1
|
Protective effect of miR-200b/c by inhibiting vasohibin-2 in human retinal microvascular endothelial cells. Life Sci 2017; 191:245-252. [DOI: 10.1016/j.lfs.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
|
2
|
Suzuki Y, Kitahara S, Suematsu T, Oshima M, Sato Y. Requisite role of vasohibin-2 in spontaneous gastric cancer formation and accumulation of cancer-associated fibroblasts. Cancer Sci 2017; 108:2342-2351. [PMID: 28960674 PMCID: PMC5715352 DOI: 10.1111/cas.13411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 12/15/2022] Open
Abstract
The vasohibin (VASH) family consists of two genes, VASH1 and VASH2. VASH1 is mainly expressed in vascular endothelial cells and suppresses angiogenesis in an autocrine manner, whereas VASH2 is mainly expressed in cancer cells and exhibits pro‐angiogenic activity. Employing adenomatous polyposis coli gene mutant mice, we recently reported on the role of Vash2 in the spontaneous formation of intestinal tumors. In this study, we used K19‐Wnt1/C2mE (Gan) mice and examined the role of Vash2 in spontaneous gastric cancer formation. Gan mice spontaneously develop gastric tumors by activation of Wnt and prostaglandin E2 signaling pathways in gastric mucosa after 30 weeks of age. Expression of Vash2 mRNA was significantly increased in gastric tumor tissues compared with normal stomach tissues. When Gan mice were crossed with the Vash2‐deficient (Vash2LacZ/LacZ) strain, gastric cancer formation was significantly suppressed in Vash2LacZ/LacZGan mice. Normal composition of gastric mucosa was partially maintained in Vash2LacZ/LacZGan mice. Knockout of Vash2 caused minimal reduction of tumor angiogenesis but a significant decrease in cancer‐associated fibroblasts (CAF) in tumor stroma. DNA microarray analysis and real‐time RT‐PCR showed that mRNA levels of epiregulin (Ereg) and interleukin‐11 (Il11) were significantly downregulated in gastric tumors of Vash2LacZ/LacZGan mice. Furthermore, conditioned medium of gastric cancer cells stimulated migration of and α‐smooth muscle actin expression in fibroblasts, whereas conditioned medium of VASH2 knockdown cells attenuated these effects in vitro. These results suggest that VASH2 plays an important role in gastric tumor progression via the accumulation of CAF accompanying upregulation of EREG and IL‐11 expression.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Shuji Kitahara
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Anatomy and Developmental Biology, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takuya Suematsu
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Tu M, Li H, Lv N, Xi C, Lu Z, Wei J, Chen J, Guo F, Jiang K, Song G, Gao W, Miao Y. Vasohibin 2 reduces chemosensitivity to gemcitabine in pancreatic cancer cells via Jun proto-oncogene dependent transactivation of ribonucleotide reductase regulatory subunit M2. Mol Cancer 2017; 16:66. [PMID: 28327155 PMCID: PMC5360034 DOI: 10.1186/s12943-017-0619-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Background Vasohibin 2 (VASH2) has previously been identified as an agiogenenic factor and a cancer related protein. Here we investigated the association of VASH2 expression and chemoresistance in pancreatic cancer. Methods Immunohistochemical staining for VASH2 was performed on 102 human pancreatic cancer samples. Pancreatic cancer cell line models exhibiting overexpression or knockdown of VASH2 were generated. Gene expression analyses were carried out to determine genes differentially regulated by VASH2. Putative transcription factors that are downstream mediators of gene expression regulated by VASH2 were queried bioinformatically. Dual-luciferase reporter assays and ChIP assays were performed to confirm transactivation of target genes following VASH2 overexpression or knockdown. Results VASH2 protein expression was higher in human pancreatic cancer than in paired adjacent tissues and elevated VASH2 levels were associated with gemcitabine chemoresistance. In cell line models of pancreatic cancer, VASH2 expression induced gemcitabine chemoresistance in vitro and in vivo. It was discovered that expression of ribonucleotide reductase regulatory subunit M2 (RRM2) is regulated by VASH2; immunohistochemical analysis demonstrated a positive association of VASH2 expression and RRM2 expression in human pancreatic cancer tissues. Bioinformatics analyses revealed that induction of the Jun proto-oncogene (JUN) by VASH2 is responsible for upregulation of RRM2 expression; this JUN-dependent regulation of RRM2 by VASH2 was confirmed by chromatin immunoprecipitation and dual luciferase reporter assays, which demonstrated that JUN directly binds with the RRM2 promoter to activate transcription. Conclusions These data suggest that VASH2 reduces the chemosensitivity to gemcitabine in pancreatic cancer cells via JUN-dependent transactivation of RRM2. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0619-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Tu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Haifeng Li
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Nan Lv
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chunhua Xi
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Jianmin Chen
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Feng Guo
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
4
|
Tu M, Lu C, Lv N, Wei J, Lu Z, Xi C, Chen J, Guo F, Jiang K, Li Q, Wu J, Song G, Wang S, Gao W, Miao Y. Vasohibin 2 promotes human luminal breast cancer angiogenesis in a non-paracrine manner via transcriptional activation of fibroblast growth factor 2. Cancer Lett 2016; 383:272-281. [DOI: 10.1016/j.canlet.2016.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/03/2023]
|
5
|
Tu M, Li Z, Liu X, Lv N, Xi C, Lu Z, Wei J, Song G, Chen J, Guo F, Jiang K, Wang S, Gao W, Miao Y. Vasohibin 2 promotes epithelial-mesenchymal transition in human breast cancer via activation of transforming growth factor β 1 and hypoxia dependent repression of GATA-binding factor 3. Cancer Lett 2016; 388:187-197. [PMID: 27867016 DOI: 10.1016/j.canlet.2016.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Vasohibin 2 (VASH2) is identified as an angiogenic factor, and has been implicated in tumor angiogenesis, proliferation and epithelial-mesenchymal transition (EMT). To investigate the EMT role of VASH2 in breast cancer, we overexpressed or knocked down expression of VASH2 in human breast cancer cell lines. We observed that VASH2 induced EMT in vitro and in vivo. The transforming growth factor β1 (TGFβ1) pathway was activated by VASH2, and expression of a dominant negative TGFβ type II receptor could block VASH2-mediated EMT. In clinical breast cancer tissues VASH2 positively correlated with TGFβ1 expression, but negatively correlated with E-cadherin (a marker of EMT) expression. Under hypoxic conditions in vitro or in vivo, we found that down-regulation of estrogen receptor 1 (ESR1) in VASH2 overexpressing ESR1 positive cells suppressed E-cadherin. Correlation coefficient analysis indicated that VASH2 and ESR1 expression were negatively correlated in clinical human breast cancer tissues. Further study revealed that a transcription factor of ESR1, GATA-binding factor 3 (GATA3), was down-regulated by VASH2 under hypoxia or in vivo. These findings suggest that VASH2 drives breast cancer cells to undergo EMT by activation of the TGFβ1 pathway and hypoxia dependent repression GATA3-ESR1 pathway, leading to cancer metastasis.
Collapse
Affiliation(s)
- Min Tu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Zhanjun Li
- Department of Vascular & Herniary Surgery, The People's Hospital of Liaoning Province, PR China
| | - Xian Liu
- Invasive Technology Department, Jining No. 1 People's Hospital, PR China
| | - Nan Lv
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Chunhua Xi
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Zipeng Lu
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Jishu Wei
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Jianmin Chen
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Feng Guo
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Shui Wang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, PR China
| | - Wentao Gao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China.
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital with Nanjing Medical University, PR China.
| |
Collapse
|