1
|
Zou Q, Wang HW, Di XL, Li Y, Gao H. Long noncoding RNAs HAND2-AS1 ultrasound microbubbles suppress hepatocellular carcinoma progression by regulating the miR-873-5p/tissue inhibitor of matrix metalloproteinase-2 axis. World J Gastrointest Oncol 2024; 16:1547-1563. [PMID: 38660652 PMCID: PMC11037064 DOI: 10.4251/wjgo.v16.i4.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Increasing data indicated that long noncoding RNAs (lncRNAs) were directly or indirectly involved in the occurrence and development of tumors, including hepatocellular carcinoma (HCC). Recent studies had found that the expression of lncRNA HAND2-AS1 was downregulated in HCC tissues, but its role in HCC progression is unclear. Ultrasound targeted microbubble destruction mediated gene transfection is a new method to overexpress genes. AIM To study the role of ultrasound microbubbles (UTMBs) mediated HAND2-AS1 in the progression of HCC, in order to provide a new reference for the treatment of HCC. METHODS In vitro, we transfected HAND2-AS1 siRNA into HepG2 cells by UTMBs, and detected cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) by cell counting kit-8 assay, flow cytometry, Transwell invasion assay and Western blotting, respectively. In addition, we transfected miR-837-5p mimic into UTMBs treated cells and observed the changes of cell behavior. Next, the UTMBs treated HepG2 cells were transfected together with miR-837-5p mimic and tissue inhibitor of matrix metalloproteinase-2 (TIMP2) overexpression vector, and we detected cell proliferation, apoptosis, invasion and EMT. In vivo, we established a mouse model of subcutaneous transplantation of HepG2 cells and observed the effect of HAND2-AS1 silencing on tumor formation ability. RESULTS We found that UTMBs carrying HAND2-AS1 restricted cell proliferation, invasion, and EMT, encouraged apoptosis, and HAND2-AS1 silencing eliminated the effect of UTMBs. Additionally, miR-873-5p targets the gene HAND2-AS1, which also targets the 3'UTR of TIMP2. And miR-873-5p mimic counteracted the impact of HAND2-AS1. Further, miR-873-5p mimic solely or in combination with pcDNA-TIMP2 had been transformed into HepG2 cells exposed to UTMBs. We discovered that TIMP2 reversed the effect of miR-873-5p mimic caused by the blocked signalling cascade for matrix metalloproteinase (MMP) 2/MMP9. In vivo results showed that HAND2-AS1 silencing significantly inhibited tumor formation in mice. CONCLUSION LncRNA HAND2-AS1 promotes TIMP2 expression by targeting miR-873-5p to inhibit HepG2 cell growth and delay HCC progression.
Collapse
Affiliation(s)
- Qiang Zou
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hao-Wen Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China
| | - Xi-Liang Di
- Department of Hematology and Oncology, Linyi People’s Hospital, Linyi 251500, Shandong Province, China
| | - Yuan Li
- Department of Hematology and Oncology, Linyi People’s Hospital, Linyi 251500, Shandong Province, China
| | - Hui Gao
- Department of Comprehensive Oncology, Baotou Cancer Hospital, Baotou 014030, Inner Mongolia Autonomous Region, China
| |
Collapse
|
2
|
Phan TN, Fan CH, Yeh CK. Application of Ultrasound to Enhancing Stem Cells Associated Therapies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10546-w. [PMID: 37119453 DOI: 10.1007/s12015-023-10546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pluripotent stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for the treatment of several diseases. However, insufficient cell transplantation efficiency, uncontrollable differentiation, low cell viability, and difficult tracing limit its clinical applications and treatment outcome. Ultrasound (US) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. US can be combined with different US-responsive particles for enhanced physical-chemical stimulation and drug delivery. In the meantime, US also can provide a noninvasive and harmless imaging modality for deep tissue in vivo. An in-depth evaluation of the role and mechanism of action of US in stem cell therapy would enhance understanding of US and encourage research in this field. In this article, we comprehensively review progress in the application of US alone and combined with US-responsive particles for the promotion of proliferation, differentiation, migration, and in vivo detection of stem cells and the potential clinical applications.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
4
|
Chen W, Wang R, Zhao Y, Li Y, Wang X, Peng W, Bai S, Zheng M, Liu M, Cheng B. CD44v6+ Hepatocellular Carcinoma Cells Maintain Stemness Properties through Met/cJun/Nanog Signaling. Stem Cells Int 2022; 2022:5853707. [PMID: 36387747 PMCID: PMC9663228 DOI: 10.1155/2022/5853707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/07/2024] Open
Abstract
Cancer stem cells (CSCs) are characterized by their self-renewal and differentiation abilities. CD44v6 is a novel CSC marker that can activate various signaling pathways. Here, we hypothesized that the HGF/Met signaling pathway promotes stemness properties in CD44v6+ hepatocellular carcinoma (HCC) cells via overexpression of the transcription factor, cJun, thus representing a valuable target for HCC therapy. Magnetic activated cell sorting was used to separate the CD44v6+ from CD44v6- cells, and Met levels were regulated using lentiviral particles and the selective Met inhibitor, PHA665752. An orthotopic liver xenograft tumor model was used to assess the self-renewal ability of CD44v6+ cells in immunodeficient NOD/SCID mice. Luciferase reporter and chromatin immunoprecipitation assays were also conducted using cJun-overexpressing 293 T cells to identify the exact binding site of cJun in the Nanog promoter. Our data demonstrate that CD44v6 is an ideal surface marker of liver CSCs. CD44v6+ HCC cells express higher levels of Met and possess self-renewal and tumor growth abilities. Xenograft liver tumors were smaller in nude mice injected with shMet HCC cells. Immunohistochemical analysis of liver tissue specimens revealed that high Met levels in HCC cells were associated with poor patient prognosis. Further, a cJun binding site was identified 1700 bp upstream of the Nanog transcription start site and mutation of the cJun binding site reduced Nanog expression. In conclusion, the HGF/Met signaling pathway is important for maintenance of stemness in CD44v6+ HCC cells by enhancing expression of cJun, which binds 1700 bp upstream of the Nanog transcription start site.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Ronghua Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA 15213
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Yawen Li
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China 563003
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyi Street No. 28, Guiyang, Guizhou, China 550000
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
- Department of Gastroenterology and Hepatology, Taikang Tongji Wuhan Hospital, Wuhan, China 430050
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030
| |
Collapse
|
5
|
Wang J, Shao F, Yang Y, Wang W, Yang X, Li R, Cheng H, Sun S, Feng X, Gao Y, He J, Lu Z. A non-metabolic function of hexokinase 2 in small cell lung cancer: promotes cancer cell stemness by increasing USP11-mediated CD133 stability. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1008-1027. [PMID: 35975322 PMCID: PMC9558687 DOI: 10.1002/cac2.12351] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Background Maintenance of cancer stem‐like cell (CSC) stemness supported by aberrantly regulated cancer cell metabolism is critical for CSC self‐renewal and tumor progression. As a key glycolytic enzyme, hexokinase 2 (HK2) plays an instrumental role in aerobic glycolysis and tumor progression. However, whether HK2 directly contribute to CSC stemness maintenance in small cell lung cancer (SCLC) is largely unclear. In this study, we aimed to investgate whether HK2 independent of its glycolytic activity is directly involved in stemness maintenance of CSC in SCLC. Methods Immunoblotting analyses were conducted to determine the expression of HK2 in SCLC CSCs and their differentiated counterparts. CSC‐like properties and tumorigenesis of SCLC cells with or without HK2 depletion or overexpression were examined by sphere formation assay and xenograft mouse model. Immunoprecipitation and mass spectrometry analyses were performed to identify the binding proteins of CD133. The expression levels of CD133‐associated and CSC‐relevant proteins were evaluated by immunoblotting, immunoprecipitation, immunofluorescence, and immunohistochemistry assay. RNA expression levels of Nanog, POU5F1, Lin28, HK2, Prominin‐1 were analyzed through quantitative reverse transcription PCR. Polyubiquitination of CD133 was examined by in vitro or in vivo ubiquitination assay. CD133+ cells were sorted by flow cytometry using an anti‐CD133 antibody. Results We demonstrated that HK2 expression was much higher in CSCs of SCLC than in their differentiated counterparts. HK2 depletion inhibited CSC stemness and promoted CSC differentiation. Mechanistically, non‐mitochondrial HK2 directly interacted with CD133 and enhanced CD133 expression without affecting CD133 mRNA levels. The interaction of HK2 and CD133 promoted the binding of the deubiquitinase ubiquitin‐specific protease 11 (USP11) to CD133, thereby inhibiting CD133 polyubiquitylation and degradation. HK2‐mediated upregulation of CD133 expression enhanced the expression of cell renewal regulators, SCLC cell stemness, and tumor growth in mice. In addition, HK2 expression was positively correlated with CD133 expression in human SCLC specimens, and their expression levels were associated with poor prognosis of SCLC patients. Conclusions These results revealed a critical non‐metabolic function of HK2 in promotion of cancer cell stemness. Our findings provided new insights into the multifaceted roles of HK2 in tumor development.
Collapse
Affiliation(s)
- Juhong Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yannan Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Wei Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hong Cheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Sijin Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, 518116, P. R. China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhimin Lu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310029, P. R. China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310029, P. R. China
| |
Collapse
|
6
|
Chen X, Zhang X, Qian Y, Xia E, Wang Y, Zhou Q. Ultrasound-targeted microbubble destruction-mediated miR-144-5p overexpression enhances the anti-tumor effect of paclitaxel on thyroid carcinoma by targeting STON2. Cell Cycle 2022; 21:1058-1076. [PMID: 35184686 PMCID: PMC9037415 DOI: 10.1080/15384101.2022.2040778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The effects of miR-144-5p and paclitaxel (PTX) on thyroid carcinoma were less explored. Thus, we investigated the effects of miR-144-5p and PTX on thyroid carcinoma. The expression and target gene of miR-144-5p in thyroid carcinoma were analyzed by bioinformatics, y qRT-PCR and dual-luciferase reporter assay. After the transfection mediated by ultrasound-targeted microbubble destruction (UTMD) or liposome, or the treatment of PTX, the viability, proliferation, migration, and invasion of thyroid carcinoma cells were detected by MTT, colony formation, wound-healing, and transwell assays. The expressions of miR-144-5p, STON2, MMP-9, E-cadherin, and N-cadherin in cells were calculated via qRT-PCR or Western blotting. After a subcutaneous-xenotransplant tumor model was established using BALB/c nude mice and further treated with PTX and UTMD-mediated miR-144-5p, the volume, weight, and Ki67 level of tumor were recorded or evaluated by immunohistochemical assays. MiR-144-5p, which was low-expressed in thyroid carcinoma, directly down-regulated STON2 level. MiR-144-5p overexpression and PTX inhibited the viability, proliferation, migration, and invasion of thyroid carcinoma cells, while miR-144-5p silencing caused the opposite results. MiR-144-5p overexpression and PTX further up-regulated E-cadherin level and down-regulated those of MMP-9 and N-cadherin in thyroid carcinoma cells. STON2 overexpression reversed the effects of miR-144-5p overexpression.. MiR-144-5p overexpression enhanced the inhibiting effect of PTX on tumor volume, weight, and Ki67 level of xenotransplant tumor, and the effects of UTMD-mediated miR-144-5p overexpression were stronger than those mediated by liposome. Collectively, UTMD-mediated miR-144-5p overexpression enhanced the anti-tumor effect of PTX on thyroid carcinoma by targeting STON2.
Collapse
Affiliation(s)
- Xuefeng Chen
- Ultrasound Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, China,Ultrasound Department Yancheng No. 1 People’s Hospital, Yancheng City, China
| | - Xinyuan Zhang
- Ultrasound Department Yancheng No. 1 People’s Hospital, Yancheng City, China
| | - Yangyang Qian
- General Surgery Department, Yancheng No. 1 People’s Hospital, Yancheng City, China
| | - Enhui Xia
- Ultrasound Department Yancheng No. 1 People’s Hospital, Yancheng City, China
| | - Yu Wang
- Emergency Department, Yancheng No. 1 People’s Hospital, Yancheng City, China
| | - Qi Zhou
- Ultrasound Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an City, China,CONTACT Qi Zhou Ultrasound Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, No. 157 Siwu Road, Xincheng Distrcit, Xi’an City, Shaanxi Province710004, China
| |
Collapse
|
7
|
Tang X, Hao N, Zhou Y, Liu Y. Ultrasound targeted microbubble destruction-mediated SOCS3 attenuates biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells. Bioengineered 2022; 13:3896-3910. [PMID: 35109743 PMCID: PMC8973955 DOI: 10.1080/21655979.2022.2031384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SOCS3 is low-expressed in breast cancer and may be a potential target. Ultrasound targeted microbubble destruction (UTMD) improved the efficiency of gene transfection. We explored the effects of UTMD-mediated transfection of SOCS3 on the biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells (BCSCs). The expression of SOCS3 in breast cancer (BC) and its association with prognosis were evaluated by GEPIA and The Cancer Genome Atlas (TCGA) websites. BCSCs were sorted by flow cytometry and immunomagnetic bead method, followed by sphere formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenograft assays to test their effects in vitro and in vivo. The levels of SOCS3, EMT- and STAT3 pathway-related genes were determined by RT-qPCR and Western blot, respectively. The effects of liposome and UTMD on BCSCs and mice were compared by the gain-of-function experiments. Low expression of SOCS3 was associated with poor prognosis of BC patients, and found in BC and BCSCs. BCSCs were successfully sorted, with high viability and tumorigenicity. UTMD increased the transfection rate of SOCS3. Moreover, UTMD- and liposome-mediated SOCS3 reduced cell viability, proliferation, migration and invasion, blocked cell cycle, inhibited sphere formation in BCSCs, and retarded tumor growth in mice. Mechanistically, overexpressed SOCS3 inhibited the expressions of EMT-related genes and the activation of STAT3 pathway in BCSCs and mice. The regulatory effects of UTMD-mediated SOCS3 on the above-mentioned biological characteristics were better than liposome-mediated SOCS3. UTMD-mediated SOCS3 has a better therapeutic effect in BC, providing new experimental evidence for the treatment of BC.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Jangjou A, Meisami AH, Jamali K, Niakan MH, Abbasi M, Shafiee M, Salehi M, Hosseinzadeh A, Amani AM, Vaez A. The promising shadow of microbubble over medical sciences: from fighting wide scope of prevalence disease to cancer eradication. J Biomed Sci 2021; 28:49. [PMID: 34154581 PMCID: PMC8215828 DOI: 10.1186/s12929-021-00744-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022] Open
Abstract
Microbubbles are typically 0.5-10 μm in size. Their size tends to make it easier for medication delivery mechanisms to navigate the body by allowing them to be swallowed more easily. The gas included in the microbubble is surrounded by a membrane that may consist of biocompatible biopolymers, polymers, surfactants, proteins, lipids, or a combination thereof. One of the most effective implementation techniques for tiny bubbles is to apply them as a drug carrier that has the potential to activate ultrasound (US); this allows the drug to be released by US. Microbubbles are often designed to preserve and secure medicines or substances before they have reached a certain area of concern and, finally, US is used to disintegrate microbubbles, triggering site-specific leakage/release of biologically active drugs. They have excellent therapeutic potential in a wide range of common diseases. In this article, we discussed microbubbles and their advantageous medicinal uses in the treatment of certain prevalent disorders, including Parkinson's disease, Alzheimer's disease, cardiovascular disease, diabetic condition, renal defects, and finally, their use in the treatment of various forms of cancer as well as their incorporation with nanoparticles. Using microbubble technology as a novel carrier, the ability to prevent and eradicate prevalent diseases has strengthened the promise of effective care to improve patient well-being and life expectancy.
Collapse
Affiliation(s)
- Ali Jangjou
- Department of Emergency Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kazem Jamali
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hadi Niakan
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Shafiee
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Wu J, Sun L, Liu T, Dong G. Ultrasound-Targeted Microbubble Destruction-Mediated Downregulation of EZH2 Inhibits Stemness and Epithelial-Mesenchymal Transition of Liver Cancer Stem Cells. Onco Targets Ther 2021; 14:221-237. [PMID: 33469303 PMCID: PMC7810681 DOI: 10.2147/ott.s269589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cancer cells could show the characteristics of cancer stem cells (CSCs) through epithelial-mesenchymal transition (EMT). EZH2 was associated with EMT. Ultrasound-targeted microbubble destruction (UTMD) could enhance gene transfection efficiency. Here, we explored the effect of UTMD-mediated shEZH2 on liver CSCs. Methods EZH2 expression in liver cancer and the overall survival of liver cancer patients were analyzed by bioinformatics. Liver CSCs (CD133+HuH7) were sorted by flow cytometry. After transfection of shEZH2 through UTMD (UTMD-shEZH2) or liposome (LIP-shEZH2), the viability, proliferation, sphere formation, migration, and invasion of CD133+HuH7 cells were detected by MTT, colony formation, tumor-sphere formation, wound healing, and transwell assays, respectively. A mice subcutaneous-xenotransplant tumor model was established by injecting CD133+HuH7 or CD133−HuH7 cells into the limbs of mice. Tumor weight and volume were documented. The expressions of EZH2, EMT-related factors, and STAT3/PI3K/AKT pathway-related factors in CD133+HuH7 cells or tumor tissues were detected by RT-qPCR, Western blot, or immunohistochemical. Results EZH2 was high-expressed in liver cancer, and the patients with high expression of EZH2 had a poor survival. CD133+ HuH7 cells had higher EZH2 expression, higher viability, and stronger sphere-forming and tumor-forming abilities than CD133− HuH7 cells. ShEZH2 inhibited the viability, proliferation, sphere formation, migration, and invasion of CD133+ HuH7 cells, decreased the weight and volume of the xenotransplant tumor, inhibited the expressions of EZH2, Vimentin, N-Cadherin, Twist-1, p-STAT3, p-PI3K, and p-AKT, and increased E-Cadherin expression. UTMD-shEZH2 caused a stronger effect on CD133+ HuH7 cells than LIP-shEZH2. Conclusion UTMD-mediated shEZH2 inhibited the stemness and EMT of liver CSCs in vitro and in vivo through regulating the STAT3/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Lulu Sun
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Tingting Liu
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Gang Dong
- Department of Ultrasound Intervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
10
|
Tsuchiya H, Shiota G. Clinical and Biological Implications of Cancer Stem Cells in Hepatocellular Carcinoma. Yonago Acta Med 2021; 64:1-11. [PMID: 33642898 DOI: 10.33160/yam.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with poor prognosis, and is one of the leading causes of cancer-related deaths worldwide. Recently, the development of therapeutic drugs via novel mechanisms of action, involving molecular-targeted drugs and immune checkpoint inhibitors, has progressed in the field of HCC. However, the recurrence rate remains high, and further improvement of the prognosis of patients with HCC is urgently needed. Cancer stem cells (CSCs) are a promising target for further development of novel anti-cancer drugs because they are reportedly involved in tumor initiation, maintenance, recurrence, and resistance to conventional therapies. Although several studies have already been conducted, the functions and roles of CSCs in the development and progression of tumors remain to be elucidated. In this review article, we will clarify the fundamental knowledge of CSCs necessary for the understanding of CSCs and will outline so-far identified markers specific to liver CSCs and the pathological and therapeutic implications of CSCs in HCC.
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
11
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Lucchetti D, Perelli L, Colella F, Ricciardi-Tenore C, Scoarughi GL, Barbato G, Boninsegna A, De Maria R, Sgambato A. Low-intensity pulsed ultrasound affects growth, differentiation, migration, and epithelial-to-mesenchymal transition of colorectal cancer cells. J Cell Physiol 2020; 235:5363-5377. [PMID: 31967331 DOI: 10.1002/jcp.29423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Ultrasound (US) offers potentially important opportunities from a therapeutic point of view. Thus, the study of the biological effects of US on cancer cells is important to understand the consequences of these changes on the malignant phenotype. This study aimed to investigate the effects of low-intensity ultrasound (LIPUS) on the phenotype of colorectal cancer cell lines. Cell proliferation was evaluated by viability test and by evaluation of pERK expression, while cell motility using the scratch test. Cell differentiation was evaluated assessing alkaline phosphatase activity. Epithelial mesenchymal transition was assessed by analyzing the expression of Vimentin and E-Cadherin. Release and uptake of extracellular vesicles (EVs) were evaluated by flow cytometry. LIPUS effects on the organization of cytoskeleton were analyzed by confocal microscopy and by evaluation of Rho GTPase expression. No alterations in vitality and clonogenicity were observed when the intermediate (0.4 MPa) and the lowest (0.035 MPa) acoustic intensities were administered while the treatment with high intensity (1 MPa) induced a reduction of both cell viability and clonogenicity in both cell lines in a frequency-dependent manner. LIPUS promoted the differentiation of colon cancer cells, affected epithelial-to-mesenchymal transition, promoted the closure of a wound as well as increased the release of EVs compared with untreated cells. LIPUS-induced increase in cell motility was likely due to a Rho GTPase-dependent mechanism. Overall, the results obtained warrant further studies on the potential combined effect of LIPUS with differentiating agents and on their potential use in a clinical setting.
Collapse
Affiliation(s)
- Donatella Lucchetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luigi Perelli
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Filomena Colella
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | | | | | - Alma Boninsegna
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessandro Sgambato
- Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.,Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| |
Collapse
|
13
|
Li N, Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Therap Adv Gastroenterol 2019; 12:1756284818821560. [PMID: 30719075 PMCID: PMC6348509 DOI: 10.1177/1756284818821560] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/15/2018] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is one of the most common malignant tumors and prognosis remains poor. It has been increasingly recognized that liver cancer stem cells (LCSCs) are responsible for the carcinogenesis, recurrence, metastasis and chemoresistance of hepatocellular carcinoma (HCC). Targeting LCSCs is promising to be a new direction for the treatment of HCC. Herein, we summarize the potentially therapeutic targets in LCSCs at the level of genes, molecules and cells, such as knockout of oncogenes or oncoproteins, restoring the silent tumor suppressor genes, inhibition of the transcription factors and regulation of noncoding RNAs (including microRNAs and long noncoding RNAs) in LCSCs at the genetic level; inhibition of markers and blockade of the key signaling pathways of LCSCs at the molecular level; and inhibiting autophagy and application of oncolytic adenoviruses in LCSCs at the cellular level. Moreover, we analyze the potential targets in LCSCs to eliminate chemoresistance of HCC. Thereinto, the suppression of autophagy and Nanog by chloroquine and shRNA respectively may be the most promising targeting approaches. These targets may provide novel therapeutic strategies for the treatment of HCC by targeting LCSCs.
Collapse
Affiliation(s)
- Na Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | |
Collapse
|
14
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Ultrasound microbubbles mediated miR-let-7b delivery into CD133 + ovarian cancer stem cells. Biosci Rep 2018; 38:BSR20180922. [PMID: 30126854 PMCID: PMC6165842 DOI: 10.1042/bsr20180922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/19/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer stem cells (OCSCs) are considered the reason for ovarian cancer’s emergence and recurrence. Ultrasound-targetted microbubble destruction (UTMD), a non-vial, safe, and promising delivery method for miRNA, is reported to transfect cancer stem cells (CSCs). In the present study, we investigated to transfect miR-let-7b into OCSCs using UTMD. The CD133+ OCSCs, accounted for only 0.1% of ovarian cancer cell line A2780, were separated by flow cytometry, and the CSC characteristics of CD133+ OCSCs have been proved by spheroid formation and self-renewal assay. The miR-let-7b transfection efficiency using UTMD was significantly higher than other groups except lipofectamine group through flow cytometry. The cell viability of all groups decreased after transfection, and the late apoptosis rate of CD133+ OCSCs after miR-let7b transfection induced by UTMD was 2.62%, while that of non-treated cells was 0.02% (P<0.05). Furthermore, the Western blot results demonstrated that the stem cells surface marker of CD133 expression has decreased. Therefore, our results indicated that UTMD-mediated miRNA delivery could be a promising platform for CSC therapy.
Collapse
|
16
|
Harada Y, Kazama S, Morikawa T, Murono K, Yasuda K, Otani K, Nishikawa T, Tanaka T, Kiyomatsu T, Kawai K, Hata K, Nozawa H, Yamaguchi H, Ishihara S, Watanabe T. Leucine-rich repeat-containing G protein-coupled receptor 5 and CD133 expression is associated with tumor progression and resistance to preoperative chemoradiotherapy in low rectal cancer. Oncol Lett 2017; 14:7791-7798. [PMID: 29250176 PMCID: PMC5727605 DOI: 10.3892/ol.2017.7207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
Preoperative chemoradiotherapy has been performed as a standard therapy for advanced low rectal cancer. Cancer stem cells (CSCs) have been reported to contribute to resistance to treatment and patient prognosis. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and cluster of differentiation (CD133) are putative markers for CSCs. However, their prognostic ability remains unknown, and evaluation of a single marker can be insufficient due to the heterogeneity of cancer. LGR5 and CD133 expression was immunohistochemically evaluated in surgical specimens of 56 patients who received curative resection following chemoradiotherapy for advanced low rectal cancer. In addition, the correlations between their expression levels, and clinicopathological features and patient prognosis were asessed. LGR5 expression was significantly correlated with lymphatic invasion, lymph node metastasis, and tumor node metastasic (TNM) stage. CD133 expression was significantly correlated with vascular invasion and the tumor regression grade. Combined expression was significantly correlated with lymphatic invasion, tumor regression grade and TNM stage, but not with overall, and disease-free survival. LGR5 and CD133 expressions may represent useful markers associated with tumor progression and resistance to chemoradiotherapy in patients with low rectal cancer. Furthermore, combined expression of these markers may be a more useful marker compared with the expression of each single marker.
Collapse
Affiliation(s)
- Yuzo Harada
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Kazama
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Teppei Morikawa
- Department of Pathology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Murono
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koji Yasuda
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kensuke Otani
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeshi Nishikawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiaki Tanaka
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomomichi Kiyomatsu
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazushige Kawai
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Keisuke Hata
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroaki Nozawa
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hironori Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Soichiro Ishihara
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Toshiaki Watanabe
- Division of Surgical Oncology, Department of Surgery, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Xiao Y, Lin M, Jiang X, Ye J, Guo T, Shi Y, Bian X. The Recent Advances on Liver Cancer Stem Cells: Biomarkers, Separation, and Therapy. Anal Cell Pathol (Amst) 2017; 2017:5108653. [PMID: 28819584 PMCID: PMC5551471 DOI: 10.1155/2017/5108653] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
As the third major reason of mortality related to cancer in the world, liver cancer is also the fifth most frequent cancer. Unluckily, a majority of patients succumb and relapse though many progresses have been made in detection and therapy of liver cancer. It has been put forward that in liver cancer, cancer stem cells (CSCs) hold main responsibility for the formation, invasion, metastasis, and recurrence of tumor. Strategies that are intended to target liver CSCs are playing a more and more significant role in supervising the development of liver cancer treatment and assessing new therapeutic methods. Herein, a brief review about molecule markers, signal pathways, separation, and treatment on liver cancer stem cells (LCSCs) is provided in this paper.
Collapse
Affiliation(s)
- Yanhong Xiao
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Mei Lin
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Xingmao Jiang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430000, China
| | - Jun Ye
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Ting Guo
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Yujuan Shi
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| | - Xuefeng Bian
- Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu 225300, China
| |
Collapse
|
18
|
Hu K, Huang P, Luo H, Yao Z, Wang Q, Xiong Z, Lin J, Huang H, Xu S, Zhang P, Liu B. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 2017; 7:1144-1153. [PMID: 28781954 PMCID: PMC5537062 DOI: 10.1002/2211-5463.12254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023] Open
Abstract
Mammalian-enabled (MENA) protein is an actin-regulatory protein that influences cell motility and adhesion. It is known to play a role in tumorigenicity of hepatocellular carcinoma (HCC) but the underlying molecular mechanism remains unknown. This study aimed to investigate the oncogenic potential of MENA and its capacity to regulate cancer stem cell (CSC)-like phenotypes in HCC cells. Real-time-PCR and western blot were used to assess mRNA and protein levels of target genes in human HCC tissue specimens and HCC cell lines, respectively. Stable MENA-overexpressing HCC cells were generated from HCC cell lines. Transwell cell migration and colony formation assays were employed to evaluate tumorigenicity. Ectopic expression of MENA significantly enhanced cell migration and colony-forming ability in HCC cells. Overexpression of MENA upregulated several hepatic progenitor/stem cell markers in HCC cells. A high MENA protein level was associated with high mRNA levels of MENA, CD133, cytokeratin 19 (CK19), and epithelial cell adhesion molecule (EpCAM) in human HCC tissues. Overexpression of MENA enhanced epithelial-to-mesenchymal transition (EMT) markers, extracellular signal-regulated kinases (ERK) phosphorylation, and the level of β-catenin in HCC cells. This study demonstrated that overexpression of MENA in HCC cells promoted stem cell markers, EMT markers, and tumorigenicity. These effects may involve, at least partially, the ERK and β-catenin signaling pathways.
Collapse
Affiliation(s)
- Kunpeng Hu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Pinzhu Huang
- Department of Gastrointestinal Surgery The Sixth Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Hui Luo
- Department of Operating Room The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhicheng Yao
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Qingliang Wang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Zhiyong Xiong
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Jizong Lin
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - He Huang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Shilei Xu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Peng Zhang
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| | - Bo Liu
- Department of General Surgery The Third Affiliated Hospital Sun Yat-sen University Guangzhou China
| |
Collapse
|
19
|
Ikemoto T, Shimada M, Yamada S. Pathophysiology of recurrent hepatocellular carcinoma after radiofrequency ablation. Hepatol Res 2017; 47:23-30. [PMID: 26990590 DOI: 10.1111/hepr.12705] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
Radiofrequency ablation (RFA) is effective for the local control of hepatocellular carcinoma (HCC), particularly when a patient's liver functional reserve does not allow radical resection. There is controversy regarding the superiority of surgical resection compared with RFA for such patients, particularly those with three or fewer tumors with diameters ≤3 cm. Moreover, HCC often recurs after RFA, and the tumor cells show distinct phenotypic changes. Incomplete ablation accounts for tumor recurrence, and recent studies provide new insights into the biological mechanisms responsible for the pathological changes of HCC after RFA. This review focuses on the roles of epithelial-mesenchymal transition and cancer stemness that are driven by a mechanism that involves microRNA-mediated upregulation of hypoxia-inducible factor-1. The studies reviewed here provide compelling evidence that complete ablation of HCC is required to prevent recurrence and indicate that further research is urgently required to develop a new systematic strategy to prevent tumor recurrence by targeting hypoxia-inducible factor-1.
Collapse
Affiliation(s)
- Tetsuya Ikemoto
- Department of Surgery, Tokushima University, Tokushima City, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima City, Japan
| | | |
Collapse
|
20
|
Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. J Hematol Oncol 2016; 9:74. [PMID: 27578206 PMCID: PMC5006452 DOI: 10.1186/s13045-016-0307-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and lethal malignancies worldwide despite the development of various therapeutic strategies. A better understanding of the mechanisms responsible for HCC initiation and progression is essential for the development of more effective therapies. The cancer stem cell (CSC) model has provided new insights into the development and progression of HCC. CSCs are specialized tumor cells that are capable of self-renewal and have long-term repopulation potential. As they are important mediators of tumor proliferation, invasion, metastasis, therapy resistance, and cancer relapse, the selective targeting of this crucial population of cells has the potential to improve HCC patient outcomes and survival. In recent years, the role of epithelial-to-mesenchymal transition (EMT) in the advancement of HCC has gained increasing attention. This multi-step reprograming process resulting in a phenotype switch from an epithelial to a mesenchymal cellular state has been closely associated with the acquisition of stem cell-like attributes in tumors. Moreover, CSC mediates tumor metastasis by maintaining plasticity to transition between epithelial or mesenchymal states. Therefore, understanding the molecular mechanisms of the reprograming switches that determine the progression through EMT and generation of CSC is essential for developing clinically relevant drug targets. This review provides an overview of the proposed roles of CSC in HCC and discusses recent results supporting the emerging role of EMT in facilitating hepatic CSC plasticity. In particular, we discuss how these important new insights may facilitate rational development of combining CSC- and EMT-targeted therapies in the future.
Collapse
Affiliation(s)
- Aparna Jayachandran
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Bijay Dhungel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - Jason C Steel
- The University of Queensland School of Medicine and the Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia.
| |
Collapse
|
21
|
Zhang Y, Chang R, Li M, Zhao K, Zheng H, Zhou X. Docetaxel-loaded lipid microbubbles combined with ultrasound-triggered microbubble destruction for targeted tumor therapy in MHCC-H cells. Onco Targets Ther 2016; 9:4763-71. [PMID: 27536139 PMCID: PMC4975142 DOI: 10.2147/ott.s102101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Efficient and targeted delivery of cytotoxic drugs is still a challenge in the fight against cancer. Ultrasound-targeted destruction of cytotoxic drug-loaded lipid microbubbles (LMs) might be a promising method. This study aimed to explore the antitumor effects of docetaxel-loaded LM (DLLM) combined with ultrasound-targeted microbubble destruction (UTMD) on liver cancer. MATERIALS AND METHODS DLLMs were made by a mechanical vibration technique. The effects of docetaxel, DLLM alone, and DLLM + UTMD on cell viability and cell proliferation (Cell Counting Kit-8 assay) of MHCC-H cells and HepG2 cells were tested. The effects on cell cycle (flow cytometry) and apoptosis (flow cytometry and immunoblotting) of MHCC-H cells were tested. Solid fast-growing tumor mouse models were established and were randomized to blank LM + UTMD (controls) or DLLM + UTMD. Tumor volume was compared between the two groups. RESULTS DLLMs had an 18%±7% drug-loading capacity, an 80%±3% encapsulation efficiency, and a mean particle size of 2,845 nm (75% range 1,527-5,534 nm). Compared to the other groups, DLLM + UTMD decreased the proliferation and increased the apoptosis of MHCC-H cells. DLLM + UTMD resulted in the inhibition of a higher proportion of cells in the G1 phase. Compared to the control group, the tumor volume in mice receiving DLLM + UTMD was smaller. CONCLUSION DLLM + UTMD can increase the proportion of cells arrested in the G1 phase, decrease tumor cell proliferation, and induce MHCC-H cell apoptosis. The growth of solid tumors in mice was inhibited. These results could provide a novel targeted strategy against liver cancer.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Ultrasound, Xijing Hospital
| | | | - Muqiong Li
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an
| | - Kun Zhao
- Department of Cardiothoracic Surgery, The Third Chinese People's Liberation Army Hospital, Baoji, Shaanxi Province
| | - Hongzhi Zheng
- Department of Ultrasound, The 534 Hospital, Luoyang, Henan Province, People's Republic of China
| | | |
Collapse
|
22
|
Evidence that high-migration drug-surviving MOLT4 leukemia cells exhibit cancer stem cell-like properties. Int J Oncol 2016; 49:343-51. [PMID: 27210806 DOI: 10.3892/ijo.2016.3526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/28/2016] [Indexed: 11/05/2022] Open
Abstract
Leukemia represents a spectrum of hematological malignancies threatening human health. Resistance to treatments and metastasis of leukemia are the main causes of death in patients. Leukemia stem cells (LSCs) are the initiating cells of leukemia as well as the main source of drug resistance, invasion and metastasis. Consequently, eliminating LSCs is a prerequisite to eradicate leukemia. Preliminary studies in our laboratory have shown that chemokines and their related receptors play an important role in the drug resistance and metastasis of leukemic cells. In this study, we obtained high migration drug-surviving (short term) MOLT4 cells (hMDSCs-MOLT4) with treatment of doxorubicin (DOX) after Transwell assay. Then we detected stem cell-associated molecular markers on hMDSCs-MOLT4 cells and the parental MOLT4 cells by FCM, QPCR, western blotting, H&E staining and immunohisto-chemistry experimental techniques in vitro and in vivo. Moreover, we explored its impact on drug resistance and tumor formation. Then we found that compared with the parental MOLT4 cells, the mRNA expression levels of stem cell-related factors Sox2, Oct4, C-myc, Klf4, Nanog, Bmi-1, CXCR4 are increased in hMDSCs-MOLT4 cells, together with the protein expression levels of Sox2, Oct4, Klf4, Nanog, CXCR4 and CD34. Our results indicated that hMDSCs-MOLT4 cells exhibited strong drug resistance and certain cancer stem cell-like characteristics. It is the first indication that the targeting stemness factors such as Sox2, Oct4, Klf4, Nanog and CXCR4 may represent plausible options for eliminating T-ALL stem-like cells. The present findings shed light on the relationship between drug-tolerant leukemic cells and cancer stem cells.
Collapse
|
23
|
Mozafari M, Shimoda M, Urbanska AM, Laurent S. Ultrasound-targeted microbubble destruction: toward a new strategy for diabetes treatment. Drug Discov Today 2016; 21:540-543. [PMID: 26646254 DOI: 10.1016/j.drudis.2015.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/02/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) is a promising technique with an immense target-specific gene delivery potential deep inside the human body. The potential of this technique has recently been confirmed for diabetic patients. This technology allows the genes to transfer specifically into the inefficient pancreas using ultrasound energy without viral vector utilization. It has been speculated that this idea and the advent of modern gene therapy techniques could result in significant future advances. Undoubtedly, this strategy needs further investigation and many critical questions have to be answered before it can be successfully advanced. Herein, we introduce the salient features of this approach, the hurdles that must be overcome, the hopes associated with it and practical constraints to develop this method for diabetes treatment.
Collapse
Affiliation(s)
- Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| | - Masayuki Shimoda
- Islet Cell Transplantation Project, Diabetes Research Center, Research Institute of National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Sophie Laurent
- University of Mons, General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Avenue Maistriau, 19, 7000 Mons, Belgium
| |
Collapse
|