open
Abstract
Chemoresistance is a major obstacle to cancer therapy including that of colon cancer (CC). Although the dysregulation of many miRNAs has been implicated in 5-fluorouracil (5-FU) resistance in CC cells, the specific role of miR-20b in chemoresistance has not been documented. In the present study, we first determined the expression of miR-20b by RT-PCR and the levels of a disintegrin and metalloprotease 9 (ADAM9) and epidermal growth factor receptor (EGFR) by western blotting in CC and adjacent non-cancerous tissues from 5-FU-sensitive or -resistant CC patients. Subsequently, 5-FU-sensitive (HCT116) and -resistant (HCT116-R) cells were obtained, and the levels of miR-20b, ADAM9 and EGFR were detected. Meanwhile, the 5-FU resistance of the cells was examined by assessing cell viability (by MTT assay) and apoptosis (by flow cytometry). After transfection of miR-20b into HCT116-R cells, drug resistance was reexamined. We then confirmed the relationship between miR-20b and ADAM9 by luciferase reporter assay. Finally, 5-FU resistance in HCT116 and HCT116-R cells was compared after transfection with miR-20b. Our results showed that miR-20b was expressed at lower levels in the 5-FU-resistant tissues and cells than in the 5-FU-sensitive tissues and cells. The opposite was the case for expression of ADAM9 and EGFR. In addition, we demonstrated that ADAM9 is a direct target of miR-20b and that miR-20b decreased the 5-FU resistance of HCT116-R cells. Our findings suggest that miR-20b reduces 5-FU resistance to induce apoptosis in vitro by suppressing ADAM9/EGFR in CC cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jing Cheng
- Department of Medical Oncology, Zhengzhou Central Hospital, Zhengzhou, Henan 450007, P.R. China
| | - Jindai Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Yonglei Zhang
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Xiaobing Chen
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Suxia Luo
- Department of Digestion and Medical Oncology, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| | - Jianguo Xie
- Department of Gastrointestinal Surgery Center, Henan Cancer Hospital, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
29
|
Ao X, Nie P, Wu B, Xu W, Zhang T, Wang S, Chang H, Zou Z. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis 2016; 7:e2463. [PMID: 27831559 PMCID: PMC5260895 DOI: 10.1038/cddis.2016.367] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/27/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Chemoresistance is a major obstacle to effective breast cancer chemotherapy. However, the underlying molecular mechanisms remain unclear. In this study, nuclear receptor coactivator 3 (NCOA3) was found to be significantly increased in taxol-resistant breast cancer tissues and cells. Moreover, overexpression of NCOA3 enhanced breast cancer cell resistance to taxol, whereas depletion of NCOA3 decreased taxol resistance. Subsequently, we investigated whether NCOA3 expression was regulated by miRNAs in breast cancer. By bioinformatics prediction in combination with the data of previous report, miR-17 and miR-20b were selected as the potential miRNAs targeting NCOA3. By real-time PCR analysis, we found that miR-17 and miR-20b were significantly reduced in taxol-resistant breast cancer tissues and cells. In addition, we provided some experimental evidences that miR-17 and miR-20b attenuated breast cancer resistance to taxol in vitro and in vivo models. Furthermore, by luciferase reporter assays, we further validated that both miR-17 and miR-20b directly binded the 3'-untranslated region of NCOA3 mRNA and inhibited its expression in breast cancer cells. Finally, both miR-17 and miR-20b levels were found to be significantly negatively correlated with NCOA3 mRNA levels in breast cancer tissues. Together, our results indicated that loss of miR-17 and miR-20b enhanced breast cancer resistance to taxol by upregulating NCOA3 levels. Our study suggested miR-17, miR-20b and NCOA3 may serve as some predictive biomarkers and potential therapeutic targets in taxol-resistant breast cancer treatment.
Collapse
Affiliation(s)
- Xiang Ao
- Breast Oncology Department, Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peipei Nie
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baoyan Wu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Wei Xu
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Shin SS, Park SS, Hwang B, Moon B, Kim WT, Kim WJ, Moon SK. MicroRNA-892b influences proliferation, migration and invasion of bladder cancer cells by mediating the p19ARF/cyclin D1/CDK6 and Sp-1/MMP-9 pathways. Oncol Rep 2016; 36:2313-20. [PMID: 27573859 DOI: 10.3892/or.2016.5052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
Cancers often utilize microRNAs to suppress tumor suppressor genes, thus facilitating their potential for growth and invasion. In the present study, we report the novel findings that miR-892b inhibits proliferation, migration and invasion of bladder cancer cells. The basal expression level of miR‑892b was significantly lower in 3 different bladder cancer cell lines than in normal human urothelial cells. Transfection of miR-892b mimics to bladder cancer cells resulted in dose‑dependent growth arrest. Flow cytometric analysis of the cell cycle showed that miR-892b-transfected bladder cancer cells were subject to arrest in the G1 phase, which was due to the downregulation of cyclin D1 and CDK6 followed by upregulation of p19ARF. In addition, overexpression of miR-892b impeded the migration and invasion of EJ cells. Expression of MMP-9 in EJ cells was blocked by transfection of miR-892b; the effect was regulated, at least in part, by activation of the Sp-1 transcription factor. Overall, we verified that miR-892b regulates the p19ARF/cyclin D1/CDK6 and Sp-1/MMP-9 signaling networks in bladder cancer cells and may provide a treatment option for advanced-stage bladder cancers.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Bokyung Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
31
|
Shin SS, Park SS, Hwang B, Kim WT, Choi YH, Kim WJ, Moon SK. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression. Oncol Rep 2016; 36:2421-9. [PMID: 27513725 DOI: 10.3892/or.2016.5015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/01/2016] [Indexed: 11/05/2022] Open
Abstract
Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosphorylation over their levels in the control. Flow cytometry analysis revealed that mir‑106a-transfected cells accumulated in the G1-phase of the cell cycle, and cyclin D1 and CDK6 were significantly downregulated. This G1-phase cell cycle arrest was due in part to the upregulation of p21CIP1/WAF1. In addition, mir‑106a overexpression blocked the wound-healing migration and invasion of EJ cells. Furthermore, mir‑106a transfection resulted in decreased expression of MMP-2 and diminished binding activity of transcription factor Ets-1 in EJ cells. Collectively, we report the novel mir‑106a-mediated molecular signaling networks that regulate the proliferation, migration, and invasion of bladder cancer cells, suggesting that mir‑106a may be a therapeutic target for treating advanced bladder tumors.
Collapse
Affiliation(s)
- Seung-Shick Shin
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 614-052, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 456-756, Republic of Korea
| |
Collapse
|
32
|
Gao F, Sun M, Gong Y, Wang H, Wang Y, Hou H. MicroRNA-195a-3p inhibits angiogenesis by targeting Mmp2 in murine mesenchymal stem cells. Mol Reprod Dev 2016; 83:413-23. [PMID: 26989874 DOI: 10.1002/mrd.22638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/10/2016] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) modulate complex physiological and pathological processes, including the regulation of angiogenesis. Our previous study reported that bone marrow-derived mesenchymal stem cells (MSCs) are recruited into choroidal neovascularization lesions. miRNA-195 is highly expressed in MSCs, but its function remains unknown. In the present study, miR-195a-3p abundance was significantly decreased in hypoxia-treated murine MSCs; on the other hand, its overexpression reduced MSC proliferation and migration while increasing the activation of anti-angiogenic factor pigment epithelium-derived factor (PEDF). We further discovered that matrix metalloproteinase 2 (Mmp2) transcript is a target of miR-195a-3p, and that silencing Mmp2 phenocopied the reduced proliferation and migration of MSCs. The therapeutic potential of miR-195a-3p as an angiogenesis inhibitor was also demonstrated in a laser-induced choroidal neovascularization mouse model. These findings collectively indicate that miR-195a-3p is a negative modulator of angiogenesis, and could be used as an angiogenesis inhibitor. Mol. Reprod. Dev. 83: 413-423, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fan Gao
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Meng Sun
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumei Gong
- Department of Cardiovascular Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Haiyan Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huiyuan Hou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|