1
|
Opacka A, Żuryń A, Krajewski A, Mikołajczyk K. The role of cyclin Y in normal and pathological cells. Cell Cycle 2023; 22:859-869. [PMID: 36576166 PMCID: PMC10054165 DOI: 10.1080/15384101.2022.2162668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
The family protein of cyclins, as well as cyclin-dependent kinases (CDKs) cooperating with them, are broadly researched, as a matter of their dysfunction may lead to tumor transformation. Cyclins are defined as key regulators that have a controlling function of the mammalian nuclear cell divides. Cyclin Y (CCNY) is a recently characterized member of the cyclin family and was first identified from the human testis cDNA library. It is an actin-binding protein acting through decreased actin dynamics at a steady state and during glycine-induced long-term potentiation (LTP) and involves the inhibition of cofilin activation. What is more, CCNY is a positive regulatory subunit of the CDK14/PFTK1 complexes affected by the activation of the Wnt signaling pathway in the G2/M phase by recruiting CDK14/PFTK1 to the plasma membrane and promoting phosphorylation of LRP6. The expression of CCNY has been significantly mentioned within the cell migration and invasion activity both in vivo and in vitro. The aim of this review is evaluation of the expression of CCNY in the physiology processes and compare the expression of this protein in cancer cells, taking into account the impact of the level of expression on tumor progression.
Collapse
Affiliation(s)
- Aleksandra Opacka
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Adrian Krajewski
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Klaudia Mikołajczyk
- Department of Histology and Embryology, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| |
Collapse
|
2
|
Li X, Li J, Xu L, Wei W, Cheng A, Zhang L, Zhang M, Wu G, Cai C. CDK16 promotes the progression and metastasis of triple-negative breast cancer by phosphorylating PRC1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:149. [PMID: 35449080 PMCID: PMC9027050 DOI: 10.1186/s13046-022-02362-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/09/2022] [Indexed: 12/12/2022]
Abstract
Background Cyclin-dependent kinase 16 (CDK16) is an atypical PCTAIRE kinase, and its activity is dependent on the Cyclin Y (CCNY) family. Ccnys have been reported to regulate mammary stem cell activity and mammary gland development, and CCNY has been recognized as an oncoprotein in various cancers, including breast cancer. However, it remains unclear whether CDK16 has a role in breast cancer and whether it can be used as a therapeutic target for breast cancer. Methods Publicly available breast cancer datasets analyses and Kaplan-Meier survival analyses were performed to reveal the expression and clinical relevance of atypical CDKs in breast cancer. CDK16 protein expression was further examined by immunohistochemical and immunoblot analyses of clinical samples. Cell proliferation was measured by colony formation and MTT analyses. Cell cycle and apoptosis were examined by fluorescence-activated cell sorting (FACS) analysis. Wound-healing and trans-well invasion assays were conducted to test cell migration ability. The functions of CDK16 on tumorigenesis and metastasis were evaluated by cell line-derived xenograft, patient-derived organoid/xenograft, lung metastasis and systemic metastasis mouse models. Transcriptomic analysis was performed to reveal the potential molecular mechanisms involved in the function of CDK16. Pharmacological inhibition of CDK16 was achieved by the small molecular inhibitor rebastinib to further assess the anti-tumor utility of targeting CDK16. Results CDK16 is highly expressed in breast cancer, particularly in triple-negative breast cancer (TNBC). The elevated CDK16 expression is correlated with poor outcomes in breast cancer patients. CDK16 can improve the proliferation and migration ability of TNBC cells in vitro, and promote tumor growth and metastasis of TNBC in vivo. Both genetic knockdown and pharmacological inhibition of CDK16 significantly suppress the tumor progression of TNBC. Mechanistically, CDK16 exerts its function by phosphorylating protein regulator of cytokinesis 1 (PRC1) to regulate spindle formation during mitosis. Conclusion CDK16 plays a critical role in TNBC and is a novel promising therapeutic target for TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02362-w.
Collapse
Affiliation(s)
- Xiao Li
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liming Xu
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Anyi Cheng
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lingxian Zhang
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Xiang S, Zhu L, Zhang Z, Wang S, Cui R, Xiang M. Proteomic analysis of inhibitor of apoptosis protein‑like protein‑2 on breast cancer cell proliferation. Mol Med Rep 2022; 25:89. [PMID: 35039877 PMCID: PMC8809121 DOI: 10.3892/mmr.2022.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022] Open
Abstract
Although inhibitor of apoptosis protein-like protein-2 (ILP-2) is considered to be a novel enhancer of breast cancer proliferation, its underlying mechanism of action remains unknown. Therefore, the present study aimed to investigate the expression profile of ILP-2-related proteins in MCF-7 cells to reveal their effect on promoting breast cancer cell proliferation. The isobaric tags for relative and absolute quantification (iTRAQ) method was used to analyse the expression profile of ILP-2-related proteins in MCF-7 breast cancer cells transfected with small interfering (si)RNA against ILP-2 (siRNA-5 group) and the negative control (NC) siRNA. The analysis of the iTRAQ data was carried out using western blotting and reverse transcription-quantitative PCR. A total of 4,065 proteins were identified in MCF-7 cells, including 241 differentially expressed proteins (DEPs; fold change ≥1.20 or ≤0.83; P<0.05). Among them, 156 proteins were upregulated and 85 were downregulated in the siRNA-5 group compared with in the NC group. The aforementioned DEPs were mainly enriched in ‘ECM-receptor interaction’. In addition, the top 10 biological processes related to these proteins were associated with signal transduction, cell proliferation and immune system processes. Furthermore, ILP-2 silencing upregulated N(4)-(β-N-acetylglucosaminyl)-L-asparaginase, metallothionein-1E and tryptophan 2,3-dioxygenase, whereas ILP-2 overexpression exerted the opposite effect. The results of the present study suggested that ILP-2 could promote breast cancer growth via regulating cell proliferation, signal transduction, immune system processes and other cellular physiological activities.
Collapse
Affiliation(s)
- Siqi Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Lin Zhu
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Zhiliang Zhang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Siyuan Wang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Ruxia Cui
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| | - Mingjun Xiang
- Department of Biochemistry and Immunology, Medical Research Center, Institute of Medicine, Jishou University, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
4
|
Zhao X, Jiang M, Teng Y, Li J, Li Z, Hao W, Zhao H, Yin C, Yue W. Cytoplasmic Localization Isoform of Cyclin Y Enhanced the Metastatic Ability of Lung Cancer via Regulating Tropomyosin 4. Front Cell Dev Biol 2021; 9:684819. [PMID: 34222253 PMCID: PMC8250429 DOI: 10.3389/fcell.2021.684819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin Y (CCNY) is a novel cyclin and highly conserved in metazoan species. Previous studies from our and other laboratory indicate that CCNY play a crucial role in tumor progression. There are two CCNY isoform which has different subcellular distributions, with cytoplasmic isoform (CCNYc) and membrane distribution isoform (CCNYm). However, the expression and function of CCNY isoforms is still unclear. We firstly found CCNYc was expressed in natural lung cancer tissue and cells through the subcellular distribution. Co-IP and immunofluorescence showed that both CCNYm and CCNYc could interact with PFTK1. Further studies illustrated that CCNYc but not CCNYm enhanced cell migration and invasion activity both in vivo and vitro. The function of CCNYc could be inhibited by suppression of PFTK1 expression. In addition, our data indicated that tropomyosin 4 (TPM4), a kind of actin-binding proteins, was down-regulated by suppression of CCNY. F-actin assembly could be controlled by CCNYc as well as PFTK1 and TPM4. As a result, CCNY was mainly expressed in lung cancer. CCNYc could promote cell motility and invasion. It indicated that CCNYc/PFTK1 complex could promote cell metastasis by regulating the formation of F-actin via TPM4.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Teng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wende Hao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Chenghong Yin
- Departments of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Chen L, Wang X, Cheng H, Zhang W, Liu Y, Zeng W, Yu L, Huang C, Liu G. Cyclin Y binds and activates CDK4 to promote the G1/S phase transition in hepatocellular carcinoma cells via Rb signaling. Biochem Biophys Res Commun 2020; 533:1162-1169. [PMID: 33039146 DOI: 10.1016/j.bbrc.2020.09.127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/09/2023]
Abstract
Inactivation of Rb is a major event in the development of hepatocellular carcinoma (HCC). The activity of CDK4, determined by T172 phosphorylation, correlates with the onset of RB phosphorylation and G1/S cell cycle transition. However, the regulation of CDK4 activation and of the Rb pathway in HCC remain unclear. Here, we report that cyclin Y, a novel member of the cyclin family, is a potential regulator of the Rb pathway. We demonstrate that the Cyclin Y protein was overexpressed in human HCC tissues and that it was associated with poor patient prognosis. Cyclin Y could regulate the G1/S phase transition in human HCC cell lines. We found that CDK4 can bind to Cyclin Y in vitro. Furthermore, the accumulation of Cyclin Y could activate CDK4 through T172 phosphorylation of CDK4, inactivate Rb with increasing Rb phosphorylation, and enable the expression of E2F target genes such as CDK2 and Cyclin A. Thus, our findings suggest that Cyclin Y plays a role in the G1/S phase transition of HCC cells via Cyclin Y/CDK4/Rb signaling and that Cyclin Y could be used as a potential prognostic biomarker in HCC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hanghang Cheng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weidi Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yufeng Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Long Yu
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Cheng Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Guoyuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhao X, Jiang M, Wang Z, Chen X, Wang H, Yue W, Cai C. CCNY Accelerates Cylcin E Expression to Regulate the Proliferation of Laryngeal Carcinoma Cells via MEK/ERK Signaling Pathway. Cancer Manag Res 2020; 12:4889-4898. [PMID: 32606977 PMCID: PMC7320751 DOI: 10.2147/cmar.s241620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Background Laryngeal carcinoma is a common cancer among head and neck tumors, accounting for 0.5–1% new cancer cases or deaths of all tumors throughout the body. Despite improvements in diagnostic and therapy, the prognosis of laryngeal carcinoma patients still remains poor. Thus, it is very important to identify the biomarkers involved in the molecular pathogenesis of laryngeal carcinoma. Cyclin Y (CCNY) is a conserved cell cycle regulator that acts as a growth factor in many cancers. The clinical significance of CCNY in laryngeal carcinoma remains unknown. The function of CCNY in laryngocarcinoma was studied in this paper. Materials and Methods CCNY knock-out cells were constructed by CRISPR/CAS9 technique. CCNY overexpression cells were also constructed based on CCNY knock-out cells. Cell growth ability was detected by MTS assay, high-content cell analysis, colony formation assays, and anchorage-independent growth assays. The protein levels in laryngocarcinoma cells were determined by Western blot. The role of CCNY in cell cycle progression was evaluated by flow cytometry. Results CCNY knock-out cells and CCNY up-regulation cell models were obtained successfully. Suppression of CCNY expression inhibited Hep2 cell growth. Cell growth was enhanced by the up-regulation of CCNY. The percentage of cells in G1 phase was altered when CCNY expression was down-regulated or up-regulated. The phosphorylation level of MEK and ERK as well as cyclin E protein level was also regulated by the expression level of CCNY. Conclusion In laryngocarcinoma cell line Hep2 cells, cell proliferation was controlled by CCNY. The expression of CCNY was involved in the cell cycle progress of Hep2 cells. It indicated that CCNY could promote cell growth by activating MEK/ERK/cyclin E signaling pathway.
Collapse
Affiliation(s)
- Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou, Beijing, People's Republic of China
| | - Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China.,Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou, Beijing, People's Republic of China
| | - Ziyu Wang
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou, Beijing, People's Republic of China
| | - Xiaohong Chen
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hongzhen Wang
- Department of Oncology, Rizhao City Hospital of Traditional Chinese Medicine, Rizhao, Shandong, People's Republic of China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Chao Cai
- Beijing YouAn Hospital, Capital Medical University, Beijing, People's Republic of China.,Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Tongzhou, Beijing, People's Republic of China
| |
Collapse
|
7
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins in cancer: New kids on the block? Semin Cell Dev Biol 2020; 107:46-53. [PMID: 32417219 DOI: 10.1016/j.semcdb.2020.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Atypical cyclins have recently emerged as a new subfamily of cyclins characterized by common structural features and interactor pattern. Interestingly, atypical cyclins are phylogenetically close to canonical cyclins, which have well-established roles in cell cycle regulation and cancer. Therefore, although the function of atypical cyclins is still poorly characterized, it seems likely that they are involved in cancer pathogenesis as well. Here, we coupled gene expression and prognostic significance analysis to bibliographic search in order to provide new insights into the role of atypical cyclins in cancer. The information gathered suggests that atypical cyclins intervene in critical processes to sustain cancer growth and have potential to become novel prognostic markers and drug targets in cancer.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| |
Collapse
|
8
|
Ma L, Gu M, Teng Y, Li W. Establishing a detection method for CCNY: a potentially significant clinical investigative marker in NSCLC patients. Onco Targets Ther 2019; 12:921-932. [PMID: 30774378 PMCID: PMC6357874 DOI: 10.2147/ott.s180507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background CCNY, a novel cyclin family member, plays an increasingly important role in the progression of tumor invasion and metastasis, including lung cancer. However, the clinical significance of CCNY in non-small-cell lung cancer (NSCLC) patients is unknown. Patients and methods We prepared CCNY monoclonal antibodies, validated specific peptides by a peptide array, and established a double-antibody sandwich ELISA detection method. Then, we measured CCNY levels in 100 NSCLC patients and 50 healthy controls. A blinded validation was subsequently performed in 399 NSCLC patients and 150 healthy controls. Results We successfully prepared two specific mouse anti-human CCNY monoclonal antibodies and established a reliable and stable detection method. In the training set, serum CCNY was markedly increased in the NSCLC patients (P<0.05) with an integrated area under the curve of 0.751. With further analysis of the CCNY levels, there were no differences in age, sex, smoking status, tumor location, histologic subtype, or tumor size, but differences were observed in lymphatic (P<0.001) and distant (P<0.001) metastases in NSCLC patients. The CCNY[+] patients had a shorter survival time and progression-free survival than CCNY[−] patients at 3-year follow-up (P<0.001). The results were confirmed by the validation set. Conclusion Our study suggests that CCNY may be useful as a latent tumor marker to facilitate diagnosis and may be an effective indicator of tumor aggressiveness, playing an important role in the prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Li Ma
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institution/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China,
| | - Meng Gu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institution/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China,
| | - Yu Teng
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institution/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China,
| | - Weiying Li
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institution/Beijing Chest Hospital, Capital Medical University, Beijing 101149, China,
| |
Collapse
|
9
|
Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 2018; 12:43-60. [PMID: 29445265 PMCID: PMC5810530 DOI: 10.2147/btt.s140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec.
Collapse
|
10
|
Abstract
Gene therapy based on viral vectors has demonstrated steady progress recently, not only in the area of cancers. A multitude of viral vectors has been engineered for both preventive and therapeutic applications. Two main approaches comprise of viral vector-based delivery of toxic or anticancer genes or immunization with anticancer antigens. Tumor growth inhibition and tumor regression have been observed, providing improved survival rates in animal tumor models. Furthermore, vaccine-based cancer immunotherapy has demonstrated both tumor regression and protection against challenges with lethal doses of tumor cells. Several clinical trials with viral vectors have also been conducted. Additionally, viral vector-based cancer drugs have been approved. This review gives an overview of different viral vector systems and their applications in cancer gene therapy.
Collapse
|
11
|
Structure and inhibitor specificity of the PCTAIRE-family kinase CDK16. Biochem J 2017; 474:699-713. [PMID: 28057719 PMCID: PMC5317395 DOI: 10.1042/bcj20160941] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/03/2017] [Accepted: 01/05/2016] [Indexed: 12/15/2022]
Abstract
CDK16 (also known as PCTAIRE1 or PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family that has emerged as a key regulator of neurite outgrowth, vesicle trafficking and cancer cell proliferation. CDK16 is activated through binding to cyclin Y via a phosphorylation-dependent 14-3-3 interaction and has a unique consensus substrate phosphorylation motif compared with conventional CDKs. To elucidate the structure and inhibitor-binding properties of this atypical CDK, we screened the CDK16 kinase domain against different inhibitor libraries and determined the co-structures of identified hits. We discovered that the ATP-binding pocket of CDK16 can accommodate both type I and type II kinase inhibitors. The most potent CDK16 inhibitors revealed by cell-free and cell-based assays were the multitargeted cancer drugs dabrafenib and rebastinib. An inactive DFG-out binding conformation was confirmed by the first crystal structures of CDK16 in separate complexes with the inhibitors indirubin E804 and rebastinib, respectively. The structures revealed considerable conformational plasticity, suggesting that the isolated CDK16 kinase domain was relatively unstable in the absence of a cyclin partner. The unusual structural features and chemical scaffolds identified here hold promise for the development of more selective CDK16 inhibitors and provide opportunity to better characterise the role of CDK16 and its related CDK family members in various physiological and pathological contexts.
Collapse
|