1
|
Ju SH, Song M, Lim JY, Kang YE, Yi HS, Shong M. Metabolic Reprogramming in Thyroid Cancer. Endocrinol Metab (Seoul) 2024; 39:425-444. [PMID: 38853437 PMCID: PMC11220218 DOI: 10.3803/enm.2023.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 06/11/2024] Open
Abstract
Thyroid cancer is a common endocrine malignancy with increasing incidence globally. Although most cases can be treated effectively, some cases are more aggressive and have a higher risk of mortality. Inhibiting RET and BRAF kinases has emerged as a potential therapeutic strategy for the treatment of thyroid cancer, particularly in cases of advanced or aggressive disease. However, the development of resistance mechanisms may limit the efficacy of these kinase inhibitors. Therefore, developing precise strategies to target thyroid cancer cell metabolism and overcome resistance is a critical area of research for advancing thyroid cancer treatment. In the field of cancer therapeutics, researchers have explored combinatorial strategies involving dual metabolic inhibition and metabolic inhibitors in combination with targeted therapy, chemotherapy, and immunotherapy to overcome the challenge of metabolic plasticity. This review highlights the need for new therapeutic approaches for thyroid cancer and discusses promising metabolic inhibitors targeting thyroid cancer. It also discusses the challenges posed by metabolic plasticity in the development of effective strategies for targeting cancer cell metabolism and explores the potential advantages of combined metabolic targeting.
Collapse
Affiliation(s)
- Sang-Hyeon Ju
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Minchul Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Joung Youl Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Minho Shong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
2
|
Kim YH, Yoon SJ, Kim M, Kim HH, Song YS, Jung JW, Han D, Cho SW, Kwon SW, Park YJ. Integrative Multi-omics Analysis Reveals Different Metabolic Phenotypes Based on Molecular Characteristics in Thyroid Cancer. Clin Cancer Res 2024; 30:883-894. [PMID: 38088902 DOI: 10.1158/1078-0432.ccr-23-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/06/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
PURPOSE Thyroid cancer metabolic characteristics vary depending on the molecular subtype determined by mutational status. We aimed to investigate the molecular subtype-specific metabolic characteristics of thyroid cancers. EXPERIMENTAL DESIGN An integrative multi-omics analysis was conducted, incorporating transcriptomics, metabolomics, and proteomics data obtained from human tissues representing distinct molecular characteristics of thyroid cancers: BRAF-like (papillary thyroid cancer with BRAFV600E mutation; PTC-B), RAS-like (follicular thyroid cancer with RAS mutation; FTC-R), and ATC-like (anaplastic thyroid cancer with BRAFV600E or RAS mutation; ATC-B or ATC-R). To validate our findings, we employed tissue microarray of human thyroid cancer tissues and performed in vitro analyses of cancer cell phenotypes and metabolomic assays after inducing genetic knockdown. RESULTS Metabolic properties differed between differentiated thyroid cancers of PTC-B and FTC-R, but were similar in dedifferentiated thyroid cancers of ATC-B/R, regardless of their mutational status. Tricarboxylic acid (TCA) intermediates and branched-chain amino acids (BCAA) were enriched with the activation of TCA cycle only in FTC-R, whereas one-carbon metabolism and pyrimidine metabolism increased in both PTC-B and FTC-R and to a great extent in ATC-B/R. However, the protein expression levels of the BCAA transporter (SLC7A5) and a key enzyme in one-carbon metabolism (SHMT2) increased in all thyroid cancers and were particularly high in ATC-B/R. Knockdown of SLC7A5 or SHMT2 inhibited the migration and proliferation of thyroid cancer cell lines differently, depending on the mutational status. CONCLUSIONS These findings define the metabolic properties of each molecular subtype of thyroid cancers and identify metabolic vulnerabilities, providing a rationale for therapies targeting its altered metabolic pathways in advanced thyroid cancer.
Collapse
Affiliation(s)
- Yoo Hyung Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sang Jun Yoon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Mina Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Hwan Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, the Republic of South Korea
| | - Jin Woo Jung
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, the Republic of South Korea
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
| | - Sung Won Kwon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, the Republic of South Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, the Republic of South Korea
- Department of Internal Medicine and Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, the Republic of South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, the Republic of South Korea
| |
Collapse
|
3
|
Abooshahab R, Razavi F, Ghorbani F, Hooshmand K, Zarkesh M, Hedayati M. Thyroid cancer cell metabolism: A glance into cell culture system-based metabolomics approaches. Exp Cell Res 2024; 435:113936. [PMID: 38278284 DOI: 10.1016/j.yexcr.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Thyroid cancer is the most common malignancy of the endocrine system and the seventh most prevalent cancer in women worldwide. It is a complex and diverse disease characterized by heterogeneity, underscoring the importance of understanding the underlying metabolic alterations within tumor cells. Metabolomics technologies offer a powerful toolset to explore and identify endogenous and exogenous biochemical reaction products, providing crucial insights into the intricate metabolic pathways and processes within living cells. Metabolism plays a central role in cell function, making metabolomics a valuable reflection of a cell's phenotype. In the OMICs era, metabolomics analysis of cells brings numerous advantages over existing methods, propelling cell metabolomics as an emerging field with vast potential for investigating metabolic pathways and their perturbation in pathophysiological conditions. This review article aims to look into recent developments in applying metabolomics for characterizing and interpreting the cellular metabolome in thyroid cancer cell lines, exploring their unique metabolic characteristics. Understanding the metabolic alterations in tumor cells can lead to the identification of critical nodes in the metabolic network that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Fatemeh Razavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghorbani
- Department of Molecular Immunology, Ruhr University Bochum, Bochum, Germany
| | | | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Nagayama Y, Hamada K. Reprogramming of Cellular Metabolism and Its Therapeutic Applications in Thyroid Cancer. Metabolites 2022; 12:1214. [PMID: 36557253 PMCID: PMC9782759 DOI: 10.3390/metabo12121214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Metabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness. Thus, the mechanistic elucidation of these metabolic changes is invaluable for understanding the pathogenesis of cancers and developing novel metabolism-targeted therapies. In this review article, we first provide an overview of essential metabolic mechanisms, and then summarize the recent findings of metabolic reprogramming and the recent reports of metabolism-targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koichiro Hamada
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
5
|
Wang J, Wang J, Quan J, Liu J, Tian L, Dong C. Relationship between serum NDRG3 and papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:1091462. [PMID: 36619553 PMCID: PMC9811643 DOI: 10.3389/fendo.2022.1091462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In recent years, papillary thyroid carcinoma is considered to be one of the fastest increaseing cancer. NDRG family member 3 (NDRG3) has been proposed as a molecular marker of tumor, and is expected to be used in clinic. METHODS Enzyme-linked immunosorbent assay was used to detect the serum NDRG3 expression in 81 papillary thyroid carcinoma cases, 75 benign thyroid nodules cases and 77 healthy control cases, respectively. Electrochemiluminescence method was applied to measure the levels of triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody. Immunohistochemical staining was used to detect the expression of NDRG3 in papillary thyroid carcinoma, benign thyroid nodules and normal tissues adjacent to cancer. RESULTS The expression of serum triiodothyronine, tetraiodothyronine, thyrotropin, thyroglobulin antibody and thyroid peroxidase antibody and NDRG3 were significantly different among benign thyroid nodules, papillary thyroid carcinoma cases and healthy control groups (P <0.001). Only the expression of serum NDRG3 was significantly different between benign thyroid nodules and papillary thyroid carcinoma groups (P <0.001). Immunohistochemistry showed that NDRG3 was expressed in all three groups, the lowest in papillary thyroid carcinoma, the second in benign thyroid nodules, and the highest in normal tissues adjacent to cancer. Logistic regression analysis showed that serum NDRG3 was an independent protective factor for papillary thyroid carcinoma (OR =0.964, 95%CI =0.953 to 0.974, P <0.001). The ROC curve of non-papillary thyroid carcinoma diagnosed by serum NDRG3 showed the optimal cut-off value of 481.38 pg/ml, sensitivity of 72.4%, specificity of 90.1%, and the maximum area under the curve (AUC =0.902, 95%CI =0.863 to 0.940, P <0.001). The ROC curve of benign thyroid nodules diagnosed by serum NDRG3 showed the optimal critical value of 459.28 pg/ml, sensitivity of 81.3%, and specificity of 74.1% (AUC =0.863, 95%CI =0.808 to 0.919, P <0.001). The expression level of serum NDRG3 was significantly correlated with extrathyroid extensionand (P =0.007) and lymphatic metastasis of papillary thyroid carcinoma (P =0.019). CONCLUSIONS The decrease of NDRG3 expression can not only differential diagnosis benign thyroid nodules and papillary thyroid carcinoma, but also serve as a molecular marker for the diagnosis of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Jiahao Wang
- The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jun Wang
- Department of Thyroid and Breast Surgery, Gansu Cancer Hospital, Lanzhou, Gansu, China
| | - Jinxing Quan
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Jinxing Quan,
| | - Juxiang Liu
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Limin Tian
- Department of Endocrinology in Gansu Provincial People’s Hospital and The First Clinical College of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Changhong Dong
- Radiotherapy Department of Gansu Maternal and Child Health Hospital, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Oxidative Stress-Induced Sirtuin1 Downregulation Correlates to HIF-1α, GLUT-1, and VEGF-A Upregulation in Th1 Autoimmune Hashimoto's Thyroiditis. Int J Mol Sci 2021; 22:ijms22083806. [PMID: 33916948 PMCID: PMC8067526 DOI: 10.3390/ijms22083806] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/24/2021] [Accepted: 04/03/2021] [Indexed: 12/27/2022] Open
Abstract
In Hashimoto’s thyroiditis (HT), oxidative stress (OS) is driven by Th1 cytokines’ response interfering with the normal function of thyrocytes. OS results from an imbalance between an excessive production of reactive oxygen species (ROS) and a lowering of antioxidant production. Moreover, OS has been shown to inhibit Sirtuin 1 (SIRT1), which is able to prevent hypoxia-inducible factor (HIF)-1α stabilization. The aims of this study were to determine the involvement of NADPH-oxidases (NOX), SIRT1, and HIF-1α in HT pathophysiology as well as the status of antioxidant proteins such as peroxiredoxin 1 (PRDX1), catalase, and superoxide dismutase 1 (SOD1). The protein expressions of NOX2, NOX4, antioxidant enzymes, SIRT1, and HIF-1α, as well as glucose transporter-1 (GLUT-1) and vascular endothelial growth factor A (VEGF-A), were analyzed by Western blot in primary cultures of human thyrocytes that were or were not incubated with Th1 cytokines. The same proteins were also analyzed by immunohistochemistry in thyroid samples from control and HT patients. In human thyrocytes incubated with Th1 cytokines, NOX4 expression was increased whereas antioxidants, such as PRDX1, catalase, and SOD1, were reduced. Th1 cytokines also induced a significant decrease of SIRT1 protein expression associated with an upregulation of HIF-1α, GLUT-1, and VEGF-A proteins. With the exception of PRDX1 and SOD1, similar results were obtained in HT thyroids. OS due to an increase of ROS produced by NOX4 and a loss of antioxidant defenses (PRDX1, catalase, SOD1) correlates to a reduction of SIRT1 and an upregulation of HIF 1α, GLUT-1, and VEGF-A. Our study placed SIRT1 as a key regulator of OS and we, therefore, believe it could be considered as a potential therapeutic target in HT.
Collapse
|
7
|
Zhao L, Wei J, Wang S, Lang T, Shi X, Shan Z, Teng W. Beta-elemene inhibits differentiated thyroid carcinoma metastasis by reducing cellular proliferation, metabolism and invasion ability. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1232. [PMID: 33178764 PMCID: PMC7607100 DOI: 10.21037/atm-20-4460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Background Accelerated glycolysis is a characteristic of carcinoma. The herb-derived compound, beta (β)-elemene, has shown promising anticancer effects against various tumors by inhibiting aerobic glycolysis. However, its activity against thyroid carcinoma and the mechanism is still unknown. Methods Differentiated thyroid carcinoma (DTC) cell lines, including papillary thyroid carcinoma (PTC) cell lines (IHH-4, TPC-1, K1), and follicular thyroid carcinoma (FTC) cell line (FTC133) were treated with different concentration of β-elemene. The viability of DTC cells was analyzed using the CCK8 method. Cell cycle and apoptosis analysis were performed by flow cytometry and western blotting. The cell invasion ability was evaluated in Transwell assays. Energy metabolism in living cells was measured using a Seahorse XF analyzer. The antitumor effects of β-elemene were analyzed in vivo in a nude mouse xenograft tumors model. Results CCK8 assays showed β-elemene significantly inhibited DTC cell proliferation in a dose- and time-dependent manner. β-elemene promoted cell apoptosis, with increased expression of cleaved caspase-9 and decreased BCL-2 expression. Transwell assays showed that β-elemene significantly inhibited the invasion ability of DTC cells. β-elemene also reduced angiogenesis by decreasing VEGF expression in DTC cells. β-elemene reduces the basal oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and maximal glycolytic capacity as well as maximal respiration and ATP production. Moreover, β-elemene inhibited tumor growth in a mouse xenograft model in vivo. Conclusions In this study, we have provided the first evidence of the antitumor effects of β-elemene, which was shown to inhibit cell proliferation, promote apoptosis, induce cell cycle arrest, inhibit cell invasion ability and reduce angiogenesis. Furthermore, we showed that β-elemene significantly inhibits the respiratory and glycolytic ability of human DTC cells. Thus, our findings show the potential of β-elemene as a novel treatment for DTC.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jian Wei
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Shiqi Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Tingting Lang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Xiaoguang Shi
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Liu CL, Hsu YC, Lee JJ, Chen MJ, Lin CH, Huang SY, Cheng SP. Targeting the pentose phosphate pathway increases reactive oxygen species and induces apoptosis in thyroid cancer cells. Mol Cell Endocrinol 2020; 499:110595. [PMID: 31563469 DOI: 10.1016/j.mce.2019.110595] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The pentose phosphate pathway (PPP) plays an important role in the biosynthesis of ribonucleotide precursor and NADPH. Cancer cells frequently increase the flux of glucose into the PPP to support the anabolic demands and regulate oxidative stress. Consistently, metabolomic analyses indicate an upregulation of the PPP in thyroid cancer. In the present study, we found that the combination of glucose-6-phosphate dehydrogenase (G6PD) and transketolase inhibitors (6-aminonicotinamide and oxythiamine) exerted an additive or synergistic effect on cell growth inhibition in thyroid cancer cells. Targeting PPP significantly increased cellular reactive oxygen species (ROS) and induced endoplasmic reticulum (ER) stress and apoptosis. Suppressed cell viability could be partially rescued with treatment with the ROS scavenger or apoptosis inhibitor but not ER-stress inhibitor. Taken together, dual PPP blockade leads to pharmacologic additivity or synergism and causes ROS-mediated apoptosis in thyroid cancer cells.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City,Taiwan, ROC
| | - Jie-Jen Lee
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC; Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Shih-Yuan Huang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, Taipei, Taiwan, ROC; Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC.
| |
Collapse
|
9
|
Abooshahab R, Gholami M, Sanoie M, Azizi F, Hedayati M. Advances in metabolomics of thyroid cancer diagnosis and metabolic regulation. Endocrine 2019; 65:1-14. [PMID: 30937722 DOI: 10.1007/s12020-019-01904-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022]
Abstract
Thyroid cancers (TCs) are the most frequent endocrine malignancy with an unpredictable fast-growing incidence, especially in females all over the world. Fine-needle aspiration biopsy (FNAB) analysis is an accurate diagnostic method for detecting thyroid nodules and classification of TC. Though simplicity, safety, and accuracy of FNAB, 15-30% of cases are indeterminate, and it is not possible to determine the exact cytology of the specimen. This demands the need for innovative methods capable to find crucial biomarkers with adequate sensitivity for diagnosis and prediction in TC researches. Cancer-based metabolomics is a vast emerging field focused on the detection of a large set of metabolites extracted from biofluids or tissues. Using analytical chemistry procedures allows for the potential recognition of cancer-based metabolites for the purposes of advancing the era of personalized medicine. Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) coupled with separation techniques e.g., gas chromatography (GC) and liquid chromatography (LC) are the main approaches for metabolic studies in cancers. The immense metabolite profiling has provided a chance to discover novel biomarkers for early detection of thyroid cancer and reduce unnecessary aggressive surgery. In this review, we recapitulate the recent advances and developed methods of diverse metabolomics tools and metabolic phenotypes of thyroid cancer, following a brief discussion of recent challenges in the thyroid cancer diagnosis.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Gholami
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
| | - Maryam Sanoie
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Wen SS, Zhang TT, Xue DX, Wu WL, Wang YL, Wang Y, Ji QH, Zhu YX, Qu N, Shi RL. Metabolic reprogramming and its clinical application in thyroid cancer. Oncol Lett 2019; 18:1579-1584. [PMID: 31423225 PMCID: PMC6607326 DOI: 10.3892/ol.2019.10485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 12/21/2022] Open
Abstract
Warburg found that tumor cells exhibit high-level glycolysis, even under aerobic condition, which is known as the ‘Warburg effect’. As systemic changes in the entire metabolic network are gradually revealed, it is recognized that metabolic reprogramming has gone far beyond the imagination of Warburg. Metabolic reprogramming involves an active change in cancer cells to adapt to their biological characteristics. Thyroid cancer is a common endocrine malignant tumor whose metabolic characteristics have been studied in recent years. Some drugs targeting tumor metabolism are under clinical trial. This article reviews the metabolic changes and mechanisms in thyroid cancer, aiming to find metabolic-related molecules that could be potential markers to predict prognosis and metabolic pathways, or could serve as therapeutic targets. Our review indicates that knowledge in metabolic alteration has potential contributions in the diagnosis, treatment and prognostic evaluation of thyroid cancer, but further studies are needed for verification as well.
Collapse
Affiliation(s)
- Shi-Shuai Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ting-Ting Zhang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Di-Xin Xue
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Wei-Li Wu
- Department of General Surgery, Τhe Third Affiliated Hospital of Wenzhou Medical University, Ruian, Zhejiang 325200, P.R. China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yong-Xue Zhu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
H 2O 2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019; 8:antiox8050126. [PMID: 31083324 PMCID: PMC6563055 DOI: 10.3390/antiox8050126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormone synthesis requires adequate hydrogen peroxide (H2O2) production that is utilized as an oxidative agent during the synthesis of thyroxin (T4) and triiodothyronine (T3). Thyroid H2O2 is generated by a member of the family of NADPH oxidase enzymes (NOX-es), termed dual oxidase 2 (DUOX2). NOX/DUOX enzymes produce reactive oxygen species (ROS) as their unique enzymatic activity in a timely and spatially regulated manner and therefore, are important regulators of diverse physiological processes. By contrast, dysfunctional NOX/DUOX-derived ROS production is associated with pathological conditions. Inappropriate DUOX2-generated H2O2 production results in thyroid hypofunction in rodent models. Recent studies also indicate that ROS improperly released by NOX4, another member of the NOX family, are involved in thyroid carcinogenesis. This review focuses on the current knowledge concerning the redox regulation of thyroid hormonogenesis and cancer development with a specific emphasis on the NOX and DUOX enzymes in these processes.
Collapse
|
12
|
Yu W, Yang Z, Huang R, Min Z, Ye M. SIRT6 promotes the Warburg effect of papillary thyroid cancer cell BCPAP through reactive oxygen species. Onco Targets Ther 2019; 12:2861-2868. [PMID: 31114231 PMCID: PMC6489652 DOI: 10.2147/ott.s194256] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Purpose: Our previous study demonstrated that SIRT6 is upregulated in papillary thyroid cancer (PTC) and enhances tumor aggressiveness. In this study, we further researched its influence in the Warburg effect. Methods: SIRT6-upregulated and downregulated BCPAP cells and negative control BCPAP-NC groups were generated with lentiviral vectors. In these two cell lines, reactive oxygen species (ROS) were detected by dichlorodihydrofluorescein diacetate. Expression of the key Warburg effect genes including GLUT1, HK2, GAPDH, PGK1, ENO1, PKM2 and LDHA was measured by quantitative real-time PCR and western blotting. Glucose uptake, lactate production and the ATP content of cells were detected with assay kits. The ROS scavenger N-acetylcysteine was used for treatment of BCPAP-SIRT6, and the same measurements as described above were detected again. Results: Compared with the BCPAP-NC group, expression of the key Warburg effect genes including Glut1, HK2 and GAPDH and their protein products was upregulated in the BCPAP-SIRT6 group, whereas BCPAP-shSIRT6 showed significant downregulation. Meanwhile, ROS, glucose uptake, lactate production and ATP content of the BCPAP-SIRT6 group were also significantly increased, and BCPAP-shSIRT6 showed significant downregulation. Furthermore, upregulation of key Warburg effect genes and glucose uptake, lactate production and ATP content were all rescued after treatment with ROS scavenger. Conclusion: SIRT6 promoted the Warburg effect of PTC cells via upregulation of ROS. Inhibition of ROS in SIRT6-upregulated cells could rescue activation of the Warburg effect.
Collapse
Affiliation(s)
- Weiping Yu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Renhong Huang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Zhijun Min
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| | - Min Ye
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, People's Republic of China
| |
Collapse
|
13
|
Wang K, Chai L, Qiu Z, Zhang Y, Gao H, Zhang X. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells. J Cell Physiol 2019; 234:19019-19027. [PMID: 30927273 DOI: 10.1002/jcp.28541] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the common subtype of thyroid cancer, which is a common endocrine malignancy. Tripartite motif 26 (TRIM26) has been found to act as a tumor suppressor in several cancers. However, the functional roles of TRIM26 in PTC remain unknown. In this study, we examined the TRIM26 expression in PTC and evaluated the effects of TRIM26 on proliferation, metastasis, and glycolysis in PTC cells. The results proved that TRIM26 was significantly downregulated in PTC tissues and cell lines. TRIM26 overexpression inhibited cell proliferation, migration, and invasion in PTC cells. TRIM26 overexpression also suppressed the epithelial-to-mesenchymal transition process. Besides, overexpression of TRIM26 caused significant decrease in glucose uptake and lactate production in PTC cells. Further investigations revealed that TRIM26 overexpression inhibited the activation of PI3K/Akt pathway. Treatment with an activator (740Y-P) of the PI3K/AKT pathway reversed the antitumor effects of TRIM26 on PTC cells. These findings provided evidence that TRIM26 acted as a tumor suppressor in PTC.
Collapse
Affiliation(s)
- Kefeng Wang
- Xi'an Jiaotong University, Xi'an, China.,Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Linyan Chai
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yundong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Haiyan Gao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiaozhi Zhang
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. Int J Mol Sci 2018; 19:ijms19102948. [PMID: 30262749 PMCID: PMC6213810 DOI: 10.3390/ijms19102948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Papillary thyroid carcinoma (PTC), is characterized by a heterogeneous group of cells, including cancer stem cells (CSCs), crucially involved in tumor initiation, progression and recurrence. CSCs appear to have a distinct metabolic phenotype, compared to non-stem cancer cells. How they adapt their metabolism to the cancer process is still unclear, and no data are yet available for PTC. We recently isolated thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from PTC of the BRAF-like expression profile class, and stem-like cells from Nthy-ori3-1 normal thyreocyte-derived cell line. In the present study, gas chromatography/mass spectrometry metabolomic profiles of cancer thyrospheres were compared to cancer parental adherent cells and to non cancer thyrospheres profiles. A statistically significant decrease of glycolytic pathway metabolites and variations in Krebs cycle metabolites was found in thyrospheres versus parental cells. Moreover, cancer stem-like cells showed statistically significant differences in Krebs cycle intermediates, amino acids, cholesterol, and fatty acids content, compared to non-cancer stem-like cells. For the first time, data are reported on the metabolic profile of PTC cancer stem-like cells and confirm that changes in metabolic pathways can be explored as new biomarkers and targets for therapy in this tumor.
Collapse
|
15
|
Coelho RG, Fortunato RS, Carvalho DP. Metabolic Reprogramming in Thyroid Carcinoma. Front Oncol 2018; 8:82. [PMID: 29629339 PMCID: PMC5876306 DOI: 10.3389/fonc.2018.00082] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.
Collapse
Affiliation(s)
- Raquel Guimaraes Coelho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S. Fortunato
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P. Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|