1
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
2
|
Filippou C, Themistocleous SC, Marangos G, Panayiotou Y, Fyrilla M, Kousparou CA, Pana ZD, Tsioutis C, Johnson EO, Yiallouris A. Microbial Therapy and Breast Cancer Management: Exploring Mechanisms, Clinical Efficacy, and Integration within the One Health Approach. Int J Mol Sci 2024; 25:1110. [PMID: 38256183 PMCID: PMC10816061 DOI: 10.3390/ijms25021110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review elucidates the profound relationship between the human microbiome and breast cancer management. Recent findings highlight the significance of microbial alterations in tissue, such as the gut and the breast, and their role in influencing the breast cancer risk, development, progression, and treatment outcomes. We delve into how the gut microbiome can modulate systemic inflammatory responses and estrogen levels, thereby impacting cancer initiation and therapeutic drug efficacy. Furthermore, we explore the unique microbial diversity within breast tissue, indicating potential imbalances brought about by cancer and highlighting specific microbes as promising therapeutic targets. Emphasizing a holistic One Health approach, this review underscores the importance of integrating insights from human, animal, and environmental health to gain a deeper understanding of the complex microbe-cancer interplay. As the field advances, the strategic manipulation of the microbiome and its metabolites presents innovative prospects for the enhancement of cancer diagnostics and therapeutics. However, rigorous clinical trials remain essential to confirm the potential of microbiota-based interventions in breast cancer management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Yiallouris
- School of Medicine, European University Cyprus, 6 Diogenis Str., 2404 Engomi, P.O. Box 22006, Nicosia 1516, Cyprus
| |
Collapse
|
3
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Abstract
Teserpaturev/G47Δ (Delytact®) is a third-generation (triple-mutated) recombinant oncolytic herpes simplex virus type 1 being developed by Daiichi Sankyo Co., Ltd. for the treatment of certain solid cancers. Teserpaturev/G47Δ has been approved for the treatment of malignant glioma in Japan and is currently in clinical development for the treatment of prostate cancer (phase II), malignant pleural mesothelioma (phase I) and recurrent olfactory neuroblastoma (phase I). This article summarizes the milestones in the development of teserpaturev/G47Δ leading to this first approval for the treatment of malignant glioma.
Collapse
Affiliation(s)
- James E Frampton
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
5
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kwan A, Winder N, Muthana M. Oncolytic Virotherapy Treatment of Breast Cancer: Barriers and Recent Advances. Viruses 2021; 13:1128. [PMID: 34208264 PMCID: PMC8230950 DOI: 10.3390/v13061128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy (OV) is an emerging class of immunotherapeutic drugs. Their mechanism of action is two-fold: direct cell lysis and unmasking of the cancer through immunogenic cell death, which allows the immune system to recognize and eradicate tumours. Breast cancer is the most common cancer in women and is challenging to treat with immunotherapy modalities because it is classically an immunogenically "cold" tumour type. This provides an attractive niche for OV, given viruses have been shown to turn "cold" tumours "hot," thereby opening a plethora of treatment opportunities. There has been a number of pre-clinical attempts to explore the use of OV in breast cancer; however, these have not led to any meaningful clinical trials. This review considers both the potential and the barriers to OV in breast cancer, namely, the limitations of monotherapy and the scope for combination therapy, improving viral delivery and challenges specific to the breast cancer population (e.g., tumour subtype, menopausal status, age).
Collapse
Affiliation(s)
| | | | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK; (A.K.); (N.W.)
| |
Collapse
|
7
|
Chen Q, Wang J, Liu WN, Zhao Y. Cancer Immunotherapies and Humanized Mouse Drug Testing Platforms. Transl Oncol 2019; 12:987-995. [PMID: 31121491 PMCID: PMC6529825 DOI: 10.1016/j.tranon.2019.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that restores and stimulates human immune system to inhibit cancer growth or eradicate cancer. It serves as one of the latest systemic therapies, which has been approved to treat different types of cancer in patients. Nevertheless, the clinical response rate is unsatisfactory and the response observed is mostly a partial response in patients. Despite the continuous improvement and identification of novel cancer immunotherapy, there is a pressing need to establish a robust platform to evaluate the efficacy and safety of pre-clinical drugs, simulate the interaction between patients’ tumor and immune system, and predict patients’ responses to the treatment. In this review, we summarize the pros and cons of existing immuno-oncology assay platforms, especially the humanized mouse models for the screening of cancer immunotherapy drugs. In addition, various emerging trends and progress of utilizing humanized mouse models as the screening tool are discussed. Of note, humanized mouse models can also be used for further development of personalized precision medicines to treat cancer. Collectively, these highlight the significance of humanized mouse models as the important platform for the screening of next generation cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Qingfeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jiaxu Wang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Yue Zhao
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
8
|
Ebrahimi S, Ghorbani E, Shafiee M, Ryzhikov M, Hassanian SM, Azadmanesh K. Therapeutic potency of oncolytic virotherapy in breast cancer targeting, current status and perspective. J Cell Biochem 2018; 120:2801-2809. [PMID: 30260014 DOI: 10.1002/jcb.27725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022]
Abstract
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Al-Zahra University, Tehran, Iran
| | - Mojtaba Shafiee
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, Missouri
| | - Seyed M Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
9
|
Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Jia R, Sun K, Chen X. Programmed cell death: the battlefield between the host and alpha-herpesviruses and a potential avenue for cancer treatment. Oncotarget 2018; 9:30704-30719. [PMID: 30093980 PMCID: PMC6078129 DOI: 10.18632/oncotarget.25694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 12/24/2022] Open
Abstract
Programed cell death is an antiviral mechanism by which the host limits viral replication and protects uninfected cells. Many viruses encode proteins resistant to programed cell death to escape the host immune defenses, which indicates that programed cell death is more favorable for the host immune defense. Alpha-herpesviruses are pathogens that widely affect the health of humans and animals in different communities worldwide. Alpha-herpesviruses can induce apoptosis, autophagy and necroptosis through different molecular mechanisms. This review concisely illustrates the different pathways of apoptosis, autophagy, and necroptosis induced by alpha-herpesviruses. These pathways influence viral infection and replication and are a potential avenue for cancer treatment. This review will increase our understanding of the role of programed cell death in the host immune defense and provides new possibilities for cancer treatment.
Collapse
Affiliation(s)
- Chuankuo Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, P.R. China
| |
Collapse
|
10
|
Cheng L, Jiang H, Fan J, Wang J, Hu P, Ruan Y, Liu R. A novel oncolytic herpes simplex virus armed with the carboxyl-terminus of murine MyD116 has enhanced anti-tumour efficacy against human breast cancer cells. Oncol Lett 2018; 15:7046-7052. [PMID: 29849789 PMCID: PMC5962873 DOI: 10.3892/ol.2018.8247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex virus-1 (oHSV-1) vectors are promising therapeutic agents for cancer. The deletion of the γ34.5 gene eliminates the neurovirulence but attenuates virus replication at the same time. The carboxyl-terminus of protein phosphatase 1 regulatory subunit 15A (also known as MyD116/GADD34) is homologous to that of γ34.5; hence, it may substitute for γ34.5 to enhance the replication and cytotoxicity of the virus. To investigate whether the C-terminus of MyD116 can enhance the anti-tumour efficacy of G47Δ on human breast cancer cells, a GD116 mutant was constructed by inserting a γ34.5-MyD116 chimaera into the G47Δ genome using a bacterial artificial chromosome and two recombinase systems (Cre/loxP and FLPE/FRT). A GD-empty mutant containing only the cytomegalovirus sequence was also created as a control using the same method. Next, the replication and cytotoxicity of these two virus vectors were evaluated in breast cancer cells. Compared with the GD-empty vector, GD116 possessed an enhanced replication capability and oncolytic activity in MCF-7 and MDA-MB-231 cells. On the fifth day after infection with GD116 at MOIs of 0.01 and 0.1, 49.2 and 82.8% of MCF-7 cells, respectively, were killed, with 35.0 and 50.2% of MDA-MB-231 cells, respectively, killed by GD116 at MOIs of 0.1 and 0.3. Additionally, the insertion of the γ34.5-MyD116 chimaera promoted virus replication in MDA-MB-468 at 48 h after infection, although no increased cytotoxic effect was observed. The findings of the present study indicate that the C terminus of the MyD116 gene can be substituted for the corresponding domain of the γ34.5 gene of oHSV-1 to promote the replication of the virus in infected cells. Furthermore, the novel virus mutant GD116 armed with a γ34.5-MyD116 chimaera has enhanced anti-tumour efficacy against human breast cancer cells in vitro.
Collapse
Affiliation(s)
- Lin Cheng
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Hua Jiang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jingjing Fan
- Department of Breast and Neck Surgery, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830011, P.R. China
| | - Jiani Wang
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Pan Hu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ying Ruan
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Renbin Liu
- Breast Cancer Center, Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
O’Bryan SM, Mathis JM. Oncolytic Virotherapy for Breast Cancer Treatment. Curr Gene Ther 2018; 18:192-205. [PMID: 30207220 PMCID: PMC7499349 DOI: 10.2174/1566523218666180910163805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/20/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Breast cancer continues to be a leading cause of mortality among women. While at an early stage, localized breast cancer is easily treated; however, advanced stages of disease continue to carry a high mortality rate. The discrepancy in treatment success highlights that current treatments are insufficient to treat advanced-stage breast cancer. As new and improved treatments have been sought, one therapeutic approach has gained considerable attention. Oncolytic viruses are uniquely capable of targeting cancer cells through intrinsic or engineered means. They come in many forms, mainly from four major virus groups as defined by the Baltimore classification system. These vectors can target and kill cancer cells, and even stimulate immunotherapeutic effects in patients. This review discusses not only individual oncolytic viruses pursued in the context of breast cancer treatment but also the emergence of combination therapies with current or new therapies, which has become a particularly promising strategy for treatment of breast cancer. Overall, oncolytic virotherapy is a promising strategy for increased treatment efficacy for advanced breast cancer and consequently provides a unique platform for personalized treatments in patients.
Collapse
Affiliation(s)
- Samia M. O’Bryan
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - J. Michael Mathis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|