1
|
Mohallem R, Aryal UK. Nuclear Phosphoproteome Reveals Prolyl Isomerase PIN1 as a Modulator of Oncogene-Induced Senescence. Mol Cell Proteomics 2024; 23:100715. [PMID: 38216124 PMCID: PMC10864342 DOI: 10.1016/j.mcpro.2024.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024] Open
Abstract
Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
2
|
Rico-Llanos G, Porras-Perales Ó, Escalante S, Vázquez-Calero DB, Valiente L, Castillo MI, Pérez-Tejeiro JM, Baglietto-Vargas D, Becerra J, Reguera JM, Duran I, Csukasi F. Cellular stress modulates severity of the inflammatory response in lungs via cell surface BiP. Front Immunol 2022; 13:1054962. [DOI: 10.3389/fimmu.2022.1054962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/27/2022] [Indexed: 11/21/2022] Open
Abstract
Inflammation is a central pathogenic feature of the acute respiratory distress syndrome (ARDS) in COVID-19. Previous pathologies such as diabetes, autoimmune or cardiovascular diseases become risk factors for the severe hyperinflammatory syndrome. A common feature among these risk factors is the subclinical presence of cellular stress, a finding that has gained attention after the discovery that BiP (GRP78), a master regulator of stress, participates in the SARS-CoV-2 recognition. Here, we show that BiP serum levels are higher in COVID-19 patients who present certain risk factors. Moreover, early during the infection, BiP levels predict severe pneumonia, supporting the use of BiP as a prognosis biomarker. Using a mouse model of pulmonary inflammation, we observed increased levels of cell surface BiP (cs-BiP) in leukocytes during inflammation. This corresponds with a higher number of neutrophiles, which show naturally high levels of cs-BiP, whereas alveolar macrophages show a higher than usual exposure of BiP in their cell surface. The modulation of cellular stress with the use of a clinically approved drug, 4-PBA, resulted in the amelioration of the lung hyperinflammatory response, supporting the anti-stress therapy as a valid therapeutic strategy for patients developing ARDS. Finally, we identified stress-modulated proteins that shed light into the mechanism underlying the cellular stress-inflammation network in lungs.
Collapse
|
3
|
Wang CY, Yu N, Wu MJ, Gao YL, Liu JX, Wang J. Dual Hyper-Graph Regularized Supervised NMF for Selecting Differentially Expressed Genes and Tumor Classification. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2375-2383. [PMID: 32086220 DOI: 10.1109/tcbb.2020.2975173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-negative matrix factorization (NMF) is a dimensionality reduction technique based on high-dimensional mapping. It can learn part-based representations effectively. In this paper, we propose a method called Dual Hyper-graph Regularized Supervised Non-negative Matrix Factorization (HSNMF). To encode the geometric information of the data, the hyper-graph is introduced into the model as a regularization term. The advantage of hyper-graph learning is to find higher order data relationship to enhance data relevance. This method constructs the data hyper-graph and the feature hyper-graph to find the data manifold and the feature manifold simultaneously. The application of hyper-graph theory in cancer datasets can effectively find pathogenic genes. The discrimination information is further introduced into the objective function to obtain more information about the data. Supervised learning with label information greatly improves the classification effect. Furthermore, the real datasets of cancer usually contain sparse noise, so the L2,1-norm is applied to enhance the robustness of HSNMF algorithm. Experiments under The Cancer Genome Atlas (TCGA) datasets verify the feasibility of the HSNMF method.
Collapse
|
4
|
Tang L, Chen R, Xu X. Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Lett 2020; 476:120-128. [PMID: 32070778 DOI: 10.1016/j.canlet.2020.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC), the main cause of liver cancer-related death, is one of the main cancers in terms of incidence and mortality. However, HCC is difficult to target and develops strong drug resistance. Therefore, a new treatment strategy is urgently needed. The clinical application of the concept of synthetic lethality in recent years provides a new therapeutic direction for the accurate treatment of HCC. Here, we introduce the concept of synthetic lethality, the screening used to study synthetic lethality, and the identified and potential genetic interactions that induce synthetic lethality in HCC. In addition, we propose opportunities and challenges for translating synthetic lethal interactions to the clinical treatment of HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; NHFPC Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310003, China.
| |
Collapse
|
5
|
Zou RC, Shi ZT, Xiao SF, Ke Y, Tang HR, Wu TG, Guo ZT, Ni F, An S, Wang L. Co-expression analysis and ceRNA network reveal eight novel potential lncRNA biomarkers in hepatocellular carcinoma. PeerJ 2019; 7:e8101. [PMID: 31824761 PMCID: PMC6894432 DOI: 10.7717/peerj.8101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common primary liver cancer in the world, with a high degree of malignancy and recurrence. The influence of the ceRNA network in tumor on the biological function of liver cancer is very important, It has been reported that many lncRNA play a key role in liver cancer development. In our study, integrated data analysis revealed potential eight novel lncRNA biomarkers in hepatocellular carcinoma. METHODS Transcriptome data and clinical data were downloaded from the The Cancer Genome Atlas (TCGA) data portal. Weighted gene co-expression network analysis was performed to identify the expression pattern of genes in liver cancer. Then, the ceRNA network was constructed using transcriptome data. RESULTS The integrated analysis of miRNA and RNAseq in the database show eight novel lncRNAs that may be involved in important biological pathways, including TNM and disease development in liver cancer. We performed function enrichment analysis of mRNAs affected by these lncRNAs. CONCLUSIONS By identifying the ceRNA network and the lncRNAs that affect liver cancer, we showed that eight novel lncRNAs play an important role in the development and progress of liver cancer.
Collapse
Affiliation(s)
- Ren-chao Zou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Zhi-tian Shi
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Shu-feng Xiao
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
- Department of General Surgery, Puer People’s Hospital, Puer, China
| | - Yang Ke
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Hao-ran Tang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Tian-gen Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Zhi-tang Guo
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Fan Ni
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| | - Sanqi An
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Kunming Medical University, kunming, China
| |
Collapse
|
6
|
Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 2018; 9:883. [PMID: 30158600 PMCID: PMC6115400 DOI: 10.1038/s41419-018-0844-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
Pin1 is the only known peptidyl-prolyl cis–trans isomerase (PPIase) that specifically recognizes and isomerizes the phosphorylated Serine/Threonine-Proline (pSer/Thr-Pro) motif. The Pin1-mediated structural transformation posttranslationally regulates the biofunctions of multiple proteins. Pin1 is involved in many cellular processes, the aberrance of which lead to both degenerative and neoplastic diseases. Pin1 is highly expressed in the majority of cancers and its deficiency significantly suppresses cancer progression. According to the ground-breaking summaries by Hanahan D and Weinberg RA, the hallmarks of cancer comprise ten biological capabilities. Multiple researches illuminated that Pin1 contributes to these aberrant behaviors of cancer via promoting various cancer-driving pathways. This review summarized the detailed mechanisms of Pin1 in different cancer capabilities and certain Pin1-targeted small-molecule compounds that exhibit anticancer activities, expecting to facilitate anticancer therapies by targeting Pin1.
Collapse
|
7
|
Chemical or genetic Pin1 inhibition exerts potent anticancer activity against hepatocellular carcinoma by blocking multiple cancer-driving pathways. Sci Rep 2017; 7:43639. [PMID: 28262728 PMCID: PMC5337947 DOI: 10.1038/srep43639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and malignant cancers with high inter- and intra-tumor heterogeneity. A central common signaling mechanism in cancer is proline-directed phosphorylation, which is further regulated by the unique proline isomerase Pin1. Pin1 is prevalently overexpressed in human cancers including ~70% of HCC, and promotes tumorigenesis by activating multiple cancer-driving pathways. However, it was challenging to evaluate the significance of targeting Pin1 in cancer treatment until the recent identification of all-trans retinoic acid (ATRA) as a Pin1 inhibitor. Here we systematically investigate functions of Pin1 and its inhibitor ATRA in the development and treatment of HCC. Pin1 knockdown potently inhibited HCC cell proliferation and tumor growth in mice. ATRA-induced Pin1 degradation inhibited the growth of HCC cells, although at a higher IC50 as compared with breast cancer cells, likely due to more active ATRA metabolism in liver cells. Indeed, inhibition of ATRA metabolism enhanced the sensitivity of HCC cells to ATRA. Moreover, slow-releasing ATRA potently and dose-dependently inhibited HCC growth in mice. Finally, chemical or genetic Pin1 ablation blocked multiple cancer-driving pathways simultaneously in HCC cells. Thus, targeting Pin1 offers a promising therapeutic approach to simultaneously stop multiple cancer-driving pathways in HCC.
Collapse
|