1
|
Lu Z, Xu J, Li J. The Transcription Factor ATF2 Accelerates Clear Cell Renal Cell Carcinoma Progression Through Activating the PLEKHO1/NUS1 Pathway. Mol Carcinog 2025; 64:617-628. [PMID: 39777695 DOI: 10.1002/mc.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common malignant cancer with high mortality rate. Activating transcription factor 2 (ATF2) and pleckstrin homology domain containing O1 (PLEKHO1) were reported to participate in numerous cancers. However, their roles and the detailed mechanisms in ccRCC development remain largely unknown. RT-qPCR and western blot were used to measure the levels of PLEKHO1, ATF2, and nuclear undecaprenyl pyrophosphate synthase 1 (NUS1). Cell proliferation, apoptosis, invasion, migration and stemness were evaluated using CCK-8 assay, flow cytometry, transwell invasion assay, wound-healing assay and sphere formation assay, respectively. Dual-luciferase reporter assay was conducted to verify the relationship between ATF2 and PLEKHO1. The interaction between PLEKHO1 and NUS1 was proved by Co-IP assay. Xenograft models were utilized to evaluate the tumorigenic capability of ccRCC cells upon PLEKHO1 knockdown. PLEKHO1, ATF2 and NUS1 expression were significantly elevated in ccRCC, and PLEKHO1 might be a prognosis biomarker for ccRCC. PLEKHO1 depletion significantly inhibited cell proliferation, invasion, migration, stemness, and induced cell apoptosis in ccRCC cells. ATF2 activated PLEKHO1 expression via transcription regulation, and PLEKHO1 overexpression could reverse the suppressive effects of ATF2 knockdown on the malignant behaviors of ccRCC cells. Moreover, PLEKHO1 directly bound to NUS1, and PLEKHO1 depletion markedly restrained ccRCC progression through targeting NUS1 in vitro and in vivo. Our findings suggested that ATF2 transcriptionally activated PLEKHO1 to promote the development of ccRCC via regulating NUS1 expression.
Collapse
Affiliation(s)
- Zheng Lu
- Gravel Center, Nanyang First People's Hospital, Nanyang, China
| | - Jinge Xu
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junyu Li
- Department of Urology, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Xu X, Xu Z, Cai Y, Chen X, Huang C. CKIP-1 inhibits M2 macrophage polarization to suppress the progression of gastric cancer by inactivating JAK/STAT3 signaling. Cell Biochem Biophys 2025; 83:1289-1298. [PMID: 39470944 DOI: 10.1007/s12013-024-01562-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/01/2024]
Abstract
Gastric cancer (GC) is a frequently occurring malignancy with poor prognosis. Casein kinase 2 interacting protein-1 (CKIP-1) is a PH domain-containing protein implicated in regulating tumorigenesis and macrophage homeostasis. This study aimed to elucidate the role and potential mechanism of CKIP-1 in the progression of GC. CKIP-1 expression in GC tumor and para-carcinoma tissues was detected using RT-qPCR. Then, human monocyte cell line THP-1 was treated with PMA, interleukin (IL)-4 and IL-13 to induce M2-polarized macrophages. CD206, arginase-1 (Arg-1) and transforming growth factorβ1 (TGFβ1) expression in M2-polarized macrophages with or without CKIP-1 overexpression was evaluated. Moreover, GC cell lines (MKN45 and HGC27 cells) were co-cultured with CKIP-1-overexpressed M2-polarized macrophages, and the viability, migration and invasion of GC cells were measured. Additionally, immunoblotting assessed the expression of JAK/STAT3 signaling-related proteins and STAT3 agonist Colivelin was used to treat GC cells to perform the rescue experiments to analyze the changes of malignant phenotypes of GC cells. Results showed that CKIP-1 was downregulated in GC tissues and M2-polarized macrophages. CKIP-1 overexpression inhibited M2 macrophage polarization and decreased TGFβ1 secretion. Besides, elevated CKIP-1 expression in M2-polarized macrophages inhibited the viability, migration and invasion of GC cells. Furthermore, CKIP-1 overexpression inactivated JAK2/STAT3 signaling in GC cells by inhibiting TGFβ1 level. Specifically, Colivelin treatment abrogated the influences of CKIP-1 upregulation on the malignant phenotypes of GC cells. Collectively, CKIP-1 inhibits M2 macrophage polarization to suppress the progression of GC by inactivating JAK/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xuefeng Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Zihong Xu
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, China
| | - Yaowu Cai
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Xintong Chen
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China
| | - Chaoqing Huang
- Department of Gastrointestinal Surgery, The First Hospital of Putian City, Putian, Fujian, 351100, China.
- Cardia Cancer Institute, Putian University, Putian, Fujian, 351100, China.
| |
Collapse
|
3
|
Xie J, Chen X, Zhou G. CKIP-1 silencing suppresses OSCC via mitochondrial homeostasis-associated TFAM/cGAS-STING signalling axis. J Cell Mol Med 2024; 28:e70006. [PMID: 39169452 PMCID: PMC11338841 DOI: 10.1111/jcmm.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Limited effective targets have challenged the treatment of oral squamous cell carcinoma (OSCC). Casein kinase 2 interacting protein 1 (CKIP-1) is a scaffold protein involved in various diseases. However, the role of CKIP-1 in OSCC remains unclear. The aim of this study was to explore the regulatory role of CKIP-1 in OSCC, as well as the involved mechanism. First, higher expression of CKIP-1 in OSCC tissues and cell lines were found. Series of gain- and loss-of-function experiments demonstrated suppressed malignant behaviours and enhanced apoptosis of OSCC cells when CKIP-1 was silenced. Also, inhibited tumour growth in CKIP-1-silenced group were proved. Further, mitochondrial transcription factor A (TFAM) downregulation, increased ROS production, decreased mitochondrial membrane potential and cGAS-STING activation in CKIP-1-silenced group were observed. The involvement of mitochondrial homeostasis-related TFAM/cGAS-STING axis in CKIP-1-silenced OSCC cells was finally demonstrated by tetramethylpyrazine (TMP) that inhibits TFAM degradation. Taken together, our study demonstrated that CKIP-1 silencing could significantly antagonize OSCC via TFAM/cGAS-STING axis, which may provide a candidate target for OSCC treatment.
Collapse
Affiliation(s)
- Ji‐Rong Xie
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Xiao‐Jie Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral Medicine, School and Hospital of StomatologyWuhan UniversityWuhanChina
| | - Gang Zhou
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of StomatologyWuhan UniversityWuhanChina
- Department of Oral Medicine, School and Hospital of StomatologyWuhan UniversityWuhanChina
| |
Collapse
|
4
|
Li X, Hu H, Yin J, Cheng W, Shi Y, Wang Y. Paeonol can improve hypoxic-induced H9c2 cells injury and ion channel activity by up-regulating the expression of CKIP-1. Tissue Cell 2024; 88:102371. [PMID: 38593570 DOI: 10.1016/j.tice.2024.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Paeonol is a representative active ingredient of the traditional Chinese medicinal herbs Cortex Moutan, which has a well-established cardioprotective effect on ischemic heart disease. However, there is little evidence of the protective effect of paeonol, and its pharmacological mechanism is also unclear. This study aims to explore the protective effect and mechanism of Paeonol on myocardial infarction rat and hypoxic H9c2 cells. METHODS Myocardial ischemia/reperfusion (I/R) was induced by occlusion of the left anterior descending coronary artery for 1 h followed by 3 h of reperfusion, and then gavage with Paeonol for 7 days. H9c2 cells were applied for the in vitro experiments and hypoxia/reoxygenation (H/R) model was established. CKIP-1 expression was evaluated by qPCR and western blot. The expression of genes involved in apoptosis, inflammation and ion channel was measured by western blot. The currents levels of Nav1.5 and Kir2.1 were measured by whole-cell patch-clamp recording. RESULTS CKIP-1 expression was decreased in H/R-induced H9c2 cells, which was inversely increased after Paeonol treatment. Paeonol treatment could increase the viability of H/R-induced H9c2 cells and diminish the apoptosis and inflammation of H/R-induced H9c2 cells, while si-CKIP-1 treatment inhibited the phenomena. Moreover, the currents levels of Nav1.5 and Kir2.1 were reduced in H/R-induced H9c2 cells, which were inhibited after Paeonol treatment. Intragastric Paeonol can reduce the ventricular arrhythmias in rats with myocardial infarction. CONCLUSIONS The protective effects of Paeonol on myocardial infarction rats and hypoxic H9c2 cells were achieved by up-regulating CKIP-1.
Collapse
Affiliation(s)
- Xinran Li
- Shandong University of Traditional Chinese Medicine, Jinan, PR China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China
| | - Hesheng Hu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China
| | - Jie Yin
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China
| | - Wenjuan Cheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China
| | - Yugen Shi
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China
| | - Ye Wang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, PR China.
| |
Collapse
|
5
|
Huang Y, Wang Y, Tang J, Qin S, Shen X, He S, Ju S. CAM-DR: Mechanisms, Roles and Clinical Application in Tumors. Front Cell Dev Biol 2021; 9:698047. [PMID: 34295898 PMCID: PMC8290360 DOI: 10.3389/fcell.2021.698047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the continuous improvement of various therapeutic techniques, the overall prognosis of tumors has been significantly improved, but malignant tumors in the middle and advanced stages still cannot be completely cured. It is now evident that cell adhesion-mediated resistance (CAM-DR) limits the success of cancer therapies and is a great obstacle to overcome in the clinic. The interactions between tumor cells and extracellular matrix (ECM) molecules or adjacent cells may play a significant role in initiating the intracellular signaling pathways that are associated with cell proliferation, survival upon binding to their ligands. Recent studies illustrate that these adhesion-related factors may contribute to the survival of cancer cells after chemotherapeutic therapy, advantageous to resistant cells to proliferate and develop multiple mechanisms of drug resistance. In this review, we focus on the molecular basis of these interactions and the main signal transduction pathways that are involved in the enhancement of the cancer cells’ survival. Furthermore, therapies targeting interactions between cancer cells and their environment to enhance drug response or prevent the emergence of drug resistance will also be discussed.
Collapse
Affiliation(s)
- Yuejiao Huang
- Medical School, Nantong University, Nantong, China.,Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuchan Wang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Jie Tang
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, China
| | - Shiyi Qin
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xianjuan Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Medical School, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Bao F, Hao P, An S, Yang Y, Liu Y, Hao Q, Ejaz M, Guo XX, Xu TR. Akt scaffold proteins: the key to controlling specificity of Akt signaling. Am J Physiol Cell Physiol 2021; 321:C429-C442. [PMID: 34161152 DOI: 10.1152/ajpcell.00146.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phosphatidylinositol 3-kinase-Akt signaling pathway plays an essential role in regulating cell proliferation and apoptosis. Akt kinase is at the center of this signaling pathway and interacts with a variety of proteins. Akt is overexpressed in almost 80% of tumors. However, inhibiting Akt has serious clinical side effects so is not a suitable treatment for cancer. During recent years, Akt scaffold proteins have received increasing attention for their ability to regulate Akt signaling and have emerged as potential targets for cancer therapy. In this paper, we categorize Akt kinase scaffold proteins into four groups based on their cellular location: membrane-bound activator and inhibitor, cytoplasm, and endosome. We describe how these scaffolds interact with Akt kinase, how they affect Akt activity, and how they regulate the specificity of Akt signaling. We also discuss the clinical application of Akt scaffold proteins as targets for cancer therapy.
Collapse
Affiliation(s)
- Fan Bao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.,Center of Stomatology, The First People's Hospital of Yunnan Province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Peiqi Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qian Hao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mubashir Ejaz
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiao-Xi Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
7
|
Du X, Kong J, Liu Y, Xu Q, Wang K, Huang D, Wei Y, Chen W, Mao H. The Measurement and Analysis of Impedance Response of HeLa Cells to Distinct Chemotherapy Drugs. MICROMACHINES 2021; 12:mi12020202. [PMID: 33669372 PMCID: PMC7920318 DOI: 10.3390/mi12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 12/01/2022]
Abstract
Electric cell–substrate impedance sensing exhibits a real-time and label-free feature to monitor the response of cells stimulated by various biochemical and mechanical signals. Alterations in the currents passing through the cell–electrode system characterize the impedance variations of cells. The impedance responses of HeLa cells under distinct chemotherapy drugs combine the effects of cell proliferation and cell–substrate adhesion. Optimal interdigitated electrodes were selected to explore the impedance responses of HeLa cells. Measurements of impedance of cells in response to three widely used chemotherapy drugs in clinical practice, namely cisplatin, doxorubicin, 5-fluorouracil, were performed. The results demonstrated that distinct impedance responses of HeLa cells to drugs were exhibited and a decrease in measured impedance was observed after drug treatment, accompanied by alterations in the distribution and intensity of the adhesion-related protein vinculin and the rate of cell proliferation. The link between the impedance profiles of HeLa cells and their biological functions was developed based on the circuit model. This study demonstrated the weights of cell proliferation and adhesion of HeLa cells under the treatments of DDP, DOX, and 5-FU, resulted in distinct impedance responses of cells, providing an impedance-based evaluation methodology for cervical cancer treatment.
Collapse
Affiliation(s)
- Xiangbin Du
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinlong Kong
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yang Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianmin Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
| | - Kaiqun Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Correspondence: (K.W.); (H.M.); Tel.: +86-139-3421-2990 (K.W.); +86-158-0125-6264 (H.M.)
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
| | - Weiyi Chen
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (X.D.); (J.K.); (Q.X.); (D.H.); (Y.W.); (W.C.)
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Haiyang Mao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (K.W.); (H.M.); Tel.: +86-139-3421-2990 (K.W.); +86-158-0125-6264 (H.M.)
| |
Collapse
|
8
|
Ma L, Cao Y, Hu J, Chu M. High expression of the CKIP-1 gene might promote apoptosis through downregulation of the Ras/ERK signalling pathway in the intestinal type of gastric cancer. J Int Med Res 2021; 48:300060520909025. [PMID: 32223671 PMCID: PMC7133087 DOI: 10.1177/0300060520909025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the effect of the casein kinase 2 interacting protein 1 (CKIP-1) on the apoptosis of the intestinal type of gastric cancer (GC). Methods The levels of CKIP-1 protein and the rates of apoptosis were measured in tissue samples of the intestinal type of GC and human GC cell lines. The rate of apoptosis and the protein levels of B cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), cleaved cysteinyl aspartate specific protease 3 (cleaved caspase-3), cleaved caspase-9, rat sarcoma (Ras), extracellular signal-regulated kinase 1 and 2 (ERK1/2) and phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were analysed in SGC7901 cells expressing CKIP-1 short hairpin RNA (shRNA; knockdown) and SGC7901 cells overexpressing CKIP-1. Results The levels of CKIP-1 protein were significantly lower in the intestinal type of GC tissues compared with the samples of intestinal metaplasia. Both the levels of CKIP-1 protein and the levels of apoptosis decreased gradually with decreasing cell differentiation in the intestinal type of GC tissue and cell lines; and they were positively correlated. In the CKIP-1 shRNA group, the rate of apoptosis and the levels of Bax, cleaved caspase-3 and cleaved caspase-9 were decreased; and the levels of Bcl-2, Ras and the ratio of p-ERK/ERK were increased, compared with the control group. Opposite results were observed in the CKIP-1 overexpression group. Conclusion High levels of CKIP-1 protein may promote apoptosis in the intestinal type of GC, possibly via the downregulation of the Ras/ERK signalling pathway.
Collapse
Affiliation(s)
- Liang Ma
- Guizhou University School of Medicine, Guiyang, Guizhou Province, China
| | - Ying Cao
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Mingliang Chu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
9
|
Li L, Xie P, Lin W, Liu J, Chen J, Guo Z, Bin C, An W, Zhang C, Zhan Y. CKIP-1 augments autophagy in steatotic hepatocytes by inhibiting Akt/mTOR signal pathway. Exp Cell Res 2020; 397:112341. [PMID: 33191205 DOI: 10.1016/j.yexcr.2020.112341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/26/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is characterized by aberrant accumulation of intrahepatic triglycerides and lipid droplets (LDs) in the liver cells, is becoming increasingly prevalent at an alarming rate worldwide. LDs can be consumed by either hydrolysis or autophagy, which is shown to be of importance in the regulation of hepatic lipid metabolism. We have shown that deficiency of pleckstrin homology domain-containing casein kinase 2 interacting protein-1 (CKIP-1), a scaffold protein that interacts with various proteins in multiple signal pathways, in mice aggravates high-fat diet induced fatty liver. However, its underlying mechanisms remain largely unknown. In this study, we found that the mRNA and protein levels of CKIP-1 decreased dramatically in steatotic HepG2 cells induced by oleic acid (OA) treatment. Coincidently, hepatic autophagy was also dynamically regulated in steatotic HepG2 cells. In addition, overexpression of CKIP-1 activated autophagy by suppression of Akt/mTOR signaling, which in turn reduced lipid accumulation. Moreover, these phenomena were reversed in CKIP-1-shRNA transfected steatotic hepatocytes. To further evaluate the potential role of CKIP-1 in autophagy, we determined the level of autophagy related proteins in CKIP-1 knockout mice. These results supported our findings in vitro. In summary, we found CKIP-1 to be a positive regulator of hepatic autophagy and a promising therapeutic target for treatment of NAFLD.
Collapse
Affiliation(s)
- Li Li
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Ping Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China
| | - Wenjun Lin
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jinsheng Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Jing Chen
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zihao Guo
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Chuxuan Bin
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei An
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, 100069, China.
| | - Chuan Zhang
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Yutao Zhan
- Department of Gastroenterology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
10
|
Zhang L, Yu J, Ye M, Zhao H. Upregulation of CKIP- 1 inhibits high-glucose induced inflammation and oxidative stress in HRECs and attenuates diabetic retinopathy by modulating Nrf2/ ARE signaling pathway: an in vitro study. Cell Biosci 2019; 9:67. [PMID: 31462987 PMCID: PMC6708125 DOI: 10.1186/s13578-019-0331-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the underlying mechanisms of diabetic retinopathy (DR) development. METHODS Real-Time qPCR was used to detect Casein kinase 2 interacting protein-1 (CKIP-1) and Nuclear factor E2-related factor 2 (Nrf2) mRNA levels. Western Blot was employed to detect protein levels. Malondialdehyde (MDA) assay kit, superoxide dismutase (SOD) kit and glutathione peroxidase (GSH-Px) kit were used to evaluate oxidative stress in high-glucose treated human retinal endothelial cells (HRECs). Calcein-AM/propidium iodide (PI) double stain kit was employed to detect cell apoptosis. Enzyme-linked ImmunoSorbent Assay (ELISA) was used to detect inflammation associated cytokines secretion. Co-immunoprecipitation (CO-IP) was performed to investigate the interactions between CKIP-1 and Nrf2. Luciferase reporter gene system was used to detect the transcriptional activity of Nrf2. RESULTS CKIP-1 was significantly downregulated in either DR tissues or high-glucose treated HRECs comparing to the Control groups. Besides, high-glucose (25 mM) inhibited HRECs viability and induced oxidative stress, inflammation associated cytokines (TNF-α, IL-6 and IL-1β) secretion and cell apoptosis, which were all reversed by synergistically overexpressing CKIP-1 and aggravated by knocking down CKIP-1. Of note, we found that overexpressed CKIP-1 activated Nrf2/ARE signaling pathway and increased its downstream targets including HO-1, NQO-1, γGCS and SOD in high-glucose treated HRECs. Further results also showed that CKIP-1 regulated cell viability, oxidative stress, inflammation and apoptosis in high-glucose treated HRECs by activating Nrf2/ARE signaling pathway. CONCLUSION We concluded that overexpressed CKIP-1 alleviated DR progression by activating Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Jie Yu
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Mingxia Ye
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| | - Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People’s Hospital, No.158, Shangtang Road, Xiacheng District, Hangzhou, 310014 Zhejiang China
- Department of Ophthalmology, People’s Hospital of Hangzhou Medical College, No.128, ShangTang Road, XiaCheng District, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
11
|
Overexpression of CKIP-1 alleviates hypoxia-induced cardiomyocyte injury by up-regulating Nrf2 antioxidant signaling via Keap1 inhibition. Biochimie 2019; 163:163-170. [DOI: 10.1016/j.biochi.2019.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/10/2019] [Indexed: 01/22/2023]
|
12
|
Physiological functions of CKIP-1: From molecular mechanisms to therapy implications. Ageing Res Rev 2019; 53:100908. [PMID: 31082489 DOI: 10.1016/j.arr.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
The casein kinase 2 interacting protein-1 (CKIP-1, also known as PLEKHO1) is initially identified as a specific CK2α subunit-interacting protein. Subsequently, various proteins, including CPα, PAK1, Arp2/3, HDAC1, c-Jun, ATM, Smurf1, Rpt6, Akt, IFP35, TRAF6, REGγ and CARMA1, were reported to interact with CKIP-1. Owing to the great diversity of interacted proteins, CKIP-1 exhibits multiple biologic functions in cell morphology, cell differentiation and cell apoptosis. Besides, these functions are subcellular localization, cell type, and regulatory signaling dependent. CKIP-1 is involved in biological processes consisting of bone formation, tumorigenesis and immune regulation. Importantly, deregulation of CKIP-1 results in osteoporosis, tumor, and atherosclerosis. In this review, we introduce the molecular functions, biological processes and promising of therapeutic strategies. Through summarizing the intrinsic mechanisms, we expect to open new therapeutic avenues for CKIP-1.
Collapse
|
13
|
Casein Kinase 2 Interacting Protein-1 Suppresses Glioma Cell Proliferation via Regulating the AKT/GSK3 β/ β-Catenin Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5653212. [PMID: 31355268 PMCID: PMC6634126 DOI: 10.1155/2019/5653212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 01/08/2023]
Abstract
Objective Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. Methods The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3β/β-catenin pathway was detected by western blot analysis. Results In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3β at Ser9, and promoted β-catenin degradation. Conclusions Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.
Collapse
|
14
|
Xiang Y, Fan X, Zhao M, Guo Q, Guo S. CKIP-1 alleviates oxygen-glucose deprivation/reoxygenation-induced apoptosis and oxidative stress in cultured hippocampal neurons by downregulating Keap1 and activating Nrf2/ARE signaling. Eur J Pharmacol 2019; 848:140-149. [DOI: 10.1016/j.ejphar.2019.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
|
15
|
Zhang Y, Wu Z, Yu H, Wang H, Liu G, Wang S, Ji X. Chinese Herbal Medicine Wenxia Changfu Formula Reverses Cell Adhesion-Mediated Drug Resistance via the Integrin β1-PI3K-AKT Pathway in Lung Cancer. J Cancer 2019; 10:293-304. [PMID: 30719123 PMCID: PMC6360309 DOI: 10.7150/jca.25163] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
In the treatment of lung cancer, the multidrug resistance to chemotherapeutic drugs is one of the reasons of low rates for cure and treatment failure, the combination of chemotherapeutic drugs and traditional Chinese medicine can increase the sensitivity of chemotherapy and reduce its adverse effects. Our previous study has proved that Chinese herbal medicine (CHM) Wenxia Changfu Formula (WCF for short) effectively enhances chemotherapeutic efficacy in lung cancer treatment and reverses multidrug resistance in lung cancer cells in vitro. The present study aims to investigate the effect and mechanism of WCF in reversing cell adhesion-mediated drug resistance of lung cancer by using A549 three-dimensional cell culture and nude mouse model of the A549 cell line with Integrin β1 overexpression. We show that the combination of WCF with DDP can decrease proliferation of lung cancer cells by inducing cell cycle arrest and apoptosis. Moreover, we find that the combination of WCF with DDP suppresses the expression of certain molecules which regulate cell cycle and apoptosis. Mechanistically, we show that the Integrin β1, FAK, PI3K, and AKT protein expressions are suppressed by DDP and even more responses are observed when DDP and WCF are combined, showing WCF treatment enhances the effect of commonly used anticancer drugs. In line with the above findings, our results confirm that WCF reverses cell adhesion-mediated drug resistance of lung cancer via inactivating Integrin β1/PI3K/AKT and apoptosis induction.
Collapse
Affiliation(s)
- YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - Guowei Liu
- Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| | - XuMing Ji
- College of Basic Medicine,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.,Shandong Provincial Chinese Medicine Classical Prescription Demonstration Engineering Technology Research Center, Jinan, Shangdong Province 250355, China
| |
Collapse
|
16
|
Luo B, Gu YY, Wang XD, Chen G, Peng ZG. Identification of potential drugs for diffuse large b-cell lymphoma based on bioinformatics and Connectivity Map database. Pathol Res Pract 2018; 214:1854-1867. [PMID: 30244948 DOI: 10.1016/j.prp.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most main subtype in non-Hodgkin lymphoma. After chemotherapy, about 30% of patients with DLBCL develop resistance and relapse. This study was to identify potential therapeutic drugs for DLBCL using the bioinformatics method. The differentially expressed genes (DEGs) between DLBCL and non-cancer samples were downloaded from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs were analyzed using the Database for Annotation, Visualization, and Integrated Discovery. The R software package (SubpathwayMiner) was used to perform pathway analysis on DEGs affected by drugs found in the Connectivity Map (CMap) database. Protein-protein interaction (PPI) networks of DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes online database and Cytoscape software. In order to identify potential novel drugs for DLBCL, the DLBCL-related pathways and drug-affected pathways were integrated. The results showed that 1927 DEGs were identified from TCGA and GEO. We found 54 significant pathways of DLBCL using KEGG pathway analysis. By integrating pathways, we identified five overlapping pathways and 47 drugs that affected these pathways. The PPI network analysis results showed that the CDK2 is closely associated with three overlapping pathways (cell cycle, p53 signaling pathway, and small cell lung cancer). The further literature verification results showed that etoposide, rinotecan, methotrexate, resveratrol, and irinotecan have been used as classic clinical drugs for DLBCL. Anisomycin, naproxen, gossypol, vorinostat, emetine, mycophenolic acid and daunorubicin also act on DLBCL. It was found through bioinformatics analysis that paclitaxel in the drug-pathway network can be used as a potential novel drug for DLBCL.
Collapse
Affiliation(s)
- Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Xiao-Dong Wang
- The Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, PR China.
| |
Collapse
|
17
|
Li MP, Zhang YJ, Hu XL, Zhou JP, Yang YL, Peng LM, Qi H, Yang TL, Chen XP. Association of CKIP-1 P21A polymorphism with risk of chronic heart failure in a Chinese population. Oncotarget 2018; 8:36545-36552. [PMID: 28402261 PMCID: PMC5482675 DOI: 10.18632/oncotarget.16614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/28/2017] [Indexed: 01/20/2023] Open
Abstract
Pathological cardiac hypertrophy is an independent risk factor for chronic heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) can inhibit pathological cardiac hypertrophy. Therefore, we investigated whether CKIP-1 nonsynonymous polymorphism rs2306235 (Pro21Ala) contributes to risk and prognosis of chronic heart failure in a Chinese population.A total of 923 adult patients with chronic heart failure and 1020 age- and gender-matched healthy controls were recruited. CKIP-1 rs2306235 polymorphism was genotyped using PCR-restriction fragment length polymorphism. Additional follow-up data for 140 chronic heart failure patients was evaluated. The rs2306235 G allele was associated with an increased risk of chronic heart failure (OR = 1.38, 95% CI = 1.09-1.75, p = 0.007), especially in patients with hypertension (OR = 1.45, 95% CI = 1.09-1.75, p = 0.006) and coronary heart disease (OR = 1.41, 95% CI = 1.09-1.83, p = 0.010) after adjustment for multiple cardiovascular risk factors. However, rs2306235 polymorphism was not associated with cardiovascular mortality in chronic heart failure (p = 0.875). CKIP-1 rs2306235 polymorphism may be a risk factor for chronic heart failure in a Chinese Han population.
Collapse
Affiliation(s)
- Mu-Peng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Yan-Jiao Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Xiao-Lei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Ji-Peng Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| | - Yong-Long Yang
- Haikou People's Hospital and Affiliated Haikou Hospital of Xiangya Medical School, Central South University, Haikou 570311, Hainan, P. R. China
| | - Li-Ming Peng
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Hong Qi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Tian-Lun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
18
|
Ling S, Li Y, Zhong G, Zheng Y, Xu Q, Zhao D, Sun W, Jin X, Li H, Li J, Sun H, Cao D, Song J, Liu C, Yuan X, Wu X, Zhao Y, Liu Z, Li Q, Li Y. Myocardial CKIP-1 Overexpression Protects from Simulated Microgravity-Induced Cardiac Remodeling. Front Physiol 2018; 9:40. [PMID: 29422872 PMCID: PMC5788970 DOI: 10.3389/fphys.2018.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/11/2018] [Indexed: 02/01/2023] Open
Abstract
Human cardiovascular system has adapted to Earth's gravity of 1G. The microgravity during space flight can induce cardiac remodeling and decline of cardiac function. At present, the mechanism of cardiac remodeling induced by microgravity remains to be disclosed. Casein kinase-2 interacting protein-1 (CKIP-1) is an important inhibitor of pressure-overload induced cardiac remodeling by decreasing the phosphorylation level of HDAC4. However, the role of CKIP-1 in the cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether CKIP-1 was also involved in the regulation of cardiac remodeling induced by microgravity. We first detected the expression of CKIP-1 in the heart from mice and monkey after simulated microgravity using Q-PCR and western blotting. Then, myocardial specific CKIP-1 transgenic (TG) and wild type mice were hindlimb-suspended (HU) to simulate microgravity effect. We estimated the cardiac remodeling in morphology and function by histological analysis and echocardiography. Finally, we detected the phosphorylation of AMPK, ERK1/2, and HDAC4 in the heart from wild type and CKIP-1 transgenic mice after HU. The results revealed the reduced expression of CKIP-1 in the heart both from mice and monkey after simulated microgravity. Myocardial CKIP-1 overexpression protected from simulated microgravity-induced decline of cardiac function and loss of left ventricular mass. Histological analysis demonstrated CKIP-1 TG inhibited the decreases in the size of individual cardiomyocytes of mice after hindlimb unloading. CKIP-1 TG can inhibit the activation of HDAC4 and ERK1/2 and the inactivation of AMPK in heart of mice induced by simulated microgravity. These results demonstrated CKIP-1 was a suppressor of cardiac remodeling induced by simulated microgravity.
Collapse
Affiliation(s)
- Shukuan Ling
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yuheng Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yongjun Zheng
- Medical Administration Division, The 261th Hospital of PLA, Beijing, China
| | - Qing Xu
- Core Facility Center, Capital Medical University, Beijing, China
| | - Dingsheng Zhao
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongxing Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Jianwei Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Huiyuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Jinping Song
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Agrobiotechnology, College of Life Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Wu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zizhong Liu
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
19
|
Liu Q, Guo Y, Wang Y, Zou X, Yan Z. miR‑98‑5p promotes osteoblast differentiation in MC3T3‑E1 cells by targeting CKIP‑1. Mol Med Rep 2018; 17:4797-4802. [PMID: 29328483 DOI: 10.3892/mmr.2018.8416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Casein kinase 2-interacting protein 1 (CKIP-1) is a negative regulator for bone formation. Previously, using bioinformatics analysis, CKIP‑1 has been predicted to serve the role of target gene of miR‑98‑5p. In the present study, the potential role of miR‑98‑5p in regulating osteoblast differentiation through CKIP‑1 was investigated. Following pre‑treatment with microRNA (miR)‑98‑5p agomir or miR‑98‑5p antagomir, MC3T3‑E1 cells were cultured in an osteoinductive medium. Subsequently, the expression of miR‑98‑5p, CKIP‑1 and levels of osteoblast differentiation markers, including alkaline phosphatase, matrix mineralization, osteocaicin, collagen type I, runt‑related transcription factor 2 and osteopontin were assayed. Using a dual‑luciferase reporter assay, it was demonstrated that CKIP‑1 was the target gene of miR‑98‑5p. miR‑98‑5p was upregulated as a result of treatment with miR‑98‑5p agomir and promoted osteoblast differentiation. Conversely, miR‑98‑5p antagomir inhibited miR‑98‑5p expression and osteoblast differentiation. miR‑98‑5p targeted CKIP‑1 by binding to its 3'‑untranslated region. Furthermore, miR‑98‑5p overexpression decreased the protein levels of CKIP‑1 and inhibition of miR‑98‑5p increased the protein levels of CKIP‑1. The results of the present study indicated that CKIP‑1 was a target gene of miR‑98‑5p and that miR‑98‑5p regulated osteoblast differentiation in MC3T3‑E1 cells by targeting CKIP‑1.
Collapse
Affiliation(s)
- Qiliang Liu
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xianqiong Zou
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhixiong Yan
- Department of Biomedical Engineering, College of Biotechnology of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|