1
|
Vakhrusheva A, Murashko A, Trifonova E, Efremov Y, Timashev P, Sokolova O. Role of Actin-binding Proteins in the Regulation of Cellular Mechanics. Eur J Cell Biol 2022; 101:151241. [DOI: 10.1016/j.ejcb.2022.151241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
|
2
|
Kim MJ, Lee HA, Quan FS, Kong HH, Moon EK. Characterization of a Peptide Antibody Specific to the Adenylyl Cyclase-Associated Protein of Acanthamoeba castellanii. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:7-14. [PMID: 35247949 PMCID: PMC8898646 DOI: 10.3347/kjp.2022.60.1.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 11/23/2022]
Abstract
Acanthamoeba keratitis (AK) is a rare infectious disease and accurate diagnosis has remained arduous as clinical manifestations of AK were similar to keratitis of viral, bacterial, or fungal origins. In this study, we described the production of a polyclonal peptide antibody against the adenylyl cyclase-associated protein (ACAP) of A. castellanii, and evaluated its differential diagnostic potential. Enzyme-linked immunosorbent assay revealed high titers of A. castellanii-specific IgG and IgA antibodies being present in low dilutions of immunized rabbit serum. Western blot analysis revealed that the ACAP antibody specifically interacted with A. castellanii, while not interacting with human corneal epithelial (HCE) cells and other causes of keratitis such as Fusarium solani, Pseudomonas aeruginosa, and Staphylococcus aureus. Immunocytochemistry (ICC) results confirmed the specific detection of trophozoites and cysts of A. castellanii co-cultured with HCE cells. The ACAP antibody also specifically interacted with the trophozoites and cysts of 5 other Acanthamoeba species. These results indicate that the ACAP antibody of A. castellanii can specifically detect multiple AK-causing members belonging to the genus Acanthamoeba and may be useful for differentially diagnosing Acanthamoeba infections.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Korea
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul 02447, Korea.,Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Eun-Kyung Moon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
3
|
Wan Y, Qiu S, Yin L, Gao X, Jiang Y, Feng S, Tang C. CAP2 contributes to tumorigenesis in gastric cancer by targeting transcription factor SOX9. J Gastrointest Oncol 2021; 12:268-277. [PMID: 34012625 DOI: 10.21037/jgo-20-234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common tumors and the major cause of cancer-related mortality in the world. The purpose of this study is to identify new biomarker and reveal its potential molecular mechanism in GC. Methods The expression of CAP2 was observed by the bioinformatics analysis and western blot assays. The effects of CAP2 on cell proliferation and growth were tested by MTT assay, EdU assay, colony formation assay, and flow cytometric assay, respectively. ChIP and dual-luciferase assays were confirmed that SOX9 binding sites were putative regulatory elements in the transcriptional activation of CAP2. Furthermore, western blot and xenograft assays were applied to examine whether SOX9 was involved in the regulation of CAP2 expression. Results We reported that CAP2 is overexpressed in GC cells and tissues and related to a poorer prognosis for GC patients. Moreover, we found that knockdown of CAP2 suppressed the proliferation, growth, and cell cycle of GC cells. Besides, the transcription factor SOX9 participated in the CAP2-mediated proliferation of GC cells in vitro and in vivo. Conclusions Our results provide novel evidence that CAP2 plays an essential role in the genesis and development of GC, thus potentially highlighting this gene as a therapeutic target.
Collapse
Affiliation(s)
- Ying Wan
- Department of Geratology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shengkui Qiu
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Lei Yin
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xuesong Gao
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yasu Jiang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shichun Feng
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Chong Tang
- Department of General Surgery, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
4
|
Rust MB, Khudayberdiev S, Pelucchi S, Marcello E. CAPt'n of Actin Dynamics: Recent Advances in the Molecular, Developmental and Physiological Functions of Cyclase-Associated Protein (CAP). Front Cell Dev Biol 2020; 8:586631. [PMID: 33072768 PMCID: PMC7543520 DOI: 10.3389/fcell.2020.586631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt'n of actin dynamics.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg and Justus-Liebig-University Giessen, Giessen, Germany
| | - Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, University of Marburg, Marburg, Germany
| | - Silvia Pelucchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Adachi M, Masugi Y, Yamazaki K, Emoto K, Kobayashi Y, Tominaga E, Banno K, Aoki D, Sakamoto M. Upregulation of cyclase-associated actin cytoskeleton regulatory protein 2 in epithelial ovarian cancer correlates with aggressive histologic types and worse outcomes. Jpn J Clin Oncol 2020; 50:643-652. [PMID: 32211793 DOI: 10.1093/jjco/hyaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Cyclase-associated actin cytoskeleton regulatory protein 2 (CAP2) regulates actin dynamics to control cell cycles and cell migration. CAP2 overexpression contributes to cancer progression in several tumor types; however, the role of CAP2 expression in ovarian cancer remains unclear. This study aimed to clarify the significance of CAP2 expression in epithelial ovarian tumor. METHODS We evaluated CAP2 expression in ovarian cancer cell lines using quantitative real-time polymerase chain reaction, western blotting and immunocytochemistry and examined the effect of CAP2 silencing in migration and proliferation assays. CAP2 immunohistochemistry was conducted using tissue specimens from 432 ovarian carcinoma patients; a further 55 borderline and benign 65 lesions were analyzed. CAP2 expression levels were defined as low, intermediate or high, for correlation analysis with clinicopathological factors. RESULTS CAP2 expression was significantly higher in cell lines from Type II ovarian cancer than in those in Type I, and knockdown of CAP2 showed decreased migration and proliferation. Higher levels of CAP2 expression in human tissues were associated with Type II histology, residual lesion, lymph node metastasis, ascites cytology and higher clinical stage. High CAP2 expression levels were observed in 26 (23.4%) of 111 Type II ovarian cancers and in 16 (5.0%) of 321 Type I cancers but not in any borderline or benign lesions. Multivariate analyses showed that CAP2 expression in ovarian cancer is an independent prognostic factor for recurrence-free survival (P = 0.019). CONCLUSION CAP2 expression is upregulated in aggressive histologic types of epithelial ovarian cancer and serves as a novel prognostic biomarker for patient survival.
Collapse
Affiliation(s)
- Masataka Adachi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Yamazaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Saker Z, Bahmad HF, Fares Y, Al Najjar Z, Saad M, Harati H, Nabha S. Prognostic impact of adenylyl cyclase-associated protein 2 (CAP2) in glioma: A clinicopathological study. Heliyon 2020; 6:e03236. [PMID: 32042970 PMCID: PMC7002826 DOI: 10.1016/j.heliyon.2020.e03236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Background Gliomas are a group of diseases arising from intracranial neoplastic tissues that produce a wide spectrum of clinicopathological features and morphological changes. Key questions that intrigue neuro-oncology researchers include defining novel oncophenotypic signatures relevant to diagnosing such tumors and predicting prognoses among patients. One of the key regulators of the cellular actin dynamics is adenylyl cyclase-associated protein 2 (CAP2), a protein that has been studied before in the milieu of cancer and shown to be associated with tumor progression; yet, its expression levels in the context of gliomas have not been assessed. Hence, we were interested in investigating CAP2 expression in gliomas and evaluating its clinicopathological and prognostic significance. Materials and methods CAP2 expression at the protein level was analyzed in 47 human paraffin-embedded gliomas and normal brain tissues by automated immunohistochemical analysis. Statistical analysis was also performed to assess CAP2 expression level in normal and tumor tissues, and to evaluate its clinicopathological and prognostic significance. Results Our results revealed high expression of CAP2 protein in tumors of gliomas compared to normal tissues and normal areas adjacent to tumors. High expression of CAP2 was also associated with advanced tumor grades among gliomas. Kaplan-Meier analysis revealed that high CAP2 expression was associated with poor prognosis of patients with glioma (P < 0.05). In Cox regression analysis, CAP2 expression was indicated as an independent prognostic factor for overall survival (hazard ratio (HR) = 1.843, 95% confidence interval (CI), 1.252-2.714; P < 0.005). Conclusion CAP2 is overexpressed in glioma and it is proposed as a potential prognostic biomarker for patients with gliomas. CAP2 expression level may serve as a promising target for diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Al Najjar
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Mohamad Saad
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
7
|
Purde V, Busch F, Kudryashova E, Wysocki VH, Kudryashov DS. Oligomerization Affects the Ability of Human Cyclase-Associated Proteins 1 and 2 to Promote Actin Severing by Cofilins. Int J Mol Sci 2019; 20:E5647. [PMID: 31718088 PMCID: PMC6888645 DOI: 10.3390/ijms20225647] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/03/2023] Open
Abstract
Actin-depolymerizing factor (ADF)/cofilins accelerate actin turnover by severing aged actin filaments and promoting the dissociation of actin subunits. In the cell, ADF/cofilins are assisted by other proteins, among which cyclase-associated proteins 1 and 2 (CAP1,2) are particularly important. The N-terminal half of CAP has been shown to promote actin filament dynamics by enhancing ADF-/cofilin-mediated actin severing, while the central and C-terminal domains are involved in recharging the depolymerized ADP-G-actin/cofilin complexes with ATP and profilin. We analyzed the ability of the N-terminal fragments of human CAP1 and CAP2 to assist human isoforms of "muscle" (CFL2) and "non-muscle" (CFL1) cofilins in accelerating actin dynamics. By conducting bulk actin depolymerization assays and monitoring single-filament severing by total internal reflection fluorescence (TIRF) microscopy, we found that the N-terminal domains of both isoforms enhanced cofilin-mediated severing and depolymerization at similar rates. According to our analytical sedimentation and native mass spectrometry data, the N-terminal recombinant fragments of both human CAP isoforms form tetramers. Replacement of the original oligomerization domain of CAPs with artificial coiled-coil sequences of known oligomerization patterns showed that the activity of the proteins is directly proportional to the stoichiometry of their oligomerization; i.e., tetramers and trimers are more potent than dimers, which are more effective than monomers. Along with higher binding affinities of the higher-order oligomers to actin, this observation suggests that the mechanism of actin severing and depolymerization involves simultaneous or consequent and coordinated binding of more than one N-CAP domain to F-actin/cofilin complexes.
Collapse
Affiliation(s)
- Vedud Purde
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Resource for Native MS-Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics, The Ohio State University, Columbus, OH 43210, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (V.P.); (F.B.); (E.K.); (V.H.W.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Dai X, Zhang X, Lu P. Toward a holistic view of multiscale breast cancer molecular biomarkers. Biomark Med 2019; 13:1509-1533. [PMID: 31668082 DOI: 10.2217/bmm-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Powered by rapid technology developments, biomarkers become increasingly diverse, including those detected at genomic, transcriptomic, proteomic, metabolomic and cellular levels. While diverse sets of biomarkers have been utilized in breast cancer predisposition, diagnosis, prognosis, treatment and management, recent additions derived from lincRNA, circular RNA, circulating DNA together with its methylated and hydroxymethylated forms and immune signatures are likely to further transform clinical practice. Here, we take breast cancer as an example of heterogeneous diseases that require many informed decisions from treatment to care to review the huge variety of biomarkers. By assessing the advantages and limitations of modern biomarkers in diverse use scenarios, this article outlines the prospects and challenges of releasing complimentary advantages by augmentation of multiscale molecular biomarkers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuanhao Zhang
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Peihua Lu
- Wuxi People's Hospital, Nan Chang Qu, Wuxi, Jiangsu, PR China
| |
Collapse
|
9
|
Ge S, Wang S, Xiang W, Wang L, Zhu Y, Zhu X, Wang X, Zuo L, Jiang C, Li S, Liu M. [Association of adenylate cyclase-associated protein 2 expression with histopathology and long-term prognosis of gastric cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1052-1058. [PMID: 31640951 DOI: 10.12122/j.issn.1673-4254.2019.09.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To explore association of the expression levels of adenylate cyclase-associated protein 2 (CAP2) in gastric cancer tissues with the histopathology and long-term prognosis of the malignancy. METHODS This study was conducted among a total of 105 patients with gastric cancer undergoing radical gastrectomy in our hospital between January, 2010 and October, 2013. Immunohistochemistry was used to quantitatively assess the expression of CAP2 in gastric cancer tissues and the adjacent tissues. Based on the median relative expression level of CAP2 of 3.5, the patients were divided into low CAP2 expression group (n=52) and high CAP2 expression group (n=53). The Cox regression model was used to analyze the effect of CAP2 expression on the 5-year survival rate of the patients, and ROC curve analysis was used to assess the predictive value of CAP2 expression for the patients' long-term survival. RESULTS Immunohistochemical analysis showed that the expression levels of CAP2 (P < 0.01) and Ki67 (P < 0.01) were significantly higher in gastric cancer tissues than in the adjacent tissues, and the expression level of CAP2 was positively correlated with Ki67 (P < 0.01), peripheral blood CEA (P < 0.01) and CA19-9 (P < 0.01). The percentages of patients with CEA≥5 μg/L, CA19-9≥37 kU/L, pathological grade of G3-G4, T stage of 3-4, and N stage of 2-3 were significantly higher in patients with high CAP2 expression than in those with low CAP2 expression (P < 0.05). Kaplan- Meier survival analysis showed that the 5-year survival rate was significantly lower in patients with a high CAP2 expression (P < 0.01). A high expression level of CAP2, CEA≥5μg/L, CA19-9≥37 and pathological grades G3-G4 were all independent risk factors for shortened 5-year survival after radical gastrectomy (P < 0.01). With the relative expression level of 3.45 as the cut-off value, the sensitivity of CAP2 was 70.15% for predicting death 5 years after the surgery, with a specificity of 71.05% and an area under the curve of 0.779 (P < 0.01). CONCLUSIONS CAP2 is highly expressed in gastric cancer tissues in close relation with the tumor progression. CAP2 is an independent risk factor for 5-year survival rate after radical gastrectomy for gastric cancer and can be of clinical value in prognostic evaluation of the patients.
Collapse
Affiliation(s)
- Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Shan Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Wujun Xiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Lili Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Yuke Zhu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiang Zhu
- Department of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Xun Wang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Lugen Zuo
- Department of Clinical Medicine, Bengbu Medical College, Bengbu 233030, China
| | - Congqiao Jiang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Siqing Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
10
|
Cai KT, Liu AG, Wang ZF, Jiang HW, Zeng JJ, He RQ, Ma J, Chen G, Zhong JC. Expression and potential molecular mechanisms of miR‑204‑5p in breast cancer, based on bioinformatics and a meta‑analysis of 2,306 cases. Mol Med Rep 2018; 19:1168-1184. [PMID: 30569120 PMCID: PMC6323248 DOI: 10.3892/mmr.2018.9764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. However, there is insufficient research that focuses on the expression and molecular mechanisms of microRNA (miR)‑204‑5p in BC. In the current study, data were downloaded from the Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and the University of California Santa Cruz (UCSC) Xena databases. They were then used to undertake a meta‑analysis that leveraged the standard mean difference (SMD) and summarized receiver operating characteristic (sROC) to evaluate the expression of the precursor miR‑204 and mature miR‑204‑5p in BC. Additionally, an intersection of predicted genes, differentially expressed genes (DEGs) from the TCGA database and the GEO database were plotted to acquire desirable putative genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and protein‑protein interaction (PPI) network analyses were performed to assess the potential pathways and hub genes of miR‑204‑5p in BC. A decreased trend in precursor miR‑204 expression was detected in 1,077 BC tissue samples in comparison to 104 para‑carcinoma tissue samples in the TCGA database. Further, the expression of mature miR‑204‑5p was markedly downregulated in 756 BC tissue samples in comparison to 76 para‑carcinoma tissue samples in the UCSC Xena database. The outcome of the SMD from meta‑analysis also indicated that the expression of miR‑204‑5p was markedly reduced in 2,306 BC tissue samples in comparison to 367 para‑carcinoma tissue samples. Additionally, the ROC and sROC values indicated that miR‑204‑5p had a great discriminatory capacity for BC. In GO analysis, 'cell development', 'cell surface activity', and 'receptor agonist activity' were the most enriched terms; in KEGG analysis, 'endocytosis' was significantly enriched. Rac GTPase activating protein 1 (RACGAP1) was considered the hub gene in the PPI network. In conclusion, miR‑204‑5p may serve a suppressor role in the oncogenesis and advancement of BC, and miR‑204‑5p may have crucial functions in BC by targeting RACGAP1.
Collapse
Affiliation(s)
- Kai-Teng Cai
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - An-Gui Liu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ze-Feng Wang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hang-Wei Jiang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Cai Zhong
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Li L, Fu LQ, Wang HJ, Wang YY. CAP2 is a Valuable Biomarker for Diagnosis and Prognostic in Patients with Gastric Cancer. Pathol Oncol Res 2018; 26:273-279. [PMID: 30047046 DOI: 10.1007/s12253-018-0450-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/10/2018] [Indexed: 12/18/2022]
Abstract
Cyclase-associated protein 2 (CAP2) protein is reported to be upregulated in hepatocellular carcinoma (HCC), human breast cancer, and malignant melanoma. However, its expression in gastric cancer remains unknown, this study was to investigate CAP2 expression and its prognostic significance in gastric cancer. Firstly, we analyzed the Oncomine databases to compare CAP2 mRNA expression in gastric cancer and normal tissues. CAP2 protein expression was analyzed in gastric cancer samples and non-tumor mucosa by RT-PCR and immunohistochemical analysis. Consequently, statistical analyses were performed to evaluate the clinicopathological significance of CAP2 expression in gastric cancer. CAP2 expression was significant higher in gastric cancer tissues than that in non-tumor mucosa at protein levels. CAP2 was up-regulated in 57.8% (252/436) of gastric cancer samples, while detected in only 10.9% (10/92) of non-tumor mucosa. Statistical analysis shows that the expression of CAP2 was correlated with tumor size, Lauren's classification, depth of invasion, lymph node and distant metastases, and regional lymph node stage, TNM stage, but not with age, sex, histology classification, and histologic differentiation. Kaplan-Meier analysis indicated that high CAP2 expression was associated with poor overall survival (78.7%) in 203 of 252 gastic cancer patients. In stage I, II, and III tumors, the 5-year survival rate was lower in those with high expression of CAP2 than those with low expression. In stage IV tumors, the expression of CAP2 did not correlate with the 5-year survival rate. Multiple Cox regression analysis indicated CAP2 as an independent predictor for overall survival [hazard ratio (HR) = 2.045, 95% confidence interval: 1.445-2.895, p < 0.01], while Lauren's classification, TNM stage, and expression of CAP2 were independent prognostic factors in patients with gastric cancer. For the first time, we found that CAP2 was upregulated in gastic cancer, and was associated with lymph node and distant metastases. CAP2 may serve as a prognostic indicator for patients with gastic cancer.
Collapse
Affiliation(s)
- Li Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Luo-Qin Fu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang, Hangzhou, China
| | - Yuan-Yu Wang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang, Hangzhou, China.
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Zhejiang, Hangzhou, China.
| |
Collapse
|