1
|
Xiao X, Jian Y, Jiang Y, Wei S, Song W. Condensed tannins from Salix babylonica L. leaves induce apoptosis of human ovarian cancer cells through mitochondrial and PI3K/AKT/ERK signaling pathways. Int J Biol Macromol 2025; 309:142635. [PMID: 40158587 DOI: 10.1016/j.ijbiomac.2025.142635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Condensed tannins, natural antioxidants, are widely known for their antitumor activity with low toxicity. However, the antitumor mechanism of Salix babylonica leaf condensed tannins (SCTs) remains unclear. Here, we purified bioactive SCTs and analyzed their structural characteristics, antitumor effects on human ovarian cancer (OC) cells as well as related potential mechanism. FT-IR, ESI-MS, and HPLC analyses demonstrated that SCTs primarily consist of procyanidins with (epi)catechin as the main flavan-3-ol extension unit. SCTs significantly inhibited the proliferation and migration of OVCAR3 and A2780 cells, induced G0/G1 cell cycle arrest, and promoted apoptosis. SCTs induced apoptosis through the mitochondrial apoptotic pathway by decreasing mitochondrial membrane potential, increasing intracellular reactive oxygen species generation, elevating the Bax/Bcl-2 ratio, and activating caspase-3. Network pharmacology analysis speculated that SCTs exert anti-ovarian cancer effects by targeting multiple targets and pathways, among which the PI3K/AKT/ERK pathway may be the main pathway of action. Western blot confirmed that SCTs inhibited the phosphorylation of AKT, MEK, and ERK. Moreover, SCTs dose-dependently impaired OVCAR3 tumor spheroid growth in three-dimensional culture models. These results suggested that SCTs induced apoptosis in OC cells by activating the mitochondrial-associated apoptosis pathway and inhibiting the PI3K/AKT/ERK signaling pathway, showing potential as therapeutic agents for OC.
Collapse
Affiliation(s)
- Xiaoxue Xiao
- College of Life Science, Yangtze University, Jingzhou 434023, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yanbo Jian
- College of Life Science, Yangtze University, Jingzhou 434023, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yu Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261000, China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou 434023, China.
| | - Wei Song
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Wang M, He L, Yan P. Integrated network pharmacology, molecular docking and experimental validation to investigate the mechanism of tannic acid in nasopharyngeal cancer. Sci Rep 2025; 15:5645. [PMID: 39955364 PMCID: PMC11830035 DOI: 10.1038/s41598-025-90211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Tannic acid (TA) is the primary bioactive component in the gallnut (Galla chinensis) and has exhibited the anticancer effects. However, the mechanism of its anti-cancer activity in nasopharyngeal carcinoma (NPC) remains unclear. This research aims to explore the underlying mechanism of TA in the treatment of nasopharyngeal cancer using network pharmacology, molecular docking and experimental validation. Firstly, the targets of TA and NPC were predicted and collected through databases, and the intersection targets were identified. Subsequently, protein-protein interaction (PPI) network analysis, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes Genomes (KEGG) pathway enrichment analysis, molecular docking and molecular dynamics (MD) simulation were conducted to uncover the potential mechanisms of TA in treatment of NPC. Finally, in vitro experiments were utilized to verify the mechanism of TA with anticancer activity in NPC. The results of network pharmacology revealed 42 intersection targets between NPC-related targets and TA-related targets. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was identified as the main target pathway of TA against NPC. Additionally, molecular docking and MD simulation confirmed the closely binding affinities of TA with AKT1. Furthermore, the results of in vitro experiments demonstrated that TA exerts anticancer activity against NPC by targeting the PI3K/AKT signaling pathway, leading to the suppression of cell proliferation. TA is a promising therapeutic candidate for NPC through PI3K/AKT signaling pathway. These results provide insights into the clinical application of TA, particularly when considered in combination with other therapeutic modalities.
Collapse
Affiliation(s)
- Meiwei Wang
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Longmei He
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China
| | - Pan Yan
- Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, Hunan, China.
| |
Collapse
|
3
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Heo YR, Son CN, Baek WK, Kim SH. Grape seed proanthocyanidin extract induces apoptotic and autophagic cell death in rheumatoid arthritis fibroblast-like synoviocytes. Arch Rheumatol 2022; 37:393-403. [PMID: 36589610 PMCID: PMC9791554 DOI: 10.46497/archrheumatol.2022.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
Objectives In this study, we aimed to evaluate the association between grape seed proanthocyanidin extract (GSPE) and rheumatoid arthritis-fibroblast-like synoviocytes (RA-FLSs) and to investigate whether GSPE induces cell death in RA-FLSs. Materials and methods The FLSs were isolated from RA synovial tissues. Cell viability and cell cycle staging were analyzed using a hemocytometer and flow cytometry. Caspase 3 and poly (ADP-ribose) polymerase (PARP) proteins were analyzed using Western blotting with z-VAD-fmk. Protein LC3 and polyubiquitin-binding protein p62 that were degraded by autophagy were evaluated using Western blotting with 3-methyladenine and chloroquine. Reactive oxygen species (ROS) were also evaluated. Results When RA-FLSs were treated with GSPE, cell viability decreased, the number of cells in sub-G1 and G2/M phases increased, and the expression of pro-PARP and pro-caspase 3 proteins decreased in a concentration-dependent manner. This result was offset, when the cells were co-treated with the pan-caspase inhibitor z-VAD-fmk. The reduced cell viability, increased expression of LC3-II protein, and reduced expression of p62 protein with GSPE treatment were offset, when RA-FLSs were co-treated with GSPE and autophagy inhibitors 3-methyladenine and chloroquine. The level of ROS in RA-FLSs treated with GSPE was significantly lower than treatment with N-acetyl-cysteine, a ROS inhibitor. Conclusion Our study results show that GSPE induces apoptotic and autophagic cell death and inhibites reactive oxygen species in RA-FLSs.
Collapse
Affiliation(s)
- Ye-Rin Heo
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Chang-Nam Son
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sang-Hyon Kim
- Department of Internal Medicine, Division of Rheumatology, Keimyung University School of Medicine, Daegu, Republic of Korea
,
Institute for Medical Science, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Zhang YJ, Mu ZL, Deng P, Liang YD, Wu LC, Yang LL, Zhou Z, Yu ZP. 8-Formylophiopogonanone B induces ROS-mediated apoptosis in nasopharyngeal carcinoma CNE-1 cells. Toxicol Res (Camb) 2021; 10:1052-1063. [PMID: 34733490 DOI: 10.1093/toxres/tfab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in the world. It is very important to find drugs with high efficiency, low toxicity, and low side effects for the treatment of cancer. Flavonoids and their derivatives with broad biological functions have been recognized as anti-tumor chemicals. 8-Formylophiopogonanone B (8-FOB), a naturally existed homoisoflavonoids with rarely known biological functions, needs pharmacological evaluation. In order to explore the possible anti-tumor action of 8-FOB, we used six types of tumor cells to evaluate in vitro effects of this agent on cell viability and tested the effects on clone formation ability, scratching wound-healing, and apoptosis. In an attempt to elucidate the mechanism of pharmacological action, we examined 8-FOB-induced intracellular oxidative stress and -disrupted mitochondrial function. Results suggested that 8-FOB could suppress tumor cell viability, inhibit cell migration and invasion, induce apoptosis, and elicit intracellular ROS production. Among these six types of tumor cells, the nasopharyngeal carcinoma CNE-1 cells were the most sensitive cancer cells to 8-FOB treatment. Intracellular ROS production played a pivotal role in the anti-tumor action of 8-FOB. Our present study is the first to document that 8-FOB has anti-tumor activity in vitro and increases intracellular ROS production, which might be responsible for its anti-tumor action. The anti-tumor pharmacological effect of 8-FOB is worthy of further investigation.
Collapse
Affiliation(s)
- Ya-Jing Zhang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Zhen-Lin Mu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Yi-Dan Liang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Li-Chuan Wu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Ling-Ling Yang
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang, 310000, P. R. China
| | - Zheng-Ping Yu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
6
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
7
|
Yang H, Fang Z, Qu X, Zhang X, Wang Y. Procyanidin Compound (PC) Suppresses Lipopolysaccharide-Induced Cervical Cancer Cell Proliferation Through Blocking the TLR4/NF-κB Pathway. Cancer Manag Res 2020; 12:497-509. [PMID: 32158256 PMCID: PMC6986416 DOI: 10.2147/cmar.s226547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose Evidence suggested that procyanidin compound (PC) could inhibit the progression of cervical cancer (CC); however, the mechanism still remains unclear. We aimed to study the potential mechanism of PC acting on CC cells. Patients and Methods After a 24 hr incubation of lipopolysaccharide (LPS) (1 μg/mL), human CC SiHa and HeLa cells were cultured with various concentrations (20, 40, and 80 μg/mL) of PC for 24 hrs, then the cell viability was detected using Cell Counting Kit-8 (CCK-8). The migration and invasion abilities were assessed by scratch and Transwell assays. Apoptosis and cell cycle were detected using flow cytometry. Real-time quantitative PCR (RT-qPCR) and Western blot were used for expression analysis of the inflammatory cytokines. The pathway components were measured to evaluate the involvement of toll-like receptor 4/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR4/NF-κB) pathway. Results PC inhibited the LPS-primed cell viability in a dose-dependent manner. After PC treatment, cell migration and invasion were inhibited, cell number at the G2/M phase was increased. The CC cell apoptosis was triggered through upregulating levels of cleaved caspase-3 and Bax and downregulating the level of B-cell lymphoma 2 protein. A significant reduction was shown in the levels of interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α. Furthermore, a remarkable reduction in the ratio of TLR4 and the p-P65/t-P65 and in the progression of P65 translocation into the nucleus was observed. Conclusion Our results revealed that the inhibitory effect of PC on CC cell proliferation relies on the induction of apoptosis and inhibition of inflammatory cytokines.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China
| | - Ziyu Fang
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China
| | - Xiaoli Qu
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China
| | - Xiaoli Zhang
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545005, People's Republic of China
| |
Collapse
|
8
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|