1
|
Liu J, Zhang X, Lin J, Dai C, Xie Z, Shi X, Zhu B, Cui L, Wu Y, Jing Y, Fu X, Yu W, Wang K, Li J. HBcrAg is associated with prognosis of hepatitis B virus-related hepatocellular carcinoma in patients after hepatectomy undergoing antiviral therapy. Int J Cancer 2025; 156:1293-1303. [PMID: 39450706 DOI: 10.1002/ijc.35224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/01/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Serum hepatitis B core-related antigen (HBcrAg) is considered a surrogate marker of the amount and activity of intrahepatic covalently closed circular DNA. This study aimed to explore the prognostic value of HBcrAg on patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after curative hepatectomy undergoing antiviral therapy (AVT). Data of 949 consecutive patients with HBV-related HCC undergoing curative resection between 2010 and 2013 were reviewed. Serum HBcrAg levels were measured at surgery (baseline) for all patients and at the time of 2 years postoperatively (on-treatment) for those without recurrence. Primary endpoint was tumor recurrence. High HBcrAg levels are associated with malignant phenotypes. HBcrAg independently affected both recurrence and overall survival (OS) in patients with negative hepatitis B e antigen (HBeAg-, p = .007 and p = .042, respectively) but not in their positive HBeAg (HBeAg+) counterparts (p = .100 and p = .075, respectively). Patients with high baseline HBcrAg had higher late, but not early recurrence rates than those with low baseline HBcrAg levels, regardless of HBeAg status (HBeAg+: p = .307 for early, p = .001 for late; HBeAg-: p = .937 for early, p < .001 for late). On-treatment HBcrAg independently affected late recurrence in patients stratified by both cirrhosis and HBeAg (p < .001 for all). The predictive power of HBcrAg kinetics for late recurrence was better than that of the baseline and on-treatment HBcrAg. High HBcrAg levels during long-term AVT are associated with late recurrence of HCC after hepatectomy. Combining baseline and on-treatment HBcrAg might be valuable in identifying patients at a high risk of relapse and stratifying surveillance strategies postoperatively.
Collapse
Affiliation(s)
- Jian Liu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xiaofeng Zhang
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jianbo Lin
- Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Chun Dai
- Department of Gastroenterological Surgery, People's Hospital of Yang Zhong, Zhenjiang, Jiangsu Province, China
| | - Zhihao Xie
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xintong Shi
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Bin Zhu
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Longjiu Cui
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yeye Wu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yuanming Jing
- Department of Gastrointestinal Surgery, People's Hospital of Shaoxing, Shaoxing, Zhejiang Province, China
| | - Xiaohui Fu
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Wenlong Yu
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatobiliary and Pancreatic Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
2
|
Lun Y, Sun J, Wei L, Liu B, Li Z, Dong W, Zhao W. SPINK13 acts as a tumor suppressor in hepatocellular carcinoma by inhibiting Akt phosphorylation. Cell Death Dis 2024; 15:822. [PMID: 39537605 PMCID: PMC11561306 DOI: 10.1038/s41419-024-07214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The PI3K/Akt pathway is overexpressed in nearly 50% of hepatocellular carcinomas and inhibits apoptosis by promoting the expression of antiapoptotic genes. Serine protease inhibitors have been shown to induce apoptosis in hepatoma cells by downregulating SPINK13 in the PI3K/Akt pathway. In this study, SPINK13 was expressed in lentiviral vectors. Changes in signaling pathway adapter proteins, apoptosis regulatory proteins, cell cycle regulatory proteins, and the biological behavior of hepatocellular carcinoma were observed in cell and nude mouse xenograft models. The underlying mechanism of endogenous SPINK13-induced apoptosis in hepatocellular carcinoma cells was explored via transcriptomics. As a result, endogenous SPINK13 might inhibit the activity of Furin protease, downregulate the Notch1/Hes1 pathway in a binding manner, activate the direct effector PTEN, inhibit Akt phosphorylation, inactivate the downstream PI3K/Akt pathway, and ultimately lead to mitochondrial apoptosis and cell cycle arrest in hepatoma cells. Therefore, the Notch1/Hes1/PTEN pathway may act upstream of SPINK13 to downregulate the PI3K/Akt signaling pathway. Our study helps elucidate the underlying mechanism of SPINK13 in anti-hepatocellular carcinoma and lays a theoretical foundation for the development of novel therapeutic serine protease inhibitors.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Humans
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice, Nude
- Phosphorylation
- Apoptosis/genetics
- Mice
- Signal Transduction
- Cell Line, Tumor
- Phosphatidylinositol 3-Kinases/metabolism
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Serine Peptidase Inhibitors, Kazal Type/metabolism
- Serine Peptidase Inhibitors, Kazal Type/genetics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Trypsin Inhibitor, Kazal Pancreatic/metabolism
- Trypsin Inhibitor, Kazal Pancreatic/genetics
- Transcription Factor HES-1/metabolism
- Transcription Factor HES-1/genetics
- Hep G2 Cells
- Mice, Inbred BALB C
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Yongzhi Lun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China.
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China.
| | - Jie Sun
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Ling Wei
- Beijing Centre for Physical and Chemical Analysis, 100089, Beijing, China
| | - Ben Liu
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Zhixue Li
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Wen Dong
- Department of Laboratory Medicine, Putian University, Putian, 351100, Fujian, China
| | - Wenqi Zhao
- Key Laboratory of Screening and Control of Infectious Diseases, Fujian Provincial University, Quanzhou Medical College, Quanzhou, 362011, Fujian, China
| |
Collapse
|
3
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Yang L, Zhang Z, Sun Y, Pang S, Yao Q, Lin P, Cheng J, Li J, Ding G, Hui L, Li Y, Li H. Integrative analysis reveals novel driver genes and molecular subclasses of hepatocellular carcinoma. Aging (Albany NY) 2020; 12:23849-23871. [PMID: 33221766 PMCID: PMC7762459 DOI: 10.18632/aging.104047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/25/2020] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous disease with various genetic and epigenetic abnormalities. Previous studies of HCC driver genes were primarily based on frequency of mutations and copy number alterations. Here, we performed an integrative analysis of genomic and epigenomic data from 377 HCC patients to identify driver genes that regulate gene expression in HCC. This integrative approach has significant advantages over single-platform analyses for identifying cancer drivers. Using this approach, HCC tissues were divided into four subgroups, based on expression of the transcription factor E2F and the mutation status of TP53. HCC tissues with E2F overexpression and TP53 mutation had the highest cell cycle activity, indicating a synergistic effect of E2F and TP53. We found that overexpression of the identified driver genes, stratifin (SFN) and SPP1, correlates with tumor grade and poor survival in HCC and promotes HCC cell proliferation. These findings indicate SFN and SPP1 function as oncogenes in HCC and highlight the important role of enhancers in the regulation of gene expression in HCC.
Collapse
Affiliation(s)
- Liguang Yang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengtao Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichao Pang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianlan Yao
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Lin
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinming Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohui Ding
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Anhui Engineering Laboratory for Big Data of Precision Medicine, Anhui 234000, China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai 200433, China.,Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Hong Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Hany H, Shalaby A, Al Kashef W, Kandil W, Shahin RA, El-Alfy H, Besheer T, Farag R, Mohamed M. Evaluation of the role of Notch1 expression in hepatic carcinogenesis with clinico-pathological correlation. Pathology 2018; 50:730-736. [PMID: 30389219 DOI: 10.1016/j.pathol.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023]
Abstract
The role of Notch pathway in hepatocarcinogenesis is unclear with conflicting results reported from different researchers. This study aimed to investigate the exact role of Notch1 in hepatocarcinogenesis and its influence on survival and to determine the possibility of it being a target therapy. Differential immunohistochemical expression of Notch1 in 100 cases of hepatocellular carcinoma (HCC) and adjacent non-neoplastic liver tissue was performed. The results showed that expression of Notch1 was significantly higher in the non-neoplastic hepatic tissues than in HCC tissues (p < 0.001), but there was no significant difference in Notch1 expression between cirrhotic and non-cirrhotic liver tissue (p = 0.197). Notch1 expression was higher in low grade than in high grade HCC (p = 0.036). Notch1 expression showed reverse correlation with mitotic count (p = 0.008), and necrosis (p = 0.005). The disease free survival was shorter in patients displaying low levels of Notch1 expression (p = 0.045). The overall survival showed no significant difference between high and low levels of Notch1 expression; however, it was somewhat longer in patients with high Notch1 expression (p = 0.220). In conclusion, the tumour suppressor role of Notch1 was supported and the use of Notch1 agonists may have a role in improving the prognosis of HCC.
Collapse
Affiliation(s)
- Heba Hany
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Asem Shalaby
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt; Pathology Department, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman.
| | - Wagdi Al Kashef
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Wageha Kandil
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab-Allah Shahin
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem El-Alfy
- Tropical Disease Department, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Tarek Besheer
- Tropical Disease Department, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Raghda Farag
- Tropical Disease Department, Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Mie Mohamed
- Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|