1
|
Li H, Zhou W, Sun S, Zhang T, Zhang T, Huang H, Wang M. Microfibrillar-associated protein 5 regulates osteogenic differentiation by modulating the Wnt/β-catenin and AMPK signaling pathways. Mol Med 2021; 27:153. [PMID: 34865619 PMCID: PMC8647299 DOI: 10.1186/s10020-021-00413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Dysfunctional osteogenesis of bone marrow mesenchymal stem cells (BMSCs) plays an important role in osteoporosis occurrence and development. However, the molecular mechanisms of osteogenic differentiation remain unclear. This study explored whether microfibrillar-associated protein 5 (MFAP5) regulated BMSCs osteogenic differentiation. Methods We used shRNA or cDNA to knock down or overexpress MFAP5 in C3H10 and MC3T3-E1 cells. AR-S- and ALP-staining were performed to quantify cellular osteogenic differentiation. The mRNA levels of the classical osteogenic differentiation biomarkers Runx2, Col1α1, and OCN were quantified by qRT-PCR. Finally, we employed Western blotting to measure the levels of Wnt/β-catenin and AMPK signaling proteins. Results At days 0, 3, 7, and 14 after osteogenic induction, AR-S- and ALP-staining was lighter in MFAP5 knockdown compared to control cells, as were the levels of Runx2, Col1α1 and OCN. During osteogenesis, the levels of β-catenin, p-GSK-3β, AMPK, and p-AMPK were upregulated, while that of GSK-3β was downregulated, indicating that Wnt/β-catenin and AMPK signaling were activated. The relevant molecules were expressed at lower levels in the knockdown than control group; the opposite was seen for overexpressing cell lines. Conclusions MFAP5 regulates osteogenesis via Wnt/β‑catenin- and AMPK-signaling; MFAP5 may serve as a therapeutic target in patients with osteoporosis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00413-0.
Collapse
Affiliation(s)
- Haoran Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wuling Zhou
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Shiwei Sun
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianlong Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tieqi Zhang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Haitian Huang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Minghai Wang
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Ying J, Wang P, Zhang S, Xu T, Zhang L, Dong R, Xu S, Tong P, Wu C, Jin H. Transforming growth factor-beta1 promotes articular cartilage repair through canonical Smad and Hippo pathways in bone mesenchymal stem cells. Life Sci 2017; 192:84-90. [PMID: 29158053 DOI: 10.1016/j.lfs.2017.11.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/12/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
AIMS Transforming growth factor-β1 (TGF-β1) is a chondrogenic factor and has been reported to be able to enhance chondrocyte differentiation from bone marrow mesenchymal stem cells (BMSCs). Here we investigate the molecular mechanism through which TGF-β1 chronically promotes the repair of cartilage defect and inhibit chondrocyte hypertrophy. MAIN METHODS Animal models of full thickness cartilage defects were divided into three groups: model group, BMSCs group (treated with BMSCs/calcium alginate gel) and BMSCs+TGF-β1 group (treated with Lentivirus-TGF-β1-EGFP transduced BMSCs/calcium alginate gel). 4 and 8weeks after treatment, macroscopic observation, histopathological study and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were done to analyze phenotypes of the animals. BMSCs were transduced with Lentivirus-TGF-β1-EGFP in vitro and Western blot analysis was performed. KEY FINDINGS We found that TGF-β1-expressiing BMSCs improved the repair of the cartilage defect. The impaired cartilage contained higher amount of GAG and type II collagen and was integrated to the surrounding normal cartilage and higher content of GAG and type II collagen. The major events include increased expression of type II collagen following Smad2/3 phosphorylation, and inhibition of cartilage hypertrophy by increasing Yes-associated protein-1 (YAP-1) and inhibiting Runx2 and Col10 after the completion of chondrogenic differentiation. SIGNIFICANCE We conclude that TGF-β1 is beneficial to chondrogenic differentiation of BMSCs via canonical Smad pathway to promote early-repairing of cartilage defect. Furthermore, TGF-β1 inhibits chondrocyte hypertrophy by decreasing hypertrophy marker gene expression via Hippo signaling. Long-term rational use of TGF-β1 may be an alternative approach in clinic for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Jun Ying
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Pinger Wang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shanxing Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Taotao Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Lei Zhang
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Rui Dong
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Shibing Xu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Peijian Tong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China
| | - Chengliang Wu
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China.
| | - Hongting Jin
- First Clinical College of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang Province, China.
| |
Collapse
|
3
|
Tao K, Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Madry H, Lin J, Cucchiarini M. Effects of combined rAAV-mediated TGF-β and sox9 gene transfer and overexpression on the metabolic and chondrogenic activities in human bone marrow aspirates. J Exp Orthop 2017; 4:4. [PMID: 28176272 PMCID: PMC5296264 DOI: 10.1186/s40634-017-0077-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/16/2017] [Indexed: 02/08/2023] Open
Abstract
Background Transplantation of genetically modified bone marrow concentrates is an attractive approach to conveniently activate the chondrogenic differentiation processes as a means to improve the intrinsic repair capacities of damaged articular cartilage. Methods Human bone marrow aspirates were co-transduced with recombinant adeno-associated virus (rAAV) vectors to overexpress the pleiotropic transformation growth factor beta (TGF-β) and the cartilage-specific transcription factor sox9 as a means to enhance the chondroreparative processes in conditions of specific lineage differentiation. Results Successful TGF-β/sox9 combined gene transfer and overexpression via rAAV was achieved in chondrogenically induced human bone marrow aspirates for up to 21 days, the longest time point evaluated, leading to increased proliferation, matrix synthesis, and chondrogenic differentiation relative to control treatments (reporter lacZ treatment, absence of vector application) especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation in the aspirates. Conclusions These findings report the possibility of directly modifying bone marrow aspirates by combined therapeutic gene transfer as a potent and convenient future approach to improve the repair of articular cartilage lesions.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Arthritis, Peking University People's Hospital, No. 11 Xizhimen Nan Road, Xicheng District, Beijing, 100044, People's Republic of China.,Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.,Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Jianhao Lin
- Institute of Arthritis, Peking University People's Hospital, No. 11 Xizhimen Nan Road, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany.
| |
Collapse
|
4
|
Tao K, Frisch J, Rey-Rico A, Venkatesan JK, Schmitt G, Madry H, Lin J, Cucchiarini M. Co-overexpression of TGF-β and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2016; 7:20. [PMID: 26830674 PMCID: PMC4736112 DOI: 10.1186/s13287-016-0280-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/16/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Articular cartilage has a limited potential for self-healing. Transplantation of genetically modified progenitor cells like bone marrow-derived mesenchymal stem cells (MSCs) is an attractive strategy to improve the intrinsic repair capacities of damaged articular cartilage. METHODS In this study, we examined the potential benefits of co-overexpressing the pleiotropic transformation growth factor beta (TGF-β) with the cartilage-specific transcription factor SOX9 via gene transfer with recombinant adeno-associated virus (rAAV) vectors upon the biological activities of human MSCs (hMSCs). Freshly isolated hMSCs were transduced over time with separate rAAV vectors carrying either TGF-β or sox9 in chondrogenically-induced aggregate cultures to evaluate the efficacy and duration of transgene expression and to monitor the effects of rAAV-mediated genetic modification upon the cellular activities (proliferation, matrix synthesis) and chondrogenic differentiation potency compared with control conditions (lacZ treatment, sequential transductions). RESULTS Significant, prolonged TGF-β/sox9 co-overexpression was achieved in chondrogenically-induced hMSCs upon co-transduction via rAAV for up to 21 days, leading to enhanced proliferative, biosynthetic, and chondrogenic activities relative to control treatments, especially when co-applying the candidate vectors at the highest vector doses tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation of the cells in the conditions applied here. CONCLUSION The present findings demonstrate the possibility of modifying MSCs by combined therapeutic gene transfer as potent future strategies for implantation in clinically relevant animal models of cartilage defects in vivo.
Collapse
Affiliation(s)
- Ke Tao
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, P.R. China. .,Peking University Health Science Center, Beijing, 100191, P.R. China. .,Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Janina Frisch
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Ana Rey-Rico
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Gertrud Schmitt
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Henning Madry
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany. .,Department of Orthopaedic Surgery, Saarland University Medical Center, Kirrbergerstr. Bldg 37, Homburg/Saar, D-66421, Germany.
| | - Jianhao Lin
- Institute of Arthritis, Peking University People's Hospital, Beijing, 100044, P.R. China. .,Peking University Health Science Center, Beijing, 100191, P.R. China.
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University Medical Center, Kirrbergerstraße Bldg 37, Homburg/Saar, D-66421, Germany.
| |
Collapse
|