1
|
R Kumar A, Kannan B, Girija As S, Jayaseelan VP, Arumugam P. Aberrant promoter methylation of CTHRC1 gene and its clinicopathological characteristics in head and neck cancer. Int J Oral Maxillofac Surg 2025:S0901-5027(25)00003-7. [PMID: 39863454 DOI: 10.1016/j.ijom.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is genetically complex and difficult to treat. Detection in the early stage is challenging, leading to diagnosis at advanced stages with limited treatment options. This study examined the collagen triple helix repeat containing 1 gene (CTHRC1) as a potential biomarker and therapeutic target in HNSCC. Despite documented CTHRC1 upregulation in various cancers, the underlying causes remain unclear. The objective was to investigate potential epigenetic regulation of CTHRC1 expression through the analysis of promoter methylation. CTHRC1 DNA methylation, mRNA, and its protein expression were analysed using The Cancer Genome Atlas (TCGA) HNSCC cohort and oral squamous cell carcinoma (OSCC) patient samples. Functional analysis included scrutinizing the protein-protein interaction network and associations with DisGeNET (disease gene network). Various statistical methods were employed for analysis. HNSCC tumours exhibited significant hypomethylation of CTHRC1 DNA, correlating with advanced disease features. Elevated mRNA and protein expression of CTHRC1 further support its role in disease progression. High CTHRC1 gene expression was associated with a poorer prognosis. The protein interaction network implicated crucial pathways in cancer development and links to oral submucous fibrosis. Despite the limitations of this study, including the use of retrospective data and need for functional experiments, CTHRC1 shows potential as a prognostic predictor and target for therapeutic applications in HNSCC, paving the way for further research and improved patient management.
Collapse
Affiliation(s)
- A R Kumar
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - B Kannan
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - S Girija As
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - V P Jayaseelan
- Clinical Genetics Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - P Arumugam
- Molecular Biology Laboratory, Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
2
|
Singh CK, Fernandez S, Chhabra G, Zaemisch GR, Nihal A, Swanlund J, Ansari N, Said Z, Chang H, Ahmad N. The role of collagen triple helix repeat containing 1 (CTHRC1) in cancer development and progression. Expert Opin Ther Targets 2024; 28:419-435. [PMID: 38686865 PMCID: PMC11189736 DOI: 10.1080/14728222.2024.2349686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Chandra K. Singh
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Sofia Fernandez
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Gagan Chhabra
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Ayaan Nihal
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Jenna Swanlund
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Naveed Ansari
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Zan Said
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Hao Chang
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
- William S. Middleton VA Medical Center, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Gene function and cell surface protein association analysis based on single-cell multiomics data. Comput Biol Med 2023; 157:106733. [PMID: 36924730 DOI: 10.1016/j.compbiomed.2023.106733] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Single-cell transcriptomics provides researchers with a powerful tool to resolve the transcriptome heterogeneity of individual cells. However, this method falls short in revealing cellular heterogeneity at the protein level. Previous single-cell multiomics studies have focused on data integration rather than exploiting the full potential of multiomics data. Here we introduce a new analysis framework, gene function and protein association (GFPA), that mines reliable associations between gene function and cell surface protein from single-cell multimodal data. Applying GFPA to human peripheral blood mononuclear cells (PBMCs), we observe an association of epithelial mesenchymal transition (EMT) with the CD99 protein in CD4 T cells, which is consistent with previous findings. Our results show that GFPA is reliable across multiple cell subtypes and PBMC samples. The GFPA python packages and detailed tutorials are freely available at https://github.com/studentiz/GFPA.
Collapse
|
4
|
Yang C, Huang T, Liang Y, Xue Y, Liang Y, Wei X, Meng F, Wei Q. CTHRC1 targeted by miR-30a-5p regulates cell adhesion, invasion and migration in lung adenocarcinoma. J Cardiothorac Surg 2022; 17:46. [PMID: 35313900 PMCID: PMC8935819 DOI: 10.1186/s13019-022-01788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
The morbidity of lung cancer ranks first among all cancers. Lung adenocarcinoma (LUAD) is a classification of lung cancer, and cell invasion and migration of LUAD are the main causes for its high mortality. Therefore, further exploring the potential mechanism of LUAD metastasis may provide bases for following targeted drug development and treatment of LUAD. In this study, clinical data as well as gene expression profiles were obtained from TCGA-LUAD and GEO to analyze CTHRC1 expression. The result found that CTHRC1 was significantly high in LUAD. Similar results were also discovered in 4 cancer cell lines. Moreover, overexpressed/knock-down CTHRC1 cell lines were constructed. It was uncovered that overexpressing CTHRC1 promoted LUAD cell migration and invasion, and inhibited cell adhesion, while knocked down CTHRC1 had the opposite effect. Afterward, the upstream miRNAs that regulated CTHRC1 were predicted by several bioinformatics websites. It was testified by dual-luciferase method that CTHRC1 was negatively mediated by miR-30a-5p. Overexpressed miR-30a-5p suppressed cell invasion/migration, and increased cell adhesion, while overexpressing CTHRC1 as well reversed such impacts. In conclusion, it was disclosed in this study that CTHRC1 worked as a cancer promoter in LUAD, and miR-30a-5p could target and downregulate CTHRC1 to regulate cell adhesion, and inhibited LUAD cell invasion and migration. These results elucidated at cellular level that upregulated CTHRC1 may be a marker protein for LUAD metastasis.
Collapse
|
5
|
Pang C, Wang H, Shen C, Liang H. Application Potential of CTHRC1 as a Diagnostic and Prognostic Indicator for Colon Adenocarcinoma. Front Mol Biosci 2022; 9:849771. [PMID: 35300110 PMCID: PMC8921526 DOI: 10.3389/fmolb.2022.849771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Colon adenocarcinoma (COAD), ranking third in incidence and second in mortality, is one of the most common cancer types in the world. The initial stages of COAD usually show no obvious clinical symptoms; moreover, effective screening or diagnostic indicators with high sensitivity and specificity are lacking, which often leads to missed treatment opportunities. Collagen triple helix repeat containing 1 (CTHRC1) is a glycosylated protein secreted during tissue repair, which reduces collagen matrix deposition and promotes cell migration. Under physiological conditions, the expression of CTHRC1 is conducive to wound healing; however, the pathological overexpression of CTHRC1 promotes tumour growth and proliferation. In this study, we evaluated the application potential of CTHRC1 as an early diagnosis and prognostic survival monitoring biomarker for COAD in addition to unravelling its molecular mechanism in the development of COAD and exploring new therapeutic targets. Therefore, various tumour databases were used to investigate the expression of CTHRC1 in COAD at the mRNA and protein levels. CTHRC1 expression was found to be significantly increased in COAD, regardless of clinical cancer stage, age, sex or race. Moreover, CTHRC1 expression was significantly correlated with poor prognosis and positively correlated with CD8+ T cell, CD4+ T cell, neutrophil, macrophage and dendritic cell infiltration. The relevant function pathways and neighbouring proteins to CTHRC1 in COAD were identified as ROR2, VAPA, LY6E and several collagen family proteins. Therefore, this study suggests that CTHRC1 is a potential diagnostic and prognostic biomarker for patients with COAD.
Collapse
Affiliation(s)
- Chen Pang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hongwei Wang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chengcheng Shen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Chengcheng Shen, ; Houjie Liang,
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Centre, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Chengcheng Shen, ; Houjie Liang,
| |
Collapse
|
6
|
Li Y, Cheng X, Yan J, Jiang S. CTHRC1 facilitates bladder cancer cell proliferation and invasion through regulating the PI3K/Akt signaling pathway. Arch Med Sci 2022; 18:183-194. [PMID: 35154539 PMCID: PMC8827022 DOI: 10.5114/aoms.2019.85718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/27/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Emerging evidence has illustrated that Collagen triple helix repeat containing 1 (CTHRC1) is crucial for tumorigenesis and development. However, the effects of CTHRC1 on bladder cancer progression remain largely unclear. Here, we aim to investigate the function and mechanism of CTHRC1 in behaviors of bladder cancer cells in vitro and in vivo. MATERIAL AND METHODS Interference assays were applied to determine the biological functions of CTHRC1. The expression of CTHRC1 was examined by quantitative real time-PCR (qRT-PCR), Western blot and immunohistochemical (IHC) analysis. Effects of CTHRC1 on proliferation, migration and invasion were evaluated by CCK-8, colony formation, flow cytometry, EdU staining, wound healing, transwell and western blot assays. Bladder cancer cells transfected with sh-CTHRC1 were injected into nude mice to explore the effect of CTHRC1 on tumorigenesis in vivo. RESULTS CTHRC1 expression was increased in bladder cancer tissues and cell lines compared with normal controls, and associated with advanced clinical stage and lymph node metastasis. Also, patients with high levels of CTHRC1 expression were found to have a poor prognosis. Knockdown of CTHRC1 alleviated bladder cancer cell proliferation, migration and invasion in vitro and impeded tumorigenesis in vivo. Moreover, mechanistic investigation indicated that CTHRC1 could regulate the PI3K/Akt signaling pathway. CONCLUSIONS Our data demonstrated that CTHRC1 played an oncogenic role in bladder cancer by modulating the PI3K/Akt signaling pathway, which sheds novel light on diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Yubing Li
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Abdominal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Jiasheng Yan
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shaobo Jiang
- Department of Urology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Liu F, Yang Z, Zheng L, Shao W, Cui X, Wang Y, Jia J, Fu Y. A Tumor Progression Related 7-Gene Signature Indicates Prognosis and Tumor Immune Characteristics of Gastric Cancer. Front Oncol 2021; 11:690129. [PMID: 34195091 PMCID: PMC8238374 DOI: 10.3389/fonc.2021.690129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer is a common gastrointestinal malignancy. Since it is often diagnosed in the advanced stage, its mortality rate is high. Traditional therapies (such as continuous chemotherapy) are not satisfactory for advanced gastric cancer, but immunotherapy has shown great therapeutic potential. Gastric cancer has high molecular and phenotypic heterogeneity. New strategies for accurate prognostic evaluation and patient selection for immunotherapy are urgently needed. METHODS Weighted gene coexpression network analysis (WGCNA) was used to identify hub genes related to gastric cancer progression. Based on the hub genes, the samples were divided into two subtypes by consensus clustering analysis. After obtaining the differentially expressed genes between the subtypes, a gastric cancer risk model was constructed through univariate Cox regression, least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analysis. The differences in prognosis, clinical features, tumor microenvironment (TME) components and immune characteristics were compared between subtypes and risk groups, and the connectivity map (CMap) database was applied to identify potential treatments for high-risk patients. RESULTS WGCNA and screening revealed nine hub genes closely related to gastric cancer progression. Unsupervised clustering according to hub gene expression grouped gastric cancer patients into two subtypes related to disease progression, and these patients showed significant differences in prognoses, TME immune and stromal scores, and suppressive immune checkpoint expression. Based on the different expression patterns between the subtypes, we constructed a gastric cancer risk model and divided patients into a high-risk group and a low-risk group based on the risk score. High-risk patients had a poorer prognosis, higher TME immune/stromal scores, higher inhibitory immune checkpoint expression, and more immune characteristics suitable for immunotherapy. Multivariate Cox regression analysis including the age, stage and risk score indicated that the risk score can be used as an independent prognostic factor for gastric cancer. On the basis of the risk score, we constructed a nomogram that relatively accurately predicts gastric cancer patient prognoses and screened potential drugs for high-risk patients. CONCLUSIONS Our results suggest that the 7-gene signature related to tumor progression could predict the clinical prognosis and tumor immune characteristics of gastric cancer.
Collapse
Affiliation(s)
- Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongcheng Yang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Shao
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiujie Cui
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
唐 振, 丁 小, 秦 少, 张 朝. [Effects of RNA interference of CTHRC1 on proliferation and apoptosis of thyroid papillary cancer TCP-1 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:549-554. [PMID: 33963714 PMCID: PMC8110456 DOI: 10.12122/j.issn.1673-4254.2021.04.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To explore the role of CTHRC1 in regulating the proliferation and apoptosis of papillary thyroid cancer cells. OBJECTIVE Papillary thyroid cancer TPC-1 cells were transfected with a small interfering RNA (siRNA) targeting CTHRC1, with the cells transfected with a scrambled sequence as the negative control. The changes in cell proliferation and apoptosis were assessed using cell counting kit-8 (CCK-8) and flow cytometry with AV/PI double staining, respectively. The expression of c-caspase-3, c-PARP1 and phosphorylation of ERK1/2 in the cells were examined with Western blotting. OBJECTIVE Transfection with the siRNA sequence significantly decreased the mRNA and protein levels of CTHRC1 in TCP-1 cells (P < 0.05). Compared with blank and negative control cells, TCP-1 cells with RNA interference of CTHRC1 showed significantly lowered proliferative activity and enhanced cell apoptosis (P < 0.05) with significantly increased expressions of c-caspase-3 and c-PARP1 and phosphorylation of ERK1/2 (P < 0.05). OBJECTIVE RNA interference of CTHRC1 promotes the proliferation and inhibits apoptosis of papillary thyroid cancer cells possibly by activating the ERK1/2 pathway.
Collapse
Affiliation(s)
- 振宁 唐
- />宁夏医科大学总医院肿瘤外三科,宁夏 银川 750004Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - 小云 丁
- />宁夏医科大学总医院肿瘤外三科,宁夏 银川 750004Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - 少杰 秦
- />宁夏医科大学总医院肿瘤外三科,宁夏 银川 750004Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - 朝林 张
- />宁夏医科大学总医院肿瘤外三科,宁夏 银川 750004Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
9
|
Valmiki S, Aid MA, Chaitou AR, Zahid M, Valmiki M, Fawzy P, Khan S. Extracellular Matrix: A Treasure Trove in Ovarian Cancer Dissemination and Chemotherapeutic Resistance. Cureus 2021; 13:e13864. [PMID: 33859913 PMCID: PMC8038904 DOI: 10.7759/cureus.13864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Late presentation and resistance to chemotherapeutic agents make a deadly combination for ovarian cancer patients. The treatment of these patients is thus challenging. This study explores the possible molecular mechanisms by which tumor cells interact with the extracellular matrix (ECM) constituents, forming metastatic implants and enhancing patients' sensitivity to drugs. For the literature review, PubMed was used as a database. The standard search was done using keywords "collagen, ovarian cancer, extracellular matrix, drug resistance" in different combinations, which finally yielded 32 studies meeting the inclusion/exclusion criteria. The studies included were published in the English language in the past seven years. After analyzing, we found all of them to be histopathological studies. Nine studies also used murine cell lines besides human cell lines and tissue samples from ovarian cancer patients. One study has a retrospective analysis done. Eight studies demonstrate the role of hypoxia and matrix remodeling enzymes in ovarian cancer dissemination. Genetics playing a crucial role in cancer metastasis is demonstrated in eight studies. Ten studies included shows receptors, enzymes, and spheroid organization in disease progression. Six studies address chemotherapeutic resistance. Intraperitoneal dissemination of ovarian cancer and the development of chemotherapeutic resistance depends on certain molecular interactions, and they can be targeted to improve patients' overall survival.
Collapse
Affiliation(s)
- Surbhi Valmiki
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohamed A Aid
- Intensive Care Unit, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Intensive Care Unit, King Fahad Military Medical Complex, Jeddah, SAU
| | - Ali R Chaitou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Faculty of Medical Sciences, Lebanese University, Beirut, LBN
| | - Maria Zahid
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mrinaal Valmiki
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Peter Fawzy
- Neurological Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
10
|
Zhou F, Shen D, Xiong Y, Cheng S, Xu H, Wang G, Qian K, Ju L, Zhang X. CTHRC1 Is a Prognostic Biomarker and Correlated With Immune Infiltrates in Kidney Renal Papillary Cell Carcinoma and Kidney Renal Clear Cell Carcinoma. Front Oncol 2021; 10:570819. [PMID: 33628726 PMCID: PMC7898899 DOI: 10.3389/fonc.2020.570819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) are the most common RCC types. RCC has high immune infiltration levels, and immunotherapy is currently one of the most promising treatments for RCC. Collagen triple helix repeat containing 1 (CTHRC1) is an extracellular matrix protein that regulates tumor invasion and modulates the tumor microenvironment. However, the association of CTHRC1 with the prognosis and tumor-infiltrating lymphocytes of KIRP and KIRC has not been reported. We examined the CTHRC1 expression differences in multiple tumor tissues and normal tissues via exploring TIMER, Oncomine, and UALCAN databases. Then, we searched the Kaplan-Meier plotter database to evaluate the correlation of CTHRC1 mRNA level with clinical outcomes. Subsequently, the TIMER platform and TISIDB website were chosen to assess the correlation of CTHRC1 with tumor immune cell infiltration level. We further explored the causes of aberrant CTHRC1 expression in tumorigenesis. We found that CTHRC1 level was significantly elevated in KIRP and KIRC tissues relative to normal tissues. CTHRC1 expression associates with tumor stage, histology, lymph node metastasis, and poor clinical prognosis in KIRP. The CTHRC1 level correlates to tumor grade, stage, nodal metastasis, and worse survival prognosis. Additionally, CTHRC1 is positively related to different tumor-infiltrating immune cells in KIRP and KIRC. Moreover, CTHRC1 was closely correlated with the gene markers of diverse immune cells. Also, high CTHRC1 expression predicted a worse prognosis in KIRP and KIRC based on immune cells. Copy number variations (CNV) and DNA methylation might contribute to the abnormal upregulation of CTHRC1 in KIRP and KIRC. In conclusion, CTHRC1 can serve as a biomarker to predict the prognosis and immune infiltration in KIRP and KIRC.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Songtao Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Huimin Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Zheng Y, Luo M, Lü M, Zhou T, Liu F, Guo X, Zhang J, Kang M. Let-7c-5p Inhibits Cell Proliferation and Migration and Promotes Apoptosis via the CTHRC1/AKT/ERK Pathway in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:11193-11209. [PMID: 33173311 PMCID: PMC7646436 DOI: 10.2147/ott.s274092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Let-7c-5p has been identified as a tumor suppressor in various malignancies; however, its function and mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we explored the role and potential molecular mechanism of let-7c-5p in ESCC. MATERIALS AND METHODS mRNA and protein expression levels were detected by quantitative real time-polymerase chain reaction (qRT-PCR) and Western blotting. The cell counting kit-8 (CCK-8) assay was used to assess cell proliferation. Flow cytometry analysis was used to detect cell apoptosis, and cell migration was measured by wound healing assay and Transwell assays. The dual-luciferase reporter assay was used to verify the targeting relationship between let-7c-5p and CTHRC1. The tumor xenograft model was constructed to further verify the effect of let-7c-5p on the growth of ESCC in vivo. RESULTS We found that let-7c-5p expression was downregulated in ESCC tissue and cell lines, and its reduced expression was correlated with TNM staging and lymph node metastasis. Next, we found that let-7c-5p can be used to discriminate ESCC patients from normal control subjects by receiver operating characteristic (ROC) curve analysis. Subsequently, we observed that let-7c-5p overexpression inhibited proliferation and migration and promoted apoptosis, while let-7c-5p down-regulation promoted proliferation and migration and inhibited apoptosis of TE-1 and KYSE150 cells. Furthermore, let-7c-5p overexpression inhibited tumor growth, while let-7c-5p inhibition promoted tumor growth in xenograft models. In addition, we confirmed that CTHRC1 was a direct target gene of let-7c-5p. Then, we found that let-7c-5p level was negatively correlated with CTHRC1 and negatively regulated expression of CTHRC1 in ESCC. Moreover, we confirmed that let-7c-5p upregulation significantly reduced the phosphorylation of AKT and ERK by directly inhibiting CTHRC1, while let-7c-5p downregulation showed the opposite effect. CONCLUSION Our findings indicate that let-7c-5p is markedly downregulated in ESCC and suppresses proliferation and migration and promotes apoptosis of ESCC cells by inhibiting the AKT and ERK signaling pathways through negatively regulating CTHRC1. Therefore, these results suggest that let-7c-5p may represent a novel biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yaxin Zheng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichaun, People’s Republic of China
| | - Fang Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
| | - Xiaoni Guo
- School of Public Health and Management, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jian Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
| | - Min Kang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
12
|
The Role of CTHRC1 in Regulation of Multiple Signaling and Tumor Progression and Metastasis. Mediators Inflamm 2020; 2020:9578701. [PMID: 32848510 PMCID: PMC7441421 DOI: 10.1155/2020/9578701] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has been identified as cancer-related protein. CTHRC1 expresses mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels and promotes cell migration and tissue repair in response to injury. CTHRC1 plays a pivotal role in some pathophysiological processes, including increasing bone mass, preventing myelination, and reversing collagen synthesis in many tumor cells. The ascended expression of CTHRC1 is related to tumorigenesis, proliferation, invasion, and metastasis in various human malignancies, including gastric cancer, pancreatic cancer, hepatocellular carcinoma, keloid, breast cancer, colorectal cancer, epithelial ovarian cancer, esophageal squamous cell carcinoma, cervical cancer, non-small-cell lung carcinoma, and melanoma. And molecules that regulate the expression of CTHRC1 include miRNAs, lncRNAs, WAIF1, and DPAGT1. Many reports have pointed that CTHRC1 could exert different effects through several signaling pathways such as TGF-β, Wnt, integrin β/FAK, Src/FAK, MEK/ERK, PI3K/AKT/ERK, HIF-1α, and PKC-δ/ERK signaling pathways. As a participant in tissue remodeling or immune response, CTHRC1 may promote early-stage cancer. Several recent studies have identified CTHRC1 as an effectual prognostic biomarker for predicting tumor recurrence or metastasis. It is worth noting that CTHRC1 has different cellular localization and mechanisms of action in different cells and different microenvironments. In this article, we focus on the advances in the signaling pathways mediated by CTHRC1 in tumors.
Collapse
|
13
|
Pang Y, Zhou D, Xue J, Zhou J, Zhang Y, Zheng G, Yuan S, Yao Y, Cheng Z. Interplay between CTHRC1 and the SU protein of avian leukosis virus subgroup J (ALV-J) facilitates viral replication. Virus Res 2019; 264:32-39. [DOI: 10.1016/j.virusres.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022]
|
14
|
Guo X, Ding X. Dioscin suppresses the viability of ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling pathways. Oncol Lett 2018; 15:9537-9542. [PMID: 29805675 DOI: 10.3892/ol.2018.8454] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Diosgenin is a natural steroidal saponin that is extracted from a range of sources, including from fenugreek. It is a critical raw material in the synthesis of steroid hormone drugs, exhibiting antitumor, anti-inflammatory, antioxidation and a number of other significant pharmacological actions, possessing high pharmaceutical value. The aim of the present study was to investigate the effects of dioscin suppression on ovarian cancer cell growth and the mechanism of apoptosis induction by dioscin in ovarian cancer cells. The results of the present study demonstrated that dioscin decreased viability and induced apoptosis in SKOV3 human ovarian cancer cells in a dose-dependent manner. Dioscin significantly increased caspase-3 and caspase-9 activity, and increased the protein expression of Bax and cleaved poly(ADP-ribose) polymerase in SKOV3 cells. In addition, dioscin significantly suppressed vascular endothelial growth factor receptor (VEGFR)2, phosphoinositide 3-kinase (PI3K), phosphorylated AKT and phosphorylated p38 mitogen-activated protein kinase (MAPK) protein expression in SKOV3 cells. Taken together, to the best of our knowledge, the present study demonstrated for the first time that dioscin suppresses cell viability in ovarian cancer cells by regulating the VEGFR2 and PI3K/AKT/MAPK signaling pathways.
Collapse
Affiliation(s)
- Xianqing Guo
- Department of Pharmaceuticals, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Xiao Ding
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| |
Collapse
|
15
|
Wang C, Li Z, Shao F, Yang X, Feng X, Shi S, Gao Y, He J. High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017. [PMID: 28645305 PMCID: PMC5481965 DOI: 10.1186/s13046-017-0555-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Oesophageal cancer is one of the most common malignancies worldwide,and oesophageal squamous cell carcinoma (ESCC) is the predominant histological type both globally and in China. Collagen triple helix repeat containing 1 (CTHRC1) has been found to be upregulated in ESCC. However, its role in tumourigenesis and progression of ESCC remains unclear. Methods Using our previous ESCC mRNA profiling data, we screened upregulated genes to identify those required for proliferation. Immunohistochemistry was performed to determine the level of CTHRC1 protein expression in 204 ESCC patients. Correlations between CTHRC1 expression and clinicopathological characteristics were assessed. In addition, pyrosequencing and 5-aza-dC treatment were performed to evaluate methylation status of CTHRC1 promoter. In vitro and in vivo analyses were also conducted to determine the role of CTHRC1 in ESCC cell proliferation, migration and invasion, and RNA sequencing and molecular experiments were performed to study the underlying mechanisms. Results Based on mRNA profiling data, CTHRC1 was identified as one of the most significantly upregulated genes in ESCC tissues (n = 119, fold change = 20.5, P = 2.12E-66). RNA interference screening also showed that CTHRC1 was required for cell proliferation. Immunohistochemistry confirmed markedly high CTHRC1 protein expression in tumour tissues, and high CTHRC1 expression was positively correlated with advanced T stage (P = 0.043), lymph node metastasis (P = 0.023), TNM stage (P = 0.024) and poor overall survival (P = 0.020). Promoter hypomethylation at cg07757887 may contribute to increased CTHRC1 expression in ESCC cells and tumours. Forced overexpression of CTHRC1 significantly enhanced cell proliferation, migration and invasion, whereas depletion of CTHRC1 suppressed these cellular functions in three ESCC cell lines and xenografts. CTHRC1 was found to activate FRA-1 (Fos-related antigen 1, also known as FOSL1) through the MAPK/MEK/ERK cascade, which led to upregulation of cyclin D1 and thus promoted cell proliferation. FRA-1 also induced snail1-mediated MMP14 (matrix metallopeptidase 14, also known as MT1-MMP) expression to facilitate ESCC cell invasion, migration, and metastasis. Conclusions Our data suggest that CTHRC1 may act as an oncogenic driver in progression and metastasis of ESCC, and may serve as a potential biomarker for prognosis and personalized therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0555-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunni Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zitong Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Shao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xueying Yang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Susheng Shi
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|