1
|
Zou Z, Zhong L. Anaplastic thyroid cancer: Genetic roles, targeted therapy, and immunotherapy. Genes Dis 2025; 12:101403. [PMID: 40271195 PMCID: PMC12018003 DOI: 10.1016/j.gendis.2024.101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/02/2024] [Accepted: 08/02/2024] [Indexed: 04/25/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) stands as the most formidable form of thyroid malignancy, presenting a persistent challenge in clinical management. Recent years have witnessed a gradual unveiling of the intricate genetic underpinnings governing ATC through next-generation sequencing. The emergence of this genetic landscape has paved the way for the exploration of targeted therapies and immunotherapies in clinical trials. Despite these strides, the precise mechanisms governing ATC pathogenesis and the identification of efficacious treatments demand further investigation. Our comprehensive review stems from an extensive literature search focusing on the genetic implications, notably the pivotal MAPK and PI3K-AKT-mTOR signaling pathways, along with targeted therapies and immunotherapies in ATC. Moreover, we screen and summarize the advances and challenges in the current diagnostic approaches for ATC, including the invasive tissue sampling represented by fine needle aspiration and core needle biopsy, immunohistochemistry, and 18F-fluorodeoxyglucose positron emission tomography/computed tomography. We also investigate enormous studies on the prognosis of ATC and outline independent prognostic factors for future clinical assessment and therapy for ATC. By synthesizing this literature, we aim to encapsulate the evolving landscape of ATC oncology, potentially shedding light on novel pathogenic mechanisms and avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zhao Zou
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Linhong Zhong
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging and Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
2
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. Regulation of iodine-glucose flip-flop in SW1736 anaplastic thyroid cancer cell line. J Endocrinol Invest 2024; 47:2809-2821. [PMID: 38698299 DOI: 10.1007/s40618-024-02377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/13/2024] [Indexed: 05/05/2024]
Abstract
AIMS AND BACKGROUND The alternative manner of iodide and glucose uptake found in different types of thyroid cancer, referred to flip-flop. ATC cells indicate low iodide uptake and high glucose uptake, which lack the morphology and genetic characteristics of well-differentiated tumors and become increasingly invasive. Importance placed on the discovery of innovative multi-targeted medicines to suppress the dysregulated signaling in cancer. In this research, we aimed to clarify molecular mechanism of Rutin as a phytomedicine on anaplastic thyroid cancer cell line based on iodide and glucose uptake. MATERIAL METHODS The MTT test was employed to test cell viability. Iodide uptake assay was performed using a spectrophotometric assay to determine iodide uptake in SW1736 cells based on Sandell-Kolthoff reaction. For glucose uptake detection, ''GOD-PAP'' enzymatic colorimetric assay was applied to measure the direct glucose levels inside of the cells. Determination of NIS, GLUT1 and 3 mRNA expression in SW1736 cells was performed by qRT-PCR. Determination of NIS, GLUT1 and 3 protein levels in SW1736 cells was performed by western blotting. RESULTS According to our results, Rutin inhibited the viability of SW1736 cells in a time- and dose-dependent manner. Quantitative Real-time RT-PCR analysis exposed that NIS mRNA levels were increased in Rutin treated group compared to the control group. Accordingly, western blot showed high expression of NIS protein and low expression of GLUT 1 and 3 in Rutin treated SW1736 cell line. Rutin increased iodide uptake and decreased glucose uptake in thyroid cancer cell line SW1736 compared to control group. CONCLUSION Multiple mechanisms point to Rutin's role as a major stimulator of iodide uptake and inhibitor of glucose uptake, including effects at the mRNA and protein levels for both NIS and GLUTs, respectively. Here in, we described the flip-flop phenomenon as a possible therapeutic target for ATC. Moreover, Rutin is first documented here as a NIS expression inducer capable of restoring cell differentiation in SW1736 cell line. It also be concluded that GLUTs as metabolic targets can be blocked specifically by Rutin for thyroid cancer prevention and treatment.
Collapse
Affiliation(s)
- S Heydarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran
- Department of Biochemistry, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - A A Moshtaghie
- Department of Biochemistry, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - M Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran
| | - M Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No.23, Yemen St, Aarabi Street, 193954763, Tehran, Iran.
| |
Collapse
|
3
|
Ballico M, Alessi D, Aneggi E, Busato M, Zuccaccia D, Allegri L, Damante G, Jandl C, Baratta W. Cyclometalated and NNN Terpyridine Ruthenium Photocatalysts and Their Cytotoxic Activity. Molecules 2024; 29:2146. [PMID: 38731639 PMCID: PMC11085208 DOI: 10.3390/molecules29092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The cyclometalated terpyridine complexes [Ru(η2-OAc)(NC-tpy)(PP)] (PP = dppb 1, (R,R)-Skewphos 4, (S,S)-Skewphos 5) are easily obtained from the acetate derivatives [Ru(η2-OAc)2(PP)] (PP = dppb, (R,R)-Skewphos 2, (S,S)-Skewphos 3) and tpy in methanol by elimination of AcOH. The precursors 2, 3 are prepared from [Ru(η2-OAc)2(PPh3)2] and Skewphos in cyclohexane. Conversely, the NNN complexes [Ru(η1-OAc)(NNN-tpy)(PP)]OAc (PP = (R,R)-Skewphos 6, (S,S)-Skewphos 7) are synthesized in a one pot reaction from [Ru(η2-OAc)2(PPh3)2], PP and tpy in methanol. The neutral NC-tpy 1, 4, 5 and cationic NNN-tpy 6, 7 complexes catalyze the transfer hydrogenation of acetophenone (S/C = 1000) in 2-propanol with NaOiPr under light irradiation at 30 °C. Formation of (S)-1-phenylethanol has been observed with 4, 6 in a MeOH/iPrOH mixture, whereas the R-enantiomer is obtained with 5, 7 (50-52% ee). The tpy complexes show cytotoxic activity against the anaplastic thyroid cancer 8505C and SW1736 cell lines (ED50 = 0.31-8.53 µM), with the cationic 7 displaying an ED50 of 0.31 µM, four times lower compared to the enantiomer 6.
Collapse
Affiliation(s)
- Maurizio Ballico
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Dario Alessi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Eleonora Aneggi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Marta Busato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| | - Lorenzo Allegri
- Dipartimento di Medicina, Istituto di Genetica Medica, Università di Udine, Via Chiusaforte, F3, I-33100 Udine, Italy; (L.A.); (G.D.)
| | - Giuseppe Damante
- Dipartimento di Medicina, Istituto di Genetica Medica, Università di Udine, Via Chiusaforte, F3, I-33100 Udine, Italy; (L.A.); (G.D.)
| | - Christian Jandl
- Department of Chemistry & Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany;
| | - Walter Baratta
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, Via Cotonificio 108, I-33100 Udine, Italy; (D.A.); (E.A.); (M.B.); (D.Z.)
| |
Collapse
|
4
|
Molteni E, Baldan F, Damante G, Allegri L. Dihydrotanshinone I exhibits antitumor effects via β-catenin downregulation in papillary thyroid cancer cell lines. Sci Rep 2024; 14:7853. [PMID: 38570592 PMCID: PMC10991365 DOI: 10.1038/s41598-024-58495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Thyroid cancer is the most common endocrine carcinoma and, among its different subtypes, the papillary subtype (PTC) is the most frequent. Generally, PTCs are well differentiated, but a minor percentage of PTCs are characterized by a worse prognosis and more aggressive behavior. Phytochemicals, naturally found in plant products, represent a heterogeneous group of bioactive compounds that can interfere with cell proliferation and the regulation of the cell cycle, taking part in multiple signaling pathways that are often disrupted in tumor initiation, proliferation, and progression. In this work, we focused on 15,16-dihydrotanshinone I (DHT), a tanshinone isolated from Salvia miltiorrhiza Bunge (Danshen). We first evaluated DHT biological effect on PTC cells regarding cell viability, colony formation ability, and migration capacity. All of these parameters were downregulated by DHT treatment. We then investigated gene expression changes after DHT treatment by performing RNA-seq. The analysis revealed that DHT significantly reduced the Wnt signaling pathway, which plays a role in various diseases, including cancer. Finally, we demonstrate that DHT treatment decreases protein levels of β-catenin, a final effector of canonical Wnt signaling pathway. Overall, our data suggest a possible use of this nutraceutical as an adjuvant in the treatment of aggressive papillary thyroid carcinoma.
Collapse
Affiliation(s)
| | - Federica Baldan
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Giuseppe Damante
- Department of Medicine, University of Udine, 33100, Udine, Italy
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Friuli Centrale, 33100, Udine, Italy
| | - Lorenzo Allegri
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
5
|
Heydarzadeh S, Moshtaghie AA, Daneshpour M, Hedayati M. The effect of Apigenin on glycometabolism and cell death in an anaplastic thyroid cancer cell line. Toxicol Appl Pharmacol 2023; 475:116626. [PMID: 37437745 DOI: 10.1016/j.taap.2023.116626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
AIMS AND BACKGROUND A more pronounced characteristic of cancer cells is the energy dependence on glucose, which mitigated by glucose transporters. The comprehension of the regulatory mechanisms behind the Warburg effect holds promise for developing therapeutic interventions for cancers. Studies are lacking which targeted the GLUTs for treatment of malignancy of thyroid tumors. In our current investigation, we have undertaken this study to determine the potential of Apigenin, plant derived flavonoid in modulating tumor apoptosis by targeting GLUTs expression in SW1736 cell line of anaplastic thyroid carcinoma. MATERIAL METHODS Flow cytometry with propidium iodide staining was used to determine cell apoptosis. For glucose uptake detection, the "GOD-PAP" enzymatic colorimetric test was used to measure the direct glucose levels inside the cells. To determine the expression of GLUT1 and GLUT3 mRNA in the SW1736 cell line qRT-PCR was employed. Protein levels of GLUT1 and GLUT3 in the SW1736 cell line were detected with western blotting. Also, the scratch wound healing assay was conducted for cell migration. RESULTS According to qRT-PCR analysis, the levels of GLUT1 and GLUT3 mRNA were lower in the group that received Apigenin relative to the control group. The Apigenin treatment of SW1736 cells decreased protein expression of the GLUT1 and GLUT3 levels in conformity to qRT-PCR. The scratch assays revealed that Apigenin treatment of cancer cell lines inhibited cell migration as compared to control. CONCLUSION These findings demonstrate the possibility of targeting the glucose facilitators' pathway for making thyroid cancer cells more susceptible to programmed cell death.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Molteni E, Baldan F, Damante G, Allegri L. GSK2801 Reverses Paclitaxel Resistance in Anaplastic Thyroid Cancer Cell Lines through MYCN Downregulation. Int J Mol Sci 2023; 24:ijms24065993. [PMID: 36983070 PMCID: PMC10054879 DOI: 10.3390/ijms24065993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Anaplastic thyroid cancer (ATC) is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. Treatment with taxanes (such as paclitaxel) is an important approach in counteracting ATC or slowing its progression in tumors without known genetic aberrations or those which are unresponsive to other treatments. Unfortunately, resistance often develops and, for this reason, new therapies that overcome taxane resistance are needed. In this study, effects of inhibition of several bromodomain proteins in paclitaxel-resistant ATC cell lines were investigated. GSK2801, a specific inhibitor of BAZ2A, BAZ2B and BRD9, was effective in resensitizing cells to paclitaxel. In fact, when used in combination with paclitaxel, it was able to reduce cell viability, block the ability to form colonies in an anchor-independent manner, and strongly decrease cell motility. After RNA-seq following treatment with GSK2801, we focused our attention on MYCN. Based on the hypothesis that MYCN was a major downstream player in the biological effects of GSK2801, we tested a specific inhibitor, VPC-70619, which showed effective biological effects when used in association with paclitaxel. This suggests that the functional deficiency of MYCN determines a partial resensitization of the cells examined and, ultimately, that a substantial part of the effect of GSK2801 results from inhibition of MYCN expression.
Collapse
Affiliation(s)
- Elisabetta Molteni
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy
| | - Federica Baldan
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy
| | - Lorenzo Allegri
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy
| |
Collapse
|
7
|
Osteogenic and Adipogenic Differentiation Potential of Oral Cancer Stem Cells May Offer New Treatment Modalities. Int J Mol Sci 2023; 24:ijms24054704. [PMID: 36902135 PMCID: PMC10002556 DOI: 10.3390/ijms24054704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Treatment failure of oral squamous cell carcinoma (OSCC) is generally due to the development of therapeutic resistance caused by the existence of cancer stem cells (CSCs), a small cell subpopulation with marked self-renewal and differentiation capacity. Micro RNAs, notably miRNA-21, appear to play an important role in OSCC carcinogenesis. Our objectives were to explore the multipotency of oral CSCs by estimating their differentiation capacity and assessing the effects of differentiation on stemness, apoptosis, and several miRNAs' expression. (2) A commercially available OSCC cell line (SCC25) and five primary OSCC cultures generated from tumor tissues obtained from five OSCC patients were used in the experiments. Cells harboring CD44, a CSC marker, were magnetically separated from the heterogeneous tumor cell populations. The CD44+ cells were then subjected to osteogenic and adipogenic induction, and the specific staining was used for differentiation confirmation. The kinetics of the differentiation process was evaluated by qPCR analysis of osteogenic (Bone Morphogenetic Protein-BMP4, Runt-related Transcription Factor 2-RUNX2, Alkaline Phosphatase-ALP) and adipogenic (Fibroblast Activation Protein Alpha-FAP, LIPIN, Peroxisome Proliferator-activated Receptor Gamma-PPARG) markers on days 0, 7, 14, and 21. Embryonic markers (Octamer-binding Transcription Factor 4-OCT4, Sex Determining Region Y Box 2-SOX2, and NANOG) and micro RNAs (miRNA-21, miRNA-133, and miRNA-491) were also correspondingly evaluated by qPCR. An Annexin V assay was used to assess the potential cytotoxic effects of the differentiation process. (3) Following differentiation, the levels of markers for the osteo/adipo lineages showed a gradual increase from day 0 to day 21 in the CD44+ cultures, while stemness markers and cell viability decreased. The oncogenic miRNA-21 also followed the same pattern of gradual decrease along the differentiation process, while tumor suppressor miRNA-133 and miRNA-491 levels increased. (4) Following induction, the CSCs acquired the characteristics of the differentiated cells. This was accompanied by loss of stemness properties, a decrease of the oncogenic and concomitant, and an increase of tumor suppressor micro RNAs.
Collapse
|
8
|
Atalay VE, Savaş B. Development of potential inhibitors of cell division protein kinase 2 by ligand based drug design. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclin-dependent kinases (CDKs) are commonly known by their role in cell cycle regulation which affects cancer mechanism. In many cancer types, CDKs show extreme activity or CDK inhibiting proteins are dysfunctional. Specifically, CDK2 plays an indispensable role in cell division especially in the G1/S phase and DNA damage repair. Therefore, it is important to find new potential CDK2 inhibitors. In this study, ligand-based drug design is used to design new potential CDK2 inhibitors. Y8 L ligand is obtained from the X-ray crystal structure of human CDK2 (PDB ID: 2XNB) (www.pdb.org) and used as a structure model. By adding hydrophilic and hydrophobic groups to the structure, a training set of 36 molecules is generated. Each molecule examined with Spartan’14 and optimized structures are used for docking to CDK2 structure by AutoDock and AutoDock Vina programs. Ligand-amino acid interactions are analysed with Discovery Studio Visualizer. Van der Waals, Pi-Pi T-shaped, alkyl, pi-alkyl, conventional hydrogen bond and carbon-hydrogen bond interactions are observed. By docking results and viewed interactions, some molecules are identified and discussed as potential CDK2 inhibitors. Additionally, 8 different QSAR descriptors obtained from Spartan’14, Preadmet and ALOGPS 2.1 programs are investigated with multiple linear regulation (MLR) analysis with SPSS program for their impact on affinity value.
Collapse
Affiliation(s)
- Vildan Enisoğlu Atalay
- Department of Molecular Biology and Genetics, Uskudar University, Uskudar, Istanbul, Turkey
- Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University, Uskudar, Istanbul, Turkey
| | - Büşra Savaş
- Department of Bioengineering, Uskudar University, Uskudar, Istanbul, Turkey
| |
Collapse
|
9
|
Allegri L, Capriglione F, Maggisano V, Damante G, Baldan F. Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. Int J Mol Sci 2021; 22:ijms22158083. [PMID: 34360846 PMCID: PMC8347033 DOI: 10.3390/ijms22158083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
ATC is a very rare, but extremely aggressive form of thyroid malignancy, responsible for the highest mortality rate registered for thyroid cancer. In patients without known genetic aberrations, the current treatment is still represented by palliative surgery and systemic mono- or combined chemotherapy, which is often not fully effective for the appearance of drug resistance. Comprehension of the mechanisms involved in the development of the resistance is therefore an urgent issue to suggest novel therapeutic approaches for this very aggressive malignancy. In this study, we created a model of anaplastic thyroid cancer (ATC) cells resistant to paclitaxel and investigated the characteristics of these cells by analyzing the profile of gene expression and comparing it with that of paclitaxel-sensitive original ATC cell lines. In addition, we evaluated the effects of Dihydrotanshinone I (DHT) on the viability and invasiveness of paclitaxel-resistant cells. ATC paclitaxel-resistant cells highlighted an overexpression of ABCB1 and a hyper-activation of the NF-κB compared to sensitive cells. DHT treatment resulted in a reduction of viability and clonogenic ability of resistant cells. Moreover, DHT induces a decrement of NF-κB activity in SW1736-PTX and 8505C-PTX cells. In conclusion, to the best of our knowledge, the results of the present study are the first to demonstrate the antitumor effects of DHT on ATC cells resistant to Paclitaxel in vitro.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
| | - Francesca Capriglione
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Valentina Maggisano
- Department of Health Sciences, University of Catanzaro ‘Magna Graecia’, 88100 Catanzaro, Italy; (F.C.); (V.M.)
| | - Giuseppe Damante
- Institute of Medical Genetics, Academic Hospital of Udine, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy;
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
- Correspondence:
| | - Federica Baldan
- Department of Medicine, University of Udine, Via Chiusaforte, 33100 Udine, Italy;
| |
Collapse
|
10
|
Novel therapeutic options for radioiodine-refractory thyroid cancer: redifferentiation and beyond. Curr Opin Oncol 2020; 32:13-19. [PMID: 31599772 DOI: 10.1097/cco.0000000000000593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Radioiodine-refractory thyroid cancers represent the main cause of thyroid cancer-related death. At present, targeted therapies with multikinase inhibitors represent a unique therapeutic tool, though they have limited benefit on patient survival and severe drug-associated adverse events. This review summarizes current treatment strategies for radioiodine-refractory thyroid cancer and focuses on novel approaches to redifferentiate thyroid cancer cells to restore responsiveness to radioiodine administration. RECENT FINDINGS We summarize and discuss recent clinical trial findings and early data from real-life experiences with multikinase-inhibiting drugs. Possible alternative strategies to traditional redifferentiation are also discussed. SUMMARY The current review focuses primarily on the major advancements in the knowledge of the pathophysiology of iodine transport and metabolism and the genetic and epigenetic alterations occurring in thyroid neoplasia as described using preclinical models. Results of clinical studies employing new compounds to induce thyroid cancer cell redifferentiation by acting against specific molecular targets are also discussed. Finally, we describe the current scenario emerging from such findings as well as future perspectives.
Collapse
|
11
|
Naorem LD, Pathak E, Muthaiyan M, Venkatesan A. Network-based meta-analysis for the identification of potential target for human anaplastic thyroid carcinoma. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
12
|
Gentile D, Orlandi P, Banchi M, Bocci G. Preclinical and clinical combination therapies in the treatment of anaplastic thyroid cancer. Med Oncol 2020; 37:19. [DOI: 10.1007/s12032-020-1345-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022]
|
13
|
Kubczak M, Szustka A, Błoński JZ, Gucký T, Misiewicz M, Krystof V, Robak P, Rogalińska M. Dose and drug changes in chronic lymphocytic leukemia cell response in vitro: A comparison of standard therapy regimens with two novel cyclin‑dependent kinase inhibitors. Mol Med Rep 2019; 19:3593-3603. [PMID: 30864706 PMCID: PMC6470834 DOI: 10.3892/mmr.2019.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 02/02/2019] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) treatment is improving; however, some patients do not respond to therapy. Due to the high heterogeneity in disease development, there is an urgent need for personalization of therapy. In the present study, the response of leukemic mononuclear cells to anticancer drugs used for CLL treatment (cladribine + mafosfamide; CM or CM combined with rituximab; RCM) was compared with the response to new cyclin-dependent kinase (CDK) inhibitors: BP14 and BP30. Viable apoptotic and necrotic cells were quantified by flow cytometry using propidium iodide and Yo-Pro stains. CDK inhibitors were studied in several doses to determine the reduction of necrosis and simultaneous increase of apoptosis in leukemic cell incubations with anticancer agents. The distinct cell response to applied doses/anticancer agents was observed. Results obtained in the current manuscript confirmed that modulation of doses is important. This was particularly indicated in results obtained at 24 h of cells incubation with anticancer agent. While an important time for analysis of anticancer response efficacy (monitoring of apoptosis induction potential) seems to be 48 h of cells exposition to anticancer agents. High variability in response to the drugs revealed that both the nature and the dose of the anticancer agents could be important in the final effect of the therapy. The present findings support the thesis that personalized medicine, before drug administration in the clinic, could be important to avoid the application of ineffective therapy.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| | - Aleksandra Szustka
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| | - Jerzy Z Błoński
- Department of Hematology, Medical University of Lodz, 93‑510 Lodz, Poland
| | - Tomaš Gucký
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, 78371 Olomouc, Czech Republic
| | | | - Vladmir Krystof
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, 78371 Olomouc, Czech Republic
| | - Paweł Robak
- Department of Experimental Hematology, Medical University of Lodz, 93‑510 Lodz, Poland
| | - Małgorzata Rogalińska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90‑236 Lodz, Poland
| |
Collapse
|
14
|
Baldan F, Allegri L, Lazarevic M, Catia M, Milosevic M, Damante G, Milasin J. Biological and molecular effects of bromodomain and extra‐terminal (BET) inhibitorsJQ1,IBET‐151, andIBET‐762 inOSCCcells. J Oral Pathol Med 2019; 48:214-221. [DOI: 10.1111/jop.12824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Federica Baldan
- Department of Internal Medicine and Medical SpecialtiesUniversity of Roma ‘Sapienza' Roma Italy
| | | | - Milos Lazarevic
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Mio Catia
- Department of Medical AreaUniversity of Udine Udine Italy
| | - Maja Milosevic
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | | | - Jelena Milasin
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Saini S, Tulla K, Maker AV, Burman KD, Prabhakar BS. Therapeutic advances in anaplastic thyroid cancer: a current perspective. Mol Cancer 2018; 17:154. [PMID: 30352606 PMCID: PMC6198524 DOI: 10.1186/s12943-018-0903-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. In 2017, it was the fifth most common cancer in women. Although the majority of thyroid tumors are curable, about 2-3% of thyroid cancers are refractory to standard treatments. These undifferentiated, highly aggressive and mostly chemo-resistant tumors are phenotypically-termed anaplastic thyroid cancer (ATC). ATCs are resistant to standard therapies and are extremely difficult to manage. In this review, we provide the information related to current and recently emerged first-line systemic therapy (Dabrafenib and Trametinib) along with promising therapeutics which are in clinical trials and may be incorporated into clinical practice in the future. Different categories of promising therapeutics such as Aurora kinase inhibitors, multi-kinase inhibitors, epigenetic modulators, gene therapy using oncolytic viruses, apoptosis-inducing agents, and immunotherapy are reviewed. Combination treatment options that showed synergistic and antagonistic effects are also discussed. We highlight ongoing clinical trials in ATC and discuss how personalized medicine is crucial to design the second line of treatment. Besides using conventional combination therapy, embracing a personalized approach based on advanced genomics and proteomics assessment will be crucial to developing a tailored treatment plan to improve the chances of clinical success.
Collapse
Affiliation(s)
- Shikha Saini
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Kiara Tulla
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | - Ajay V. Maker
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Department of Surgery, Division of Surgical Oncology, University of Illinois-College of Medicine, Chicago, IL USA
| | | | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| |
Collapse
|
16
|
Široká J, Čečková M, Urbánek L, Kryštof V, Gucký T, Hofman J, Strnad M, Štaud F. LC-MS/MS method for determination of cyclin-dependent kinase inhibitors, BP-14 and BP-20, and its application in pharmacokinetic study in rat. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1089:24-32. [PMID: 29753211 DOI: 10.1016/j.jchromb.2018.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 11/26/2022]
Abstract
N2-(4-Amino-cyclohexyl)-9-cyclopentyl-N6-(6-furan-2-yl-pyridine-3-ylmethyl)-9H-purine-2,6-diamine (BP-14) and 2-(5-{[2-(4-amino-cyclohexylamino)-9-cyclopentyl-9H-purine-6-ylamino]-methyl}-pyridine-2-yl)-phenol (BP-20) are novel cyclin-dependent kinase inhibitors, structurally related to roscovitine, with significant biological activity. A simple, selective and sensitive liquid chromatography - tandem mass spectrometry method for determining them in rat plasma, using roscovitine as an internal standard, was developed and validated. Chromatographic separation was performed in reversed phase mode on Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) by gradient elution with mobile phases composed of 15 mM ammonium formate pH 4.0 and methanol at flow rate 0.25 mL/min at 40 °C. The analytes were detected based on their characteristic multiple reaction monitoring transitions in positive electrospray ionization mode m/z 473.07 > 157.93 for BP-14, m/z 499.62 > 184.2 for BP-20 and m/z 355.5 > 90.86 for internal standard. In plasma the method provided good linearity within the entire concentration range: 1-10,000 nmol/L (r2 = 0.9989) for BP-14 and 10-25,000 nmol/L (r2 = 0.9994) for BP-20; the limit of detection was 0.6 nmol/L for BP-14 and 6.1 nmol/L for BP-20. Validation was also performed in bile and urine. The results of validation fit within the acceptance limits following European Medicines Agency guidelines. The method was applied in a pharmacokinetic study of BP-14 and BP-20 in vivo in rats following intravenous and intraduodenal administration including plasma pharmacokinetics, tissue distribution and excretion (renal and biliary). Both compounds showed low bioavailability after intraduodenal administration (0.630 and 1.58% for BP-14 and BP-20, respectively). Distribution into all the analyzed tissues (brain, lungs, liver, kidney, spleen, muscle, adipose tissue) was observed 3 h after single dose administration, the highest and lowest concentrations being reached in the adipose tissue and brain, respectively. The biliary excretion of the parent BP-14 and BP-20 compounds accounted for 4.81% and 10.6% of the doses, respectively, and renal excretion for <0.5% in both cases. The obtained results represent pilot knowledge for further development of a new generation of compounds with strong anticancer activities.
Collapse
Affiliation(s)
- Jitka Široká
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Martina Čečková
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Pharmacology and Toxicology, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Lubor Urbánek
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Tomáš Gucký
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Jakub Hofman
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Pharmacology and Toxicology, Heyrovského 1203, Hradec Králové, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - František Štaud
- Charles University, Faculty of Pharmacy in Hradec Králové, Department of Pharmacology and Toxicology, Heyrovského 1203, Hradec Králové, Czech Republic
| |
Collapse
|
17
|
Allegri L, Rosignolo F, Mio C, Filetti S, Baldan F, Damante G. Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol 2018; 144:285-294. [PMID: 29197967 DOI: 10.1007/s00432-017-2555-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated. METHODS Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR. RESULTS All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines. CONCLUSIONS Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells.
Collapse
Affiliation(s)
- Lorenzo Allegri
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Francesca Rosignolo
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Sebastiano Filetti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Federica Baldan
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100, Udine, Italy
- Institute of Medical Genetic, Academic Hospital of Udine, 33100, Udine, Italy
| |
Collapse
|