1
|
Yang R, Yao J, Ma H, Shui C, Li T, Zhang S, Li C. Celastrol promotes apoptotic cell death in thyroid cancer cells through a caspases-dependent pathway. Thyroid Res 2025; 18:9. [PMID: 40001245 PMCID: PMC11863774 DOI: 10.1186/s13044-024-00222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/27/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Celastrol, a naturally occurring bioactive compound, has demonstrated potential in treating inflammation, obesity, and tumors, particularly in colorectal, gastric, and breast cancers. However, its therapeutic effects on thyroid cancer (TC), which have poor clinical outcomes, remain unclear. This study aimed to investigate Celastrol's potential in treating thyroid cancer using cell lines. METHODS The viability and proliferation of thyroid cancer cells treated with or without Celastrol were analyzed by CCK-8 and colony formation assay. The state of thyroid cancer cells treated with or without Celastrol were observed by microscopy. Further evidence from flow cytometry and TUNEL staining demonstrated the induction of apoptotic processes in thyroid cancer cells. The expression of PARP1, Caspase-3, Bax, BCL2 in thyroid cancer cells after indicated treatment was analyzed by Western blot and Caspase-3 expression in thyroid cancer cells after 12 and 24 h of Celastrol treatment was detected by immunofuorescence assay. Anaplastic thyroid cancer growth-limiting of Celastrol was evaluated in nude mice. RESULTS Celastrol induction promoted apoptotic in TC cells, increased the expression of PARP1, Bax and Caspase-3 and reduces expression of BCL2 by Western Blot. The expression of Caspase-3 was increased by immunofluorescence, which indicating that Celastrol may serve as an adjuvant therapeutic agent for thyroid cancer treatment by inducing apoptosis through the caspase-3 pathway. Celastrol treatment of mice implanted with anaplastic thyroid cancer cells also inhibited tumor growth, associated with reduced Ki-67 and increased Caspase-3. CONCLUSIONS Celastrol promotes apoptotic cell death in thyroid carcinoma cells by the Caspase-3 pathway.
Collapse
Affiliation(s)
- Ruoyi Yang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jie Yao
- Department of Centre for Translational Research in Cancer, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Chunyan Shui
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Teng Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China
| | - Sicheng Zhang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Chao Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Guizhou Medical University, Guiyang, 550004, China.
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610041, China.
| |
Collapse
|
2
|
Lv K, Li Q, Jiang N, Chen Q. Role of TRIM29 in disease: What is and is not known. Int Immunopharmacol 2025; 147:113983. [PMID: 39755113 DOI: 10.1016/j.intimp.2024.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus. The expression of TRIM29 was initially found to be associated with cancer and diabetic nephropathy progression, and antiviral immunity which is triggered by virus-derived nucleic acids binding to pattern recognition receptors (PRRs) on immune cells. Recently, TRIM29 has also been explored as a diagnostic biomarker and therapeutic target for some immune-related diseases. Here, we review the functions of TRIM29 in the progression of diseases and the inherent mechanisms, as well as the remaining gaps in the literature. A thorough understanding of the detailed regulatory mechanisms of TRIM29 will ultimately facilitate the development of different therapeutic strategies for various diseases.
Collapse
Affiliation(s)
- Kunying Lv
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
3
|
Wu Q, Nandi D, Sharma D. TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond. Cancer Metastasis Rev 2024; 44:16. [PMID: 39644332 PMCID: PMC11625080 DOI: 10.1007/s10555-024-10226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 12/09/2024]
Abstract
While most Tripartite motif (TRIM) family proteins are E3 ubiquitin ligases, some members have functions beyond the regulation of ubiquitination, impacting normal physiological processes and disease progression. TRIM29, an important member of the TRIM family, exerts a predominant influence on cancer growth, epithelial-to-mesenchymal transition, stemness and metastatic progression by directly potentiating multiple canonical oncogenic pathways. The cancer-promoting effect of TRIM29 is also evident in metabolic interventions and interference with the efficacy of cancer therapeutics. As expected for any key node in cancer, the expression of TRIM29 is tightly regulated by non-coding RNAs, epigenetic modulation, and post-translational regulation. A systematic discussion of how TRIM29 is regulated in cancer, its influences on cancer progression, and its impact on cancer therapeutics is presented in this review. We also explore the context-dependent alterations between TRIM29 function from oncogenic to tumor suppression. As TRIM29 is involved in multiple aspects of cancer progression, a better understanding of its biological impact in cancer may help improve prognosis and develop novel therapeutic combinations, leading to improved personalized cancer care.
Collapse
Affiliation(s)
- Qitong Wu
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, CRB 1, Rm 145, Baltimore, MD, 21231, USA.
| |
Collapse
|
4
|
Jiang L, Tao W, Liu J, Yang A, Zhou J. microRNA-637/661 ameliorate hypoxic-induced pulmonary arterial hypertension by targeting TRIM29 signaling pathway. Sci Rep 2024; 14:27971. [PMID: 39543168 PMCID: PMC11564567 DOI: 10.1038/s41598-024-79769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
The pathogenesis of pulmonary arterial hypertension (PAH) is closely linked to the abnormal proliferation of pulmonary artery smooth muscle cells. Studies have demonstrated that microRNAs play pivotal roles in the progression of pulmonary hypertension. We found that microRNA-637 (miR-637) and microRNA-661 (miR-661) are expressed at low levels in the serum of PAH patients. Moreover, the overexpression of miR-637 or miR-661 inhibited human pulmonary artery smooth muscle cell (HPASMC) proliferation and migration in hypoxic culture. Mechanistically, we overexpressed these two microRNAs in HPASMCs, and the RNA-sequencing (RNA-seq) results demonstrated that TRIM29 mRNA was suppressed, indicating that TRIM29 is a substrate. TRIM29 accumulates in the serum of patients with PAH and promotes cell proliferation and migration by activating AKT/mTOR signalling. In addition, overexpression of miR-637 or miR-661 reversed TRIM29-mediated HPASMC proliferation and migration. This study revealed that miR-637 and miR-661 are able to inhibit the proliferation ability of HPASMCs under hypoxic conditions through targeting TRIM29, suggesting that the microRNA-637/661/TRIM29 axis may act as a target for PAH treatment.
Collapse
Affiliation(s)
- Liyang Jiang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Weiyi Tao
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Jun Liu
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Aixiang Yang
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China.
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China.
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China.
| | - Jie Zhou
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, 242 Guangji Road, Suzhou, 215000, Jiangsu, People's Republic of China.
- Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, 215001, Jiangsu, People's Republic of China.
- Department of Emergency and Critical Care Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School of Nanjing Medical University, Suzhou, 215000, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Xiong X, Huang B, Gan Z, Liu W, Xie Y, Zhong J, Zeng X. Ubiquitin-modifying enzymes in thyroid cancer:Mechanisms and functions. Heliyon 2024; 10:e34032. [PMID: 39091932 PMCID: PMC11292542 DOI: 10.1016/j.heliyon.2024.e34032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.
Collapse
Affiliation(s)
- Xingmin Xiong
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - BenBen Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Zhe Gan
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weixiang Liu
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
6
|
Yin YT, Shi L, Wu C, Zhang MY, Li JX, Zhou YF, Wang SC, Wang HY, Mai SJ. TRIM29 modulates proteins involved in PTEN/AKT/mTOR and JAK2/STAT3 signaling pathway and suppresses the progression of hepatocellular carcinoma. Med Oncol 2024; 41:79. [PMID: 38393440 DOI: 10.1007/s12032-024-02307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
Tripartite motif-containing 29 (TRIM29), also known as the ataxia telangiectasia group D-complementing (ATDC) gene, has been reported to play an oncogenic or tumor suppressive role in developing different tumors. So far, its expression and biological functions in hepatocellular carcinoma (HCC) remain unclear. We investigated TRIM29 expression pattern in human HCC samples using quantitative RT-PCR and immunohistochemistry. Relationships between TRIM29 expression level, clinical prognostic indicators, overall survival (OS), and disease-free survival (DFS) were evaluated by Kaplan-Meier analysis and Cox proportional hazards model. A series of in vitro experiments and a xenograft tumor model were conducted to detect the functions of TRIM29 in HCC cells. RNA sequencing, western blotting, and immunochemical staining were performed to assess the molecular regulation of TRIM29 in HCC. We found that the mRNA and protein levels of TRIM29 were significantly reduced in HCC samples, compared with adjacent noncancerous tissues, and were negatively correlated with poor differentiation of HCC tissues. Survival analysis confirmed that lower TRIM29 expression significantly correlated with shorter OS and DFS of HCC patients. TRIM29 overexpression remarkably inhibited cell proliferation, migration, and EMT in HCC cells, whereas knockdown of TRIM29 reversed these effects. Moreover, deactivation of the PTEN/AKT/mTOR and JAK2/STAT3 pathways might be involved in the tumor suppressive role of TRIM29 in HCC. Our findings indicate that TRIM29 in HCC exerts its tumor suppressive effects through inhibition of the PTEN/AKT/mTOR and JAK2/STAT3 signaling pathways and may be used as a potential biomarker for survival in patients with HCC.
Collapse
Affiliation(s)
- Yu-Ting Yin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Lu Shi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chun Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jia-Xin Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shuo-Cheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
7
|
Wang W, Ding Y, Zhao Y, Li X. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther 2024; 31:285-299. [PMID: 38102465 DOI: 10.1038/s41417-023-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Lymph node metastasis (LNM) is a major cause of locoregional recurrence of papillary thyroid carcinoma (PTC). However, the mechanisms responsible for LNM are unclear. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in cancer progression and metastasis, and whether m6A modification regulates LNM in PTC remains to be determined. This study showed that IGF2BP2 was upregulated in PTC and positively associated with LNM. Functionally, IGF2BP2 knockdown significantly inhibited PTC cell proliferation and invasion in vitro, and vice versa. Moreover, IGF2BP2 knockdown significantly inhibited lymphatic metastasis in vivo. Mechanistically, Human m6A epitranscriptomic microarray, MeRIP, and RIP assays demonstrated that IGF2BP2 activated the NF-KB pathway by enhancing DPP4 stability in an m6A-dependent manner. Furthermore, IGF2BP2 knockdown increased the sensitivity of PTC cells to cisplatin therapy to a certain extent, while its overexpression produced the opposite effects. Overall, this study uncovers that IGF2BP2 promotes lymphatic metastasis via stabilizing DPP4 in an m6A-dependent manner, and provides new insights for understanding the mechanism of lymphatic metastasis in PTC.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China
| | - Ying Ding
- Department of Breast Thyroid Surgery, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, China
| | - Yunzhe Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan Province, China.
| |
Collapse
|
8
|
Zhao F, Fan Z, Jia R, Liu Q, Wang M, Sui J, Liu H. Mesenchymal Stem Cells Accelerate Recovery of Acetic Acid-Induced Chronic Gastric Ulcer by Regulating Ekt/Akt/TRIM29 Axis. Stem Cells Int 2024; 2024:6202123. [PMID: 38213743 PMCID: PMC10781525 DOI: 10.1155/2024/6202123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic gastric ulcer (CGU), a prevalent digestive disease, has a high incidence and is seriously harmful to human health. Mesenchymal stem cells (MSCs) have been proven to have beneficial therapeutic effects in many human diseases. Here, a CGU model induced by acetic acid in mice was used to evaluate the repair effects and potential mechanism of human umbilical cord-derived MSCs (hUC-MSCs) and hUC-MSCs derived conditioned medium (hUC-MSC-CM). We found that hUC-MSCs and hUC-MSC-CM treatment significantly repaired morphological characteristics of CGU, improved proliferation and decreased apoptosis of gastric cells, and promoted the generation of new blood vessels in granulation tissues. In addition, we could detect the homing of MSCs in gastric tissue, and MSCs may differentiate into Lgr5-positive cells. As well as this, in vitro experiments showed that hUC-MSC-CM could promote cell proliferation, stimulate cell cycle progression, and reduce the incidence of apoptosis. The transcriptome of cells and the iTRAQ proteome of gastric tissues suggest that MSCs may play a therapeutic role by increasing the expression of TRIM29. Additionally, it was found that knocking down TRIM29 significantly decreased the ameliorative effects of hUC-MSC-CM on cell apoptosis. As a result of further molecular experiments, it was found that TRIM29 is capable of phosphorylating Erk/Akt in specific cell type. As a whole, it appears that hUC-MSCs can be an effective therapeutic approach for promoting gastric ulcer healing and may exert therapeutic effects in the form of paracrine and differentiation into gastric cells.
Collapse
Affiliation(s)
- Feiyue Zhao
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| | - Zhibin Fan
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Ruikang Jia
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Qichao Liu
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
| | - Menglei Wang
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| | - Jianliang Sui
- School of Life Science and Food Engineering, Hebei University of Engineering, Handan, Hebei Province, China
| | - Huiyun Liu
- Handan Pharmaceutical Co. Ltd., Handan, Hebei Province, China
- Key Laboratory of Chinese Medicine for Gastric Medicine, Handan, Hebei Province, China
| |
Collapse
|
9
|
Wu M, Jin MM, Cao XH, Zhao L, Li YH. Silencing TRIM29 Sensitizes Non-small Cell Lung Cancer Cells to Anlotinib by Promoting Apoptosis via Binding RAD50. Curr Cancer Drug Targets 2024; 24:445-454. [PMID: 37644752 DOI: 10.2174/1568009623666230829143148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Previous studies have proposed that the transcriptional regulatory factor tripartite motif containing 29 (TRIM29) is involved in carcinogenesis via binding with nucleic acid. TRIM29 is confirmed to be highly expressed when the cancer cells acquire therapy-resistant properties. We noticed that TRIM29 levels were significantly increased in anlotinib-resistant NCIH1975 (NCI-H1975/AR) cells via mining data information from gene expression omnibus (GEO) gene microarray (GSE142031; log2 fold change > 1, p < 0.05). OBJECTIVE Our study aimed to investigate the function of TRIM29 on the resistance to anlotinib in non-small cell lung cancer (NSCLC) cells, including NCI-H1975 and A549 cells. METHODS Real-time RT-PCR and western blot were used to detect TRIM29 expression in anlotinib- resistant NSCLC (NSCLC/AR) cells. Apoptosis were determined through flow cytometry, acridine orange/ethidium bromide staining as well as western blot. ELISA was used to measure the content of C-X3-C motif chemokine ligand 1. Co-Immunoprecipitation assay was performed to verify the interaction between TRIM29 and RAD50 double-strand break repair protein (RAD50). RESULTS TRIM29 expression was shown to be elevated in the cytoplasm and nucleus of NSCLC/ AR cells compared to normal NSCLC cells. Next, we demonstrated that TRIM29 knockdown facilitated apoptosis and enhanced the sensitivity to anlotinib in NSCLC/AR cells. Based on the refined results citing from the database BioGRID, it was proved that TRIM29 interacted with RAD50. Herein, RAD50 overexpression diminished the pro-apoptotic effect induced by silencing TRIM29 in anlotinib-resistant A549 (A549/AR) cells. CONCLUSION Finally, we concluded that the increased sensitivity to anlotinib in NSCLC/AR cells was achieved by knocking down TRIM29, besides, the positive effects of TRIM29 knockdown were attributed to the promotion of apoptosis via binding to RAD50 in NSCLC/AR cell nucleus. Therefore, TRIM29 might become a potential target for overcoming anlotinib resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Min Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Anhui Public Health Clinical Center, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
| | - Meng-Meng Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Anhui Public Health Clinical Center, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
| | - Xiao-Hui Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Anhui Public Health Clinical Center, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
| | - Lei Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Anhui Public Health Clinical Center, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
| | - Yong-Huai Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Anhui Public Health Clinical Center, No. 100, Huaihai Avenue, Hefei, Anhui, People's Republic of China
| |
Collapse
|
10
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Xiao B, Ge Y, Zhao R, Zhang Y, Guo Y, Zhang S, Li B, Qiu P, Chao Z, Zuo S. NAP1L5 facilitates pancreatic ductal adenocarcinoma progression via TRIM29-mediated ubiquitination of PHLPP1. Biochem Pharmacol 2023; 217:115811. [PMID: 37717692 DOI: 10.1016/j.bcp.2023.115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered one of the most aggressive solid tumours in humans. Despite its high mortality rate, effective targeted therapeutic strategies remain limited due to incomplete understanding of the underlying biological mechanisms. The NAP1L gene family has been implicated in the development and progression of various human tumours. However, the specific function and role of NAP1L5 (nucleosome assembly protein-like 5) in PDAC have not been fully elucidated. Therefore, in this study, we aimed to investigate the role of NAP1L5 in PDAC and explore the regulatory relationship between NAP1L5 and its potential downstream molecule PHLPP1 (PH domain Leucine-rich repeat Protein Phosphatase 1) in PDAC. Our study revealed that NAP1L5 is notably upregulated in PDAC. Moreover, both in vivo and in vitro experiments demonstrated that knockdown of NAP1L5 suppressed the proliferation of PDAC cells. Mechanistically, NAP1L5 was found to promote PDAC progression by activating the AKT/mTOR signalling pathway in a PHLPP1-dependent manner. Specifically, NAP1L5 binds to PHLPP1 and facilitates the ubiquitination-mediated degradation of PHLPP1, ultimately resulting in reduced PHLPP1 expression. Notably, TRIM29, recruited by NAP1L5, was found to be involved in facilitating K48-linked ubiquitination of PHLPP1. Our findings indicate that NAP1L5 overexpression promotes the proliferation of PDAC cells by inhibiting PHLPP1 expression. These novel insights suggest that NAP1L5 may serve as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Benli Xiao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuzhen Ge
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Zhao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Guo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shilong Zhang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bo Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China; Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
12
|
Ni Z, Dawa Z, Suolang D, Pingcuo Q, Langga Z, Quzhen P, Deji Z. Platycodin D inhibits the proliferation, invasion and migration of endometrial cancer cells by blocking the PI3K/Akt signaling pathway via ADRA2A upregulation. Oncol Lett 2023; 25:136. [PMID: 36909368 PMCID: PMC9996608 DOI: 10.3892/ol.2023.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/17/2022] [Indexed: 02/17/2023] Open
Abstract
Endometrial cancer (EC) is a complex disease that affects the reproductive health of females worldwide. Platycodin D (PD) is known to exert numerous anticancer effects, markedly inhibiting cell proliferation, inducing apoptosis and causing cell cycle arrest in several types of cancer. The present study aimed to explore the mechanisms underlying the effects of PD in EC cells. The viability and proliferation of human endometrial stromal cells (ESCs) and RL95-2 EC cells following treatment with PD were evaluated using Cell Counting Kit-8, MTT and colony formation assays. Wound healing and Transwell assays were also performed to assess the migration and invasion of EC cells following treatment with PD. The expression levels of α2A-adrenergic receptor (ADRA2A) were measured using reverse transcription-quantitative PCR and western blotting assays with and without PD treatment and following transfection with short hairpin (sh) RNAs targeting ADRA2A2. Moreover, western blot analysis was performed to measure the expression levels of Ki67, PCNA, MMP2 and MMP9 and the phosphorylation of proteins of the PI3K/Akt signaling pathway. The results demonstrated that treatment with PD markedly decreased the proliferation, invasion and migration of EC cells, and reduced activation of the PI3K/Akt signaling pathway in EC cells. Moreover, transfection with sh-ADRA2A attenuated the effects of PD. ADRA2A expression was downregulated in EC cells compared with ESCs, and ADRA2A expression was elevated in EC cells following treatment with PD. In conclusion, the present study indicates that PD blocked the PI3K/Akt signaling pathway via the upregulation of ADRA2A expression, thereby inhibiting the proliferation, invasion and migration of EC cells.
Collapse
Affiliation(s)
- Zhen Ni
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Dawa
- Basic Department, Medical College of Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Deji Suolang
- Department of Respiratory and Critical Care Diseases, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Quzhen Pingcuo
- Department of Digestive System, The People's Hospital of Tibet Autonomous Region, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoma Langga
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Pingcuo Quzhen
- Department of Pathology, General Hospital of The Tibetan Military Region of The Chinese People's Liberation Army, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Zhuoga Deji
- Department of Pathology, Lhasa People's Hospital, Lhasa, Tibet Autonomous Region 850000, P.R. China
| |
Collapse
|
13
|
Xu X, Qin Z, Zhang C, Mi X, Zhang C, Zhou F, Wang J, Zhang L, Hua F. TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB/NLRP3 inflammasome pathway. Cell Biol Int 2023; 47:1126-1135. [PMID: 36841942 DOI: 10.1002/cbin.12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes. Gradual loss of podocytes is a sign of DN and pyroptosis mechanistically correlates with podocyte injury in DN; however, the mechanism(s) involved remain unknown. Here we reveal that TRIM29 is overexpressed in high glucose (HG)-treated murine podocytes cells and that TRIM29 silencing significantly inhibits podocyte damage due to HG treatment, as evidenced by lower desmin expression and greater nephrin expression. Additionally, flow cytometry analysis showed that TRIM29 silencing significantly inhibited HG treatment-induced pyroptosis, which was confirmed by immunoblotting for NLRP3, active Caspase-1, GSDMD-N, and phosphorylated NF-κB-p65. Conversely, overexpression of TRIM29 could trigger pyroptosis that was attenuated by NF-κB inhibition, indicating that TRIM29 promotes pyroptosis through the NF-κB pathway. Mechanistic studies revealed that TRIM29 interacts with IκBα to mediate its ubiquitination-dependent degradation, which in turn leads to NF-κB activation. Taken together, our data demonstrate that TRIM29 can promote podocyte pyroptosis by activating the NF-κB/NLRP3 pathway. Thus, TRIM29 represents a potentially novel therapeutic target that may also be clinically relevant in the management of DN.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China.,Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Zihan Qin
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ce Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Xia Mi
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Chi Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Feihong Zhou
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Junsheng Wang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
14
|
Li W, Song Y, Du Y, Huang Z, Zhang M, Chen Z, He Z, Ding Y, Zhang J, Zhao L, Sun H, Jiao P. Duck TRIM29 negatively regulates type I IFN production by targeting MAVS. Front Immunol 2023; 13:1016214. [PMID: 36685538 PMCID: PMC9853200 DOI: 10.3389/fimmu.2022.1016214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-β and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-β, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-β and IRF7 promoter activation and significantly downregulated IFN-β and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-β. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks.
Collapse
Affiliation(s)
- Weiqiang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yating Song
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yuqing Du
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhanhong Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Meng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zuxian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Zhuoliang He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Yangbao Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Junsheng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Luxiang Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Hailiang Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| | - Peirong Jiao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
15
|
Cui S. METTL3
‐mediated
m6A
modification of lnc
RNA RHPN1‐AS1
enhances cisplatin resistance in ovarian cancer by activating
PI3K
/
AKT
pathway. J Clin Lab Anal 2022; 36:e24761. [DOI: 10.1002/jcla.24761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shoubin Cui
- Department of Gynaecology and Obstetrics Yantai Affiliated Hospital of Binzhou Medical University Yantai Shandong China
| |
Collapse
|
16
|
Lin Z, Zhang Z, Ye X, Zhu M, Li Z, Chen Y, Huang S. Based on network pharmacology and molecular docking to predict the mechanism of Huangqi in the treatment of castration-resistant prostate cancer. PLoS One 2022; 17:e0263291. [PMID: 35594510 PMCID: PMC9122509 DOI: 10.1371/journal.pone.0263291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Background
As a kind of traditional Chinese medicine, HQ is widely mentioned in the treatment of cancerous diseases in China, which has been proven to have a therapeutic effect on cancerous diseases, such as prostate cancer. To predict the specific mechanism of HQ in the treatment of CRPC, we will conduct preliminary verification and discussion based on a comprehensive consideration of network pharmacology and molecular docking.
Methods
TCMSP was used to obtain the compounds and reach the effective targets of HQ. The targets of CRPC were reached based on GeneCards database and CTD database. GO and KEGG were utilized for the analysis of overlapping targets. The software of Openbabel was used to convert the formats of ligands and reporters. In addition, molecular docking studies were performed by using the software of Autodock Vina.
Result
It can be seen from the database results that there were 87 active compounds (20 key active compounds) in HQ, and 33 targets were screened out for CRPC treatment. GO and KEGG pathway enrichment analyses identified 81 significant GO terms and 24 significant KEGG pathways. There is a difference in terms of the expression of core protein between cancer patients and healthy people. The expression of core protein in patients also has an impact on the life cycle. The results of molecular docking showed that the docking activity of drug molecules and core proteins was better.
Conclusions
It is concluded from the results of this network pharmacology and molecular docking that HQ makes a multi-target and multi-biological process, and results in the multi-channel synergistic effect on the treatment of CRPC by regulating cell apoptosis, proliferation and metastasis, which still needs further verification by experimental research.
Collapse
Affiliation(s)
- Zesen Lin
- The Second People’s hospital of Zhaoqing, Zhaoqing, China
| | - Zechao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xuejin Ye
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Min Zhu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
- * E-mail:
| | - Zhihong Li
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yu Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Shuping Huang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
17
|
Reduced Tripartite Motif-Containing Protein 29 Deteriorates the Severity of Severe Acute Pancreatitis. Pancreas 2022; 51:469-475. [PMID: 35835099 DOI: 10.1097/mpa.0000000000002047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Severe acute pancreatitis (SAP) is the most serious subtype of acute pancreatitis, manifested as multiple-organ failure resulting in high morbidity and mortality. Based on the role of tripartite motif-containing protein 29 (TRIM29) in immune responses, we aimed to explore its effect on SAP. METHODS Peripheral blood monocyte cells from the SAP or non-SAP patients, as well as bone marrow-derived macrophages from wild-type, TRIM29 -/- , or stimulator of interferon genes (STING) -/- mice after injecting 50 mg/kg of cerulein to induce SAP, were isolated to analyze the role of TRIM29 and STING in the SAP. RESULTS Tripartite motif-containing protein 29 was significantly reduced in SAP patients. Compared with wild-type mice, TRIM29 deficiency mice displayed more severe symptom of acute pancreatitis after cerulein injection, which were lost in TRIM29 -/- STING -/- mice. Moreover, interferon and its related genes, as well as STING degradation, were decreased in TRIM29 -/- mice. CONCLUSIONS Our study demonstrated that TRIM29 negatively regulated the severity of SAP by degrading STING at its downstream, suggesting that TRIM29 and STING might serve as therapeutic targets for SAP.
Collapse
|
18
|
Yan Y, Tang YD, Zheng C. When cyclin-dependent kinases meet viral infections, including SARS-CoV-2. J Med Virol 2022; 94:2962-2968. [PMID: 35288942 PMCID: PMC9088476 DOI: 10.1002/jmv.27719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
Cyclin‐dependent kinases (CDKs) are protein kinases that play a key role in cell division and transcriptional regulation. Recent studies have demonstrated the critical roles of CDKs in various viral infections. However, the molecular processes underpinning CDKs' roles in viral infection and host antiviral defense are unknown. This minireview briefly overviews CDKs' functions and highlights the most recent discoveries of CDKs' emerging roles during viral infections, thereby providing a scientific and theoretical foundation for antiviral regulation and shedding light on developing novel drug targets and therapeutic strategies against viral infection.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Hsu CY, Yanagi T, Ujiie H. TRIM29 in Cutaneous Squamous Cell Carcinoma. Front Med (Lausanne) 2022; 8:804166. [PMID: 34988104 PMCID: PMC8720877 DOI: 10.3389/fmed.2021.804166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif (TRIM) proteins play important roles in a wide range of cell physiological processes, such as signal transduction, transcriptional regulation, innate immunity, and programmed cell death. TRIM29 protein, encoded by the ATDC gene, belongs to the RING-less group of TRIM protein family members. It consists of four zinc finger motifs in a B-box domain and a coiled-coil domain, and makes use of the B-box domain as E3 ubiquitin ligase in place of the RING. TRIM29 was found to be involved in the formation of homodimers and heterodimers in relation to DNA binding; additional studies have also demonstrated its role in carcinogenesis, DNA damage signaling, and the suppression of radiosensitivity. Recently, we reported that TRIM29 interacts with keratins and FAM83H to regulate keratin distribution. Further, in cutaneous SCC, the expression of TRIM29 is silenced by DNA methylation, leading to the loss of TRIM29 and promotion of keratinocyte migration. This paper reviews the role of TRIM family proteins in malignant tumors, especially the role of TRIM29 in cutaneous SCC.
Collapse
Affiliation(s)
- Che-Yuan Hsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Yu H, Li E, Liu S, Wu Z, Gao F. Identification of Signature Genes in the PD-1 Relative Gastric Cancer Using a Combined Analysis of Gene Expression and Methylation Data. JOURNAL OF ONCOLOGY 2022; 2022:4994815. [PMID: 36568638 PMCID: PMC9780002 DOI: 10.1155/2022/4994815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The morbidity and mortality rates for gastric cancer (GC) rank second among all cancers, indicating the serious threat it poses to human health, as well as human life. This study aims to identify the pathways and genes as well as investigate the molecular mechanisms of tumor-related genes in gastric cancer (GC). METHOD We compared differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in gastric cancer and normal tissue samples using The Cancer Genome Atlas (TCGA) data. The Kyoto Encyclopedia of Gene and Genome (KEGG) and the Gene Ontology (GO) enrichment analysis' pathway annotations were conducted on DMGs and DEGs using a clusterProfiler R package to identify the important functions, as well as the biological processes and pathways involved. The intersection of the two was chosen and defined as differentially methylated and expressed genes (DMEGs). For DMEGs, we used the principal component analysis (PCA) to differentiate gastric cancer from adjacent samples. The linear discriminant analysis method was applied to categorize the samples using DMEGs methylation data and DMEGs expression profiles data and was validated using the leave-one-out cross-validation (LOOCV) method. We plotted the ROC curve for the classification and calculated the AUC (area under the ROC curve) value for a more intuitive view of the classification effect. We also used the NetworkAnalyst 3.0 tool to analyze DMEGs, using DrugBank to acquire information on protein-drug interactions and generate a network map of gene-drug interactions. RESULTS We identified a total of 971 DMGs in 188 PD-1 negative and 187 PD-1 positive gastric cancer samples obtained from TCGA. The KEGG and GO enrichment analysis showed the involvement of the regulation of ion transmembrane transport, collagen-containing extracellular matrix, cell-cell junction, and peptidase regulator activity. We simultaneously obtained 1,189 DEGs, out of which 986 were downregulated, while 203 were upregulated in tumors. The enriched analysis of the GO's and KEGG's pathways indicated that the most significant pathways included an intestinal immune network for IgA production, Staphylococcus aureus infection, cytokine-cytokine receptor interaction, and viral protein interaction with cytokine and cytokine receptor, which have previously been linked with gastric cancer. The compound DB01830 can bind well to the active site of the LCK protein and shows good stability, thus making it a potential inhibitor of the LCK protein. To observe the relationship between DMEGs' expression and prognosis, we observed 10 genes, among which were TRIM29, TSPAN8, EOMES, PPP1R16B, SELL, PCED1B, IYD, JPH1, CEACAM5, and RP11-44K6.2. Their high expressions were related to high risks. Besides, those genes were validated in different internal and external validation sets. CONCLUSION These results may provide potential molecular biological therapy for PD-1 negative gastric cancer.
Collapse
Affiliation(s)
- Han Yu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - En Li
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - Sha Liu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - ZuGuang Wu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - FenFei Gao
- Department of Pharmacology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong Province, China
| |
Collapse
|
21
|
Jiang T, Wang H, Liu L, Song H, Zhang Y, Wang J, Liu L, Xu T, Fan R, Xu Y, Wang S, Shi L, Zheng L, Wang R, Song J. CircIL4R activates the PI3K/AKT signaling pathway via the miR-761/TRIM29/PHLPP1 axis and promotes proliferation and metastasis in colorectal cancer. Mol Cancer 2021; 20:167. [PMID: 34922544 PMCID: PMC8684286 DOI: 10.1186/s12943-021-01474-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Accumulating studies have revealed that aberrant expression of circular RNAs (circRNAs) is widely involved in the tumorigenesis and progression of malignant cancers, including colorectal cancer (CRC). Nevertheless, the clinical significance, levels, features, biological function, and molecular mechanisms of novel circRNAs in CRC remain largely unexplored. METHODS CRC-related circRNAs were identified through bioinformatics analysis and verified in clinical specimens by qRT-PCR and in situ hybridization (ISH). Then, in vitro and in vivo experiments were performed to determine the clinical significance of, functional roles of, and clinical characteristics associated with circIL4R in CRC specimens and cells. Mechanistically, RNA pull-down, fluorescence in situ hybridization (FISH), luciferase reporter, and ubiquitination assays were performed to confirm the underlying mechanism of circIL4R. RESULTS CircIL4R was upregulated in CRC cell lines and in sera and tissues from CRC patients and was positively correlated with advanced clinicopathological features and poor prognosis. Functional experiments demonstrated that circIL4R promotes CRC cell proliferation, migration, and invasion via the PI3K/AKT signaling pathway. Mechanistically, circIL4R was regulated by TFAP2C and competitively interacted with miR-761 to enhance the expression of TRIM29, thereby targeting PHLPP1 for ubiquitin-mediated degradation to activate the PI3K/AKT signaling pathway and consequently facilitate CRC progression. CONCLUSIONS Our findings demonstrate that upregulation of circIL4R plays an oncogenic role in CRC progression and may serve as a promising diagnostic and prognostic biomarker for CRC detection and as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Hongyu Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lianyu Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yi Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Jiaqi Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Lei Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Shuai Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Linsen Shi
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Li Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Renhao Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
22
|
Gao F, Yan S, Sun Z, Wang J. Muscone suppresses gastric cancer via regulation of miRNA-145. Food Sci Nutr 2021; 9:4711-4721. [PMID: 34531985 PMCID: PMC8441313 DOI: 10.1002/fsn3.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/31/2021] [Accepted: 02/25/2021] [Indexed: 12/05/2022] Open
Abstract
This study aims to determine the effects and mechanism of action of muscone on the biological activity of the gastric cancer cell lines SGC-7901 and MGC-803 (proliferation, apoptosis, invasion, and migration) in vitro. An optimal muscone concentration was determined using MTT and cell apoptosis tests. The SGC-7901 and MGC-803 cells were divided into five groups: normal control, muscone, miRNA, muscone + miRNA, and muscone + miRNA inhibitor. Cell proliferation rate, apoptosis rate, cell cycle phase distribution, number of invading cells, and wound healing rate were compared among the five groups using MTT, flow cytometry, transwell, and wound healing assays. Relative expression levels of the proteins PI3K, AKT, P21, c-Myc, MMP-2, and MMP-9 were measured by Western blot. Compared with the control group, the groups treated with muscone and miRNA showed significantly lower cell proliferation rate, number of invading cells, and wound healing rate (p < .05 for all), but significantly higher rates of cell apoptosis rate and numbers of cells in the G1 phase (p < .05 for all). These groups also showed significantly lower expression of the proteins PI3K, AKT, c-Myc, MMP-2, and MMP-9 but significantly increased expression of the protein P21 (p < .05). Transfecting muscone-treated SGC-7901 and MGC-803 cells with miRNA-145 inhibitor resulted in a significant recovery of biological activity (p < .05). Muscone suppresses the biological activity of SGC-7901 and MGC-803 gastric cancer cells in vitro via regulation of miRNA-145.
Collapse
Affiliation(s)
- Feng Gao
- Department of Clinical LaboratoryJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Shihai Yan
- Department of Clinical LaboratoryJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Zheng Sun
- Department of Clinical LaboratoryJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Jia Wang
- Department of Clinical LaboratoryJiangsu Province Hospital of Chinese MedicineAffiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
23
|
Saahene RO, Agbo E, Barnes P, Yahaya ES, Amoani B, Nuvor SV, Okyere P. A Review: Mechanism of Phyllanthus urinaria in Cancers-NF- κB, P13K/AKT, and MAPKs Signaling Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:4514342. [PMID: 34484390 PMCID: PMC8413045 DOI: 10.1155/2021/4514342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022]
Abstract
Phyllanthus urinaria has been characterized for its several biological and medicinal effects such as antiviral, antibacterial, anti-inflammatory, anticancer, and immunoregulation. In recent years, Phyllanthus urinaria has demonstrated potential to modulate the activation of critical pathways such as NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs associated with cell growth, proliferation, metastasis, and apoptotic cell death. To date, there is much evidence indicating that modulation of cellular signaling pathways is a promising approach to consider in drug development and discovery. Thus, therapies that can regulate cancer-related pathways are longed-for in anticancer drug discovery. This review's focus is to provide comprehensive knowledge on the anticancer mechanisms of Phyllanthus urinaria through the regulation of NF-κB, P13K/AKT, and ERK/JNK/P38/MAPKs signaling pathways. Thus, the review summarizes both in vitro and in vivo effects of Phyllanthus urinaria extracts or bioactive constituents with emphasis on tumor cell apoptosis. The literature information was obtained from publications on Google Scholar, PubMed, Web of Science, and EBSCOhost. The key words used in the search were "Phyllanthus" or "Phyllanthus urinaria" and cancer. P. urinaria inhibits cancer cell proliferation via inhibition of NF-κB, P13K/AKT, and MAPKs (ERK, JNK, P38) pathways to induce apoptosis and prevents angiogenesis. It is expected that understanding these fundamental mechanisms may help stimulate additional research to exploit Phyllanthus urinaria and other natural products for the development of novel anticancer therapies in the future.
Collapse
Affiliation(s)
- Roland Osei. Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji'an City, Jiangxi Province, China
| | - Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ewura Seidu Yahaya
- Department of Pharmacology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Victor Nuvor
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
24
|
Xu H, Ding Y, Yang X. Overexpression of Long Noncoding RNA H19 Downregulates miR-140-5p and Activates PI3K/AKT Signaling Pathway to Promote Invasion, Migration and Epithelial-Mesenchymal Transition of Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6619730. [PMID: 34250088 PMCID: PMC8238588 DOI: 10.1155/2021/6619730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The abnormal expression of LncRNA H19 and miR-140-5p has been linked to ovarian cancer (OC). Whether H19 directly regulates miR-140-5p in ovarian cancer cells has been unclear. In this study, we deeply explored the relationship between H19 and miR-140-5p in ovarian cancer and the mechanism of action in regulating OC progression. METHODS A total of 66 patients with OC admitted to the hospital from June 2017 to June 2019 were selected as the research group (RG), and meanwhile, 60 cases of healthy subjects were selected as the control group (CG). In addition, OC cells and normal ovarian epithelial cells were used to detect H19 and miR-140-5p expression levels and to analyze the effect of H19 on OC cells. The activation of the PI3K/AKT pathway and downstream proteins were analyzed by western blot. RESULTS H19 was highly expressed while miR-140-5p was lowly expressed in OC patients and cell lines (P < 0.050). The proliferation, invasion, migration ability, and epithelial-mesenchymal transition (EMT) of OC cells were reduced after inhibiting H19 expression, and the apoptosis rate was increased. Transfection of cells with miR-140-5p mimics brought opposite effects. Online prediction and dual-luciferase reporter (DLR) confirmed that H19 directly binds miR-140-5p. Western blot assay indicated overexpression activated the PI3K/AKT signaling pathway in OC cells. Moreover, overexpression promoted tumor growth in nude mice and was suppressed by PI3K inhibitor. CONCLUSION LncRNA H19 downregulation of miR-140-5p to activate the PI3K/AKT signaling pathway and promote the proliferation, invasion, migration and EMT of OC.
Collapse
Affiliation(s)
- Hao Xu
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuan Ding
- Department of Traditional Chinese Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangying Yang
- ICU Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
25
|
Liu F, Deng W, Wan Z, Xu D, Chen J, Yang X, Xu J. lncRNA MAGI2-AS3 overexpression had antitumor effect on Hepatic cancer via miRNA-23a-3p/PTEN axis. Food Sci Nutr 2021; 9:2517-2530. [PMID: 34026068 PMCID: PMC8116851 DOI: 10.1002/fsn3.2199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate the antitumor effects of MAGI2-AS3 and its mechanism in liver cancer. Cancer tissues and adjacent nontumor tissues were collected, and lncRNAs were analyzed via chip assay. The correlation between MAGEI2-AS3 and patient pathology and prognosis was then analyzed. Bel-7402 and Huh-7 cell lines were also used in our study. For the in vitro study, MTT assay, flow cytometry, transwell assay, and wound healing assay were conducted to evaluate hepatic cancer cell (Bel-7402 and Huh-7) proliferation, apoptosis, invasion, and migration. The relative mechanisms were evaluated by Western blot (WB) and cellular immunofluorescence. The correlation among MAGI2-AS3, miRNA-23a-3p, and PTEN was determined by a dual-luciferase reporter assay. The expression of lncRNA MAGI2-AS3 was significantly downregulated in tumor tissues. MAGI2-AS3 expression was closely correlation with HCC patient's clinicopathology and prognosis and prognosis. In the cell experiment, compared with the negative control (NC) group, MAGI2-AS3 overexpression reduced cell proliferation, invasion, and migration and increased cell apoptosis in Bel-7402 and Huh-7 cell lines. However, when Bel-7402 and Huh-7 cells were transfected with miRNA-23a-3p, their biological activities (proliferation, invasion, and migration) were significantly increased. Through WB assay, MAGI2-AS3 could increase PTEN and depress p-AKT and MMP-9 protein expressions via miRNA-23a-3p suppression. The dual-luciferase reporter assay revealed that MAGI2-AS3 directly targeted miRNA-23a-3p and that miRNA-23a-3p could target PTEN. MAGI2-AS3 might be a potential therapeutic target for liver cancer owing to its regulation by the miRNA-23a-3p/PTEN axis.
Collapse
Affiliation(s)
- Fei Liu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Wenwen Deng
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Zhenda Wan
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Dajin Xu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Jun Chen
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Xin Yang
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| | - Jianhua Xu
- Jiangxi Province Hospital of Integrated Chinese and Western MedicineNanchangChina
| |
Collapse
|
26
|
Suppression of long noncoding RNA LINC00324 restricts cell proliferation and invasion of papillary thyroid carcinoma through downregulation of TRIM29 via upregulating microRNA-195-5p. Aging (Albany NY) 2020; 12:26000-26011. [PMID: 33318312 PMCID: PMC7803523 DOI: 10.18632/aging.202219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) are identified as novel regulators of carcinogenesis. To date, the precise functions of lncRNAs in papillary thyroid carcinoma (PTC) remains poorly understood. The purposes of this work were to explore the potential relevance of lncRNA 00324 (LINC00324) in PTC. Levels of LINC00324 were markedly up-regulated in PTC. Silencing of LINC00324 significantly repressed the proliferation and invasion of PTC cells. LINC00324 was documented as a sponge of microRNA-195-5p (miR-195-5p). Decreased levels of miR-195-5p were detected in PTC. The up-regulation of miR-195-5p suppressed PTC cellular proliferation and invasion. Suppression of miR-195-5p partially reversed the LINC00324-knockdown-mediated effects in PTC cells. We identified tripartite motif-containing 29 (TRIM29) as a target gene of miR-195-5p. TRIM29 overexpression partially reversed the LINC00324-knockdown- or miR-195-5p-overexpression-mediated effects in PTC cells. In short, this work demonstrates that LINC00324 knockdown inhibits the proliferation and invasion of PTC cells by decreasing TRIM29 expression via up-regulating miR-195-5p expression.
Collapse
|
27
|
Wu T, Zhang DL, Wang JM, Jiang JY, Du X, Zeng XY, Du ZX. TRIM29 inhibits miR-873-5P biogenesis via CYTOR to upregulate fibronectin 1 and promotes invasion of papillary thyroid cancer cells. Cell Death Dis 2020; 11:813. [PMID: 32994394 PMCID: PMC7525524 DOI: 10.1038/s41419-020-03018-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine tumor with an increasing incidence, has a strong propensity for neck lymph node metastasis. Limited treatment options are available for patients with advanced or recurrent metastatic disease, resulting in a poor prognosis. Tripartite motif protein 29 (TRIM29) is dysregulated in various cancer and functions as oncogene or tumor suppressor in discrete cancers. In this study, we found that both TRIM29 and fibronectin 1 (FN1) were upregulated with positive correlation in PTC tissues. Neither overexpression nor downregulation of TRIM29 altered the proliferation of PTC cells significantly. Overexpression of TRIM29 significantly promotes, while knockdown of TRIM29 significantly decreases migration and invasion by regulating FN1 expression in PTC cells. In terms of mechanism, we found that TRIM29 altered the stability of FN1 mRNA via regulation of miR-873-5p expression. The current study also demonstrated that long non-coding RNA (LncRNA) CYTOR suppressed maturation of miR-873-5p via interaction with premiR-873, and TRIM29 decreased miR-873-5p via upregulation of CYTOR. This study suggests that involvement of TRIM29 in migration and invasion in PTC cells may reveal potential metastatic mechanism of PTC and represent a novel therapeutic target and strategy.
Collapse
Affiliation(s)
- Tong Wu
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Jia-Mei Wang
- Department of Laboratory Medicine, the 1st affiliated hospital, China Medical University, 110001, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, 110122, Shenyang, China
| | - Xin Du
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Xiao-Yan Zeng
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, the 1st affiliated Hospital, China Medical University, 110001, Shenyang, China.
| |
Collapse
|
28
|
Luo S, Shen M, Chen H, Li W, Chen C. Long non‑coding RNA TP73‑AS1 accelerates the progression and cisplatin resistance of non‑small cell lung cancer by upregulating the expression of TRIM29 via competitively targeting microRNA‑34a‑5p. Mol Med Rep 2020; 22:3822-3832. [PMID: 32901838 PMCID: PMC7533438 DOI: 10.3892/mmr.2020.11473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading subtype of lung cancer, with high mortality rates. Recently, long non-coding RNAs (lncRNAs) have been associated with NSCLC. The present study aimed to examine the role of the TP73 antisense RNA 1 (TP73-AS1) lncRNA in NSCLC. TP73-AS1 and microRNA(miR)-34a-5p expression levels were measured using reverse transcription-quantitative PCR (RT-qPCR) and chromogenic in situ hybridization (CISH). Cell proliferation, apoptosis, migration and invasion was determined using Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell and Matrigel assays, respectively. The median inhibitory concentration (IC50) value of cisplatin (cis-diamminedichloroplatinum; DDP) was assessed using a CCK-8 assay. The interaction between miR-34a-5p and TP73-AS1 or tripartite motif-containing 29 (TRIM29) was predicted using microRNA.org and Starbase, then verified using a dual-luciferase reporter assay. The expression of TRIM29 was quantified at the mRNA and protein level using RT-qPCR and western blot analysis, respectively. TP73-AS1 was significantly upregulated, while miR-34a-5p was downregulated in NSCLC tissues and cells. Functionally, TP73-AS1 knockdown inhibited proliferation, migration, invasion and DDP resistance, whilst inducing apoptosis in NSCLC cells. miR-34a-5p was identified as a target for TP73-AS1, and its inhibition reversed the effects of TP73-AS1 knockdown on NSCLC cells. In addition, TRIM29 was targeted by miR-34a-5p, and its overexpression reversed the effects of miR-34a-5p. Moreover, TP73-AS1 acted as a molecular sponge for miR-34a-5p, increasing the expression of TRIM29. In conclusion, TP73-AS1 contributed to proliferation, migration and DDP resistance but inhibited apoptosis of NSCLC cells by upregulating TRIM29 and sponging miR-34a-5p.
Collapse
Affiliation(s)
- Shunxiang Luo
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, Hubei 431700, P.R. China
| | - Ming Shen
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, Hubei 431700, P.R. China
| | - Hui Chen
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, Hubei 431700, P.R. China
| | - Weiwei Li
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, Hubei 431700, P.R. China
| | - Cong Chen
- Department of Oncology, The First People's Hospital of Tianmen, Tianmen, Hubei 431700, P.R. China
| |
Collapse
|
29
|
Xu W, Chen B, Ke D, Chen X. TRIM29 mediates lung squamous cell carcinoma cell metastasis by regulating autophagic degradation of E-cadherin. Aging (Albany NY) 2020; 12:13488-13501. [PMID: 32640423 PMCID: PMC7377877 DOI: 10.18632/aging.103451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023]
Abstract
Lung squamous cell carcinoma (LSCC) is the most common histological type of primary lung cancer. In this study, we had tested the biological role of TRIM29 in LSCC cells. TRIM29 abundance, the relationships between TRIM29 and E-cadherin and autophagy degradation related proteins in clinical tissues and six cell lines were studied with quantitative real-time PCR test (qRT-PCR) and western blot. TRIM29 overexpression treated HTB-182 cells and knockdown treated NCL-H1915 cells was used for studying cell proliferation, colony formation, migration, invasion, and the expression of epithelial mesenchymal transformation (EMT) associated biomarkers. The relationships between TRIM29 and BECN1 were investigated with western blot. TRIM29 was profoundly overexpressed in LSCC tissues and cells compared with human normal bronchial epithelial cells (HNBE). High TRIM29 expression was closely related to overall survival (OS). TRIM29 overexpression and knockdown affected LSCC activity and the expression of EMT associated biomarkers. TRIM29 can regulate the degradation of E-cadherin and autophagy of LSCC through BECN1 gene, and promote autophagy in HTB-182 and NCL-H1915 cells. Our results revealed that TRIM29 could promote the proliferation, migration, and invasion of LSCC via E-cadherin autophagy degradation. The results are useful for further study in LSCC.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| | - Dianshan Ke
- Department of Cell Biology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, Henan, P.R. China
| |
Collapse
|
30
|
Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:7541-7553. [PMID: 32239719 DOI: 10.1002/jcp.29656] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.
Collapse
Affiliation(s)
- Shaoxia Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningning Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiayao Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Lan X, Lin W, Xu Y, Xu Y, Lv Z, Chen W. The detection and analysis of differential regulatory communities in lung cancer. Genomics 2020; 112:2535-2540. [PMID: 32045668 DOI: 10.1016/j.ygeno.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
The tumorgenesis process of lung cancer involves the regulatory dysfunctions of multiple pathways. Although many signaling pathways have been identified to be associated with lung cancer, there are little quantitative models of how inactions between genes change during the process from normal to cancer. These changes belong to different dynamic co-expressions patterns. We quantitatively analyzed differential co-expression of gene pairs in four datasets. Each dataset included a large number of lung cancer and normal samples. By overlapping their results, we got 14 highly confident gene pairs with consistent co-expression change patterns. Some of they, such as ARHGAP30 and GIMAP4, had been recorded in STRING network database while some of them were novel discoveries, such as C9orf135 and MORN5, TEKT1 and TSPAN1 were positively correlated in both normal and cancer but more correlated in normal than cancer. These gene pairs revealed the underlying mechanisms of lung cancer occurrence.
Collapse
Affiliation(s)
- Xiu Lan
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Weilong Lin
- Department of Orthopedics, Lishui Traditional Chinese Medicine Hospital, Lishui, China
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China; Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Yanyan Xu
- Department of Pharmacy, Lishui Central Hospital, Lishui, China
| | - Zhuqing Lv
- Department of Respiratory Medicine, Lishui Central Hospital, Lishui, China
| | - Wenyu Chen
- Department of Respiration, The First Hospital of Jiaxing, The First Affiliated Hospital of Jiaxing University, Jiaxing, China.
| |
Collapse
|
32
|
Tripartite motif containing 14: An oncogene in papillary thyroid carcinoma. Biochem Biophys Res Commun 2020; 521:360-367. [DOI: 10.1016/j.bbrc.2019.10.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 01/31/2023]
|
33
|
Shi G, Zhang H, Yu Q, Hu C, Ji Y. GATA1 gene silencing inhibits invasion, proliferation and migration of cholangiocarcinoma stem cells via disrupting the PI3K/AKT pathway. Onco Targets Ther 2019; 12:5335-5354. [PMID: 31456644 PMCID: PMC6620705 DOI: 10.2147/ott.s198750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background/aims: Intrahepatic cholangiocarcinoma (CCA) is the second most prevalent type primary liver malignancy, accompanied by an increasing global incidence and mortality rate. Research has documented the contribution of the GATA binding protein-1 (GATA1) in the progression of liver cancer. Here, we aim to investigate the role of GATA1 in CCA stem cells via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. Methods: Initially, microarray-based gene expression profiling was employed to identify the differentially expressed genes associated with CCA. Subsequently, an investigation was conducted to explore the potential biological significance behind the silencing of GATA1 and the regulatory mechanism between GATA1 and PI3K/AKT pathway. CCA cell lines QBC-939 and RBE were selected and treated with siRNA against GATA1 or/and a PI3K/AKT pathway inhibitor LY294002. In vivo experiment was also conducted to confirm in vitro findings. Results: GATA1 exhibited higher expression in CCA samples and was predicted to affect the progression of CCA through blockade of the PI3K/AKT pathway. siRNA-mediated downregulation of GATA1 and LY294002 treatment resulted in reduced proliferation, migration and invasion abilities of CCA stem cells, together with impeded tumor growth, and led to increased cell apoptosis and primary cilium expression. Additionally, the siRNA-mediated GATA1 downregulation had an inhibitory effect on the PI3K/AKT pathway. LY294002 was manifested to enhance the inhibitory effects of GATA1 inhibition on CCA progression. These in vitro findings were reproduced in vivo on siRNA against GATA1 or LY294002 injected nude mice. Conclusion: Altogether, the present study highlighted that downregulation of GATA1 via blockade of the PI3K/AKT pathway could inhibit the CCA stem cell proliferation, migration and invasion, and tumor growth, and promote cell apoptosis, primary cilium expression.
Collapse
Affiliation(s)
- Guang Shi
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Hong Zhang
- Department of Clinical Medicine, Changchun Medical College, Changchun 130031, People's Republic of China
| | - Qiong Yu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Chunmei Hu
- Department of Hematology and Oncology, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| | - Youbo Ji
- Department of Pain, the Second Hospital of Jilin University, Changchun 130041, People's Republic of China
| |
Collapse
|
34
|
Li W, Xue H, Li Y, Li P, Ma F, Liu M, Kong S. ATDC promotes the growth and invasion of hepatocellular carcinoma cells by modulating GSK-3β/Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:845-853. [PMID: 31168819 DOI: 10.1111/1440-1681.13119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Accumulating evidence has suggested that the ataxia telangiectasia group D complementing (ATDC) gene is an emerging cancer-related gene in multiple human cancer types. However, little is known about the role of ATDC in hepatocellular carcinoma (HCC). In this study, we aimed to investigate the expression level, biological function and underlying mechanism of ATDC in HCC. The expression of ATDC in HCC cells was detected by quantitative real-time polymerase chain reaction and western blot analysis. Cell growth was determined by cell counting kit-8 assay and colony formation assay. Cell invasion was assessed by Transwell invasion assay. The activation status of Wnt/β-catenin signalling was evaluated by the luciferase reporter assay. Functional experiments showed that the silencing of ATDC expression significantly suppressed the growth and invasion of HCC cells, whereas the overexpression of ATDC promoted the growth and invasion of HCC cells in vitro. Moreover, we showed that ATDC overexpression promoted the phosphorylation of glycogen synthase kinase (GSK)-3β and resulted in the activation of Wnt/β-catenin signalling. Notably, the inhibition of GSK-3β activity significantly abrogated the tumour suppressive effect of ATDC silencing, while the silencing of β-catenin partially reversed the oncogenic effect of ATDC overexpression. Taken together, these findings reveal an oncogenic role of ATDC in HCC and show that the suppression of ATDC impedes the growth and invasion of HCC cells associated with the inactivation of Wnt/β-catenin signalling. Our study suggests that ATDC may serve as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Weizhi Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Xue
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingchao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peijie Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fuquan Ma
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengying Liu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuzhen Kong
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Tian H, Wang X, Lu J, Tian W, Chen P. MicroRNA-621 inhibits cell proliferation and metastasis in bladder cancer by suppressing Wnt/β-catenin signaling. Chem Biol Interact 2019; 308:244-251. [PMID: 31145890 DOI: 10.1016/j.cbi.2019.05.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that dysregulation of microRNA-621 (miR-621) is demonstrated to be associated with several cancers. However, the role of miR-621 in bladder cancer (BCa) remains unclear. Herein, we aimed to study the expression pattern, biological function, and molecular mechanism of miR-621 in BCa. First, we demonstrated that miR-621 was frequently downregulated in BCa tissues and cell lines compared with the adjacent normal BCa tissues and non-cancerous immortalized urothelial cell line. In addition, the expression of miR-621 was negatively correlated with overall survival of BCa patients. Functional experiments suggessted that miR-621 inhibited the proliferation and metastasis of BCa cells. Notably, dual-luciferase assay showed that miR-621 directly targeted the 3' UTR of TRIM29, which was frequently upregulated in BCa tissues and displayed inverse correlation with miR-621 expression. Furthermore, we demonstrated that miR-621 inhibited the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway by targeting TRIM29. Our study suggested that the miR-621/TRIM29 axis inhibits the proliferation and metastasis of BCa cells via Wnt/β-catenin signaling pathway and may have potential applications for development of BCa diagnosis or treatment.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | | | - Jianfeng Lu
- Department of pathology, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
36
|
Cao Y, Shi L, Wang M, Hou J, Wei Y, Du C. ATDC contributes to sustaining the growth and invasion of glioma cells through regulating Wnt/β-catenin signaling. Chem Biol Interact 2019; 305:148-155. [DOI: 10.1016/j.cbi.2019.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 02/09/2023]
|
37
|
Wang K, Chai L, Qiu Z, Zhang Y, Gao H, Zhang X. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells. J Cell Physiol 2019; 234:19019-19027. [PMID: 30927273 DOI: 10.1002/jcp.28541] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the common subtype of thyroid cancer, which is a common endocrine malignancy. Tripartite motif 26 (TRIM26) has been found to act as a tumor suppressor in several cancers. However, the functional roles of TRIM26 in PTC remain unknown. In this study, we examined the TRIM26 expression in PTC and evaluated the effects of TRIM26 on proliferation, metastasis, and glycolysis in PTC cells. The results proved that TRIM26 was significantly downregulated in PTC tissues and cell lines. TRIM26 overexpression inhibited cell proliferation, migration, and invasion in PTC cells. TRIM26 overexpression also suppressed the epithelial-to-mesenchymal transition process. Besides, overexpression of TRIM26 caused significant decrease in glucose uptake and lactate production in PTC cells. Further investigations revealed that TRIM26 overexpression inhibited the activation of PI3K/Akt pathway. Treatment with an activator (740Y-P) of the PI3K/AKT pathway reversed the antitumor effects of TRIM26 on PTC cells. These findings provided evidence that TRIM26 acted as a tumor suppressor in PTC.
Collapse
Affiliation(s)
- Kefeng Wang
- Xi'an Jiaotong University, Xi'an, China.,Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Linyan Chai
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhengguo Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yundong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Haiyan Gao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xiaozhi Zhang
- Department of Tumor Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
MicroRNA-424-5p acts as a potential biomarker and inhibits proliferation and invasion in hepatocellular carcinoma by targeting TRIM29. Life Sci 2019; 224:1-11. [PMID: 30876939 DOI: 10.1016/j.lfs.2019.03.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND miRNA-424-5p (miR-424-5p) has been implicated in the development and progression of various tumors. However, the functional mechanisms of miR-424-5p in hepatocellular carcinoma (HCC) are unclear. In this study, we investigated the specific biological functions of miRNA in HCC. METHODS The expression of miR-424-5p was measured by qRT-PCR in HCC tissues and cell lines. Western blot and immunohistochemistry were used to detect the protein expression level of TRIM29. The relationship between miR-424-5p and the clinicopathological features of HCC patients was analyzed. Cell function experiments were performed to examine proliferation and invasion in HCC cells. The miRNA database was used to predict downstream target genes of miR-424-5p, which were verified by a luciferase reporter assay. Furthermore, cell and animal experiments confirmed that miR-424-5p exerts its biological function through the target gene TRIM29. RESULTS miR-424-5p expression was decreased in HCC tissues and cell lines, and correlated with AFP, TNM stage, intrahepatic metastasis and poor overall survival in HCC. The upregulation of miR-424-5p inhibited cell proliferation and invasion in vitro and suppressed HCC tumor growth in vivo. TRIM29 was confirmed to be the downstream target gene of miR-424-5p. Finally, rescue experiments suggested that the upregulation of TRIM29 could rescue inhibitory effect of miR-424-5p overexpression on cell proliferation and migration. CONCLUSION miR-424-5p is a tumor suppressor miRNA that inhibits cell proliferation and invasion via directly modulating TRIM29, which is related to cell proliferation and invasion in HCC. Thus, miR-424-5p may be a potential therapeutic and new prognostic marker for HCC.
Collapse
|
39
|
Han Q, Sun ML, Liu WS, Zhao HS, Jiang LY, Yu ZJ, Wei MJ. Upregulated expression of ACTL8 contributes to invasion and metastasis and indicates poor prognosis in colorectal cancer. Onco Targets Ther 2019; 12:1749-1763. [PMID: 30881029 PMCID: PMC6402434 DOI: 10.2147/ott.s185858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background ACTL8 is a member of the CT antigens. There are only few studies on the role of ACTL8 in malignant tumors. The aim of this study is to investigate the expression and clinical significance of ACTL8 protein in colorectal cancer (CRC). Materials and methods Human CRC tissues and cell lines, and paired adjacent non-tumor tissues and human intestinal epithelial cell lines were obtained to evaluate the expression of ACTL8. The association between protein expression of ACTL8 and clinicopathological parameters and prognosis of CRC patients was examined. The biological functions of ACTL8 in the invasion and metastasis of CRC were determined by wound healing and transwell invasion assays after silencing of ACTL8 in CRC cell lines. The potential target genes of ACTL8 were also identified by quantitative reverse transcription PCR and Western blotting after silencing of ACTL8 in CRC cell lines. Results It was found that ACTL8 was upregulated in human CRC tissues and cell lines. The expression of ACTL8 was positively associated with poor differentiation, invasion and metastasis, postoperative infection, and poor prognosis, but negatively associated with proximal margin length. In addition, silencing of ACTL8 significantly decreased the capacity of invasion and migration in HT29 and SW620 CRC cell lines. Moreover, silencing of ACTL8 significantly decreased the expression of TRIM29 in HT29 and SW620 CRC cell lines. Conclusion These results suggest that ACTL8 plays a key role in the invasion and metastasis of CRC, and TRIM29 may be involved in the ACTL8-mediated poor prognosis of CRC.
Collapse
Affiliation(s)
- Qiang Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Ming-Li Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Wen-Si Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Hai-Shan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Long-Yang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Zhao-Jin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ;
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China, ; .,Department of Pharmacology, Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang 110122, Liaoning, China,
| |
Collapse
|
40
|
Zhang X, Lin J, Ma Y, Zhao J. Overexpression of E74-Like Factor 5 (ELF5) Inhibits Migration and Invasion of Ovarian Cancer Cells. Med Sci Monit 2019; 25:856-865. [PMID: 30696803 PMCID: PMC6364457 DOI: 10.12659/msm.913058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background E74-like factor 5 (ELF5) plays a key role in the processes of cell differentiation, apoptosis, and occurrence of tumors. However, the effect of ELF5 on metastasis and invasion in human ovarian cancer remains poorly understood. Material/Methods Quantitative real-time polymerase chain reaction (qPCR) was performed to measure the expression of ELF5. The viability of cells was detected by cell counting kit (CCK-8). Cell apoptosis was tested by flow cytometry. Matrigel plug angiogenesis assay was employed to determine angiogenesis rate. The protein expression levels of vascular endothelial growth factor (VEGF), cleaved caspase-3, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), E-cadherin, N-cadherin, Snail, phosphoinositide 3 kinase (PI3K), phosphorylated (p)-PI3K, tyrosine kinase B (AKT), and phosphorylated (p)-AKT were determined by Western blot. Wound-healing assay and Transwell were used to determine invasion and migration. Results We found that expression of ELF5 was obviously decreased in ovarian cancer cell lines. The cells viability, invasion and metastasis were inhibited by overexpression ELF5. ELF5 suppressed angiogenesis rate and the expression of VEGF. Changes of the expressions of Bcl-2, cleaved caspase-3 and Bax showed that anti-apoptosis ability was improved by ELF5. ELF5 also repressed N-cadherin and Snail and increased E-cadherin. The expressions of p-PI3K and p-AKT were decreased by ELF5. Further study showed that IGF-I reversed the inhibitory effect of ELF5 on growth and metastasis of SKOV3 cells. Conclusions Overexpression of ELF5 promoted the apoptosis and reduced the migration and invasion of ovarian cancer cells; therefore, it could provide a new approach to gene treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Gynecology, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Jing Lin
- Department of Gynecology, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Yanping Ma
- Department of Geriatrics, Chengyang People's Hospital, Qingdao, Shandong, China (mainland)
| | - Jiali Zhao
- Department of Gynecology, Dezhou Women's and Children's Hospital, Qingdao, Shandong, China (mainland)
| |
Collapse
|
41
|
Wang F, Ruan L, Yang J, Zhao Q, Wei W. TRIM14 promotes the migration and invasion of gastric cancer by regulating epithelial‑to‑mesenchymal transition via activation of AKT signaling regulated by miR‑195‑5p. Oncol Rep 2018; 40:3273-3284. [PMID: 30272351 PMCID: PMC6196628 DOI: 10.3892/or.2018.6750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tripartite motif-containing 14 (TRIM14) is a member of the TRIM protein family which has been implicated in several critical processes and is dysregulated in human cancers in a cancer-specific trend. However, its expression and function in human gastric cancer (GC) are still largely unknown. In this study, we confirmed for the first time that TRIM14 mRNA and protein were upregulated in GC tissues and cell lines as determined by qRT-PCR and western blot analysis. Clinical data disclosed that high TRIM14 expression was significantly associated with aggressive prognostic features, including advanced TNM stage and lymph node metastasis. In regards to 5-year survival, TRIM14 served as a potential prognostic marker for GC. Notably, TRIM14 promoted migration, invasion as measured by Transwell and epithelial-to-mesenchymal transition (EMT) as determined by western blot analysis and immunofluorescence (IF) in vitro and in vivo. Moreover, TRIM14 induced protein kinase B (AKT) pathway activation, and inhibition of AKT reversed the TRIM14-induced promotive effects on cell migration, invasion and EMT progression. Furthermore, we demonstrated that TRIM14 expression was regulated by miR-195-5p. miR-195-5p exerted an inhibitory role in GC migration and invasion. Finally, we confirmed that alteration of TRIM14 expression abolished the effects of miR-195-5p on GC cells. Conclusively, our results demonstrated that TRIM14 functions as an oncogene in regulating EMT and metastasis of GC via activating AKT signaling, which was regulated by miR-195-5p, supporting its potential utility as a therapeutic target for GC.
Collapse
Affiliation(s)
- Feiqian Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Litao Ruan
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinru Yang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qiaoling Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Wei
- Department of Ultrasound Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
42
|
Wang K, Chen Z, Long L, Tao Y, Wu Q, Xiang M, Liang Y, Xie X, Jiang Y, Xiao Z, Yan Y, Qiu S, Yi B. iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in chemoresistant nasopharyngeal carcinoma. Cancer Biol Ther 2018; 19:809-824. [PMID: 30067426 DOI: 10.1080/15384047.2018.1472192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly prevalent disease in Southeast Asia. The disease is typically diagnosed in the later stages, and chemotherapy resistance often causes treatment failure. To investigate the underlying mechanisms of drug resistance, we searched for chemoresistant-associated proteins in NPC and drug-resistant NPC cell lines using isobaric tags for relative and absolute quantitation combined with nano liquid chromatography-tandem mass spectrometry. The chemoresistant NPC cell lines CNE1DDP and CNE2DDP were resistant to 1 mg/L cisplatin, had resistant indexes of 4.58 and 2.63, respectively, and clearly grew more slowly than the NPC cell lines CNE1 and CNE2. Using three technical replicates, we identified 690 nonredundant proteins, 56 of which were differentially expressed in both groups of cell lines (CNE1 vs. CNE1DDP and CNE2 vs. CNE2DDP). Gene Ontology, KEGG pathway, and miRNA analyses and protein-protein interactions of differentially expressed proteins showed that proteins TRIM29, HSPB1, CLIC1, ANXA1, and STMN1, among others, may play a role in the mechanisms of chemoresistance in clinical therapy. The chemotherapy-resistant proteomic profiles obtained may allow the identification of novel biomarkers for early detection of chemoresistance in NPC and other cancers.
Collapse
Affiliation(s)
- Kun Wang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Zhen Chen
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Lu Long
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Ya Tao
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Qiong Wu
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Manlin Xiang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yunlai Liang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Xulin Xie
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yuan Jiang
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China.,b Department of Clinical Laboratory , Hunan Cancer Hospital , Changsha , Hunan Province , China
| | - Zhiqiang Xiao
- c The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Yahui Yan
- d Department of pathology , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Shiyang Qiu
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| | - Bin Yi
- a Department of Clinical Laboratory , Xiangya Hospital, Central South University , Changsha , Hunan Province , China
| |
Collapse
|
43
|
Li F, Liang J, Bai L. MicroRNA-449a functions as a tumor suppressor in pancreatic cancer by the epigenetic regulation of ATDC expression. Biomed Pharmacother 2018; 103:782-789. [DOI: 10.1016/j.biopha.2018.04.101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
|
44
|
Yang T, Zhai H, Yan R, Zhou Z, Gao L, Wang L. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line. ACTA ACUST UNITED AC 2018; 51:e7046. [PMID: 29791590 PMCID: PMC6002139 DOI: 10.1590/1414-431x20187046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/16/2018] [Indexed: 01/17/2023]
Abstract
Thyroid cancer is a common malignant tumor. Long non-coding RNA colon
cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in many
cancers; however, the molecular mechanism of CCAT1 in thyroid cancer remains
unclear. Hence, this study aimed to investigate the effect of CCAT1 on human
thyroid cancer cell line FTC-133. FTC-133 cells were transfected with CCAT1
expressing vector, CCAT1 shRNA, miR-143 mimic, and miR-143 inhibitor,
respectively. After different treatments, cell viability, proliferation,
migration, invasion, and apoptosis were measured. Moreover, the regulatory
relationship of CCAT1 and miR-143, as well as miR-143 and VEGF were tested using
dual-luciferase reporter assay. The relative expressions of CCAT1, miR-143, and
VEGF were tested by qRT-PCR. The expressions of apoptosis-related factors and
corresponding proteins in PI3K/AKT and MAPK pathways were analyzed using western
blot analysis. The results suggested that CCAT1 was up-regulated in the FTC-133
cells. CCAT1 suppression decreased FTC-133 cell viability, proliferation,
migration, invasion, and miR-143 expression, while it increased apoptosis and
VEGF expression. CCAT1 might act as a competing endogenous RNA (ceRNA) for
miR-143. Moreover, CCAT1 activated PI3K/AKT and MAPK signaling pathways through
inhibition of miR-143. This study demonstrated that CCAT1 exhibited
pro-proliferative and pro-metastasis functions on FTC-133 cells and activated
PI3K/AKT and MAPK signaling pathways via down-regulation of miR-143. These
findings will provide a possible target for clinical treatment of thyroid
cancer.
Collapse
Affiliation(s)
- Tianzheng Yang
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Hongyan Zhai
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Ruihong Yan
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Zhenhu Zhou
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Lei Gao
- Department of Nuclear Medicine, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Luqing Wang
- Department of Radioimmunoassay, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
45
|
Yang Y, Li Q, Guo L. MicroRNA‑122 acts as tumor suppressor by targeting TRIM29 and blocking the activity of PI3K/AKT signaling in nasopharyngeal carcinoma in vitro. Mol Med Rep 2018; 17:8244-8252. [PMID: 29693120 PMCID: PMC5983992 DOI: 10.3892/mmr.2018.8894] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in the southern provinces of China and Southeast Asia. It has been reported that microRNA-122 (miR-122) and tripartite motif-containing protein 29 (TRIM29) serve important roles in many types of tumor. The present study aimed to evaluate the expression of miR-122 and TRIM29, and their clinical significance in NPC, and to examine the associated molecular mechanisms. It was observed that low expression of miR-122 and high expression of TRIM29 led to a low overall survival rate in patients with NPC, which was associated with tumor-node-metastasis (TNM) stage and distant metastasis of NPC. Low expression of miR-122 was correlated reciprocally with high expression of TRIM29 in NPC tissues, and the two were aggravated by radiation treatment in NPC cell lines. Through Cell Counting kit-8 and Transwell assays, miR-122 was demonstrated to be able to inhibit the proliferation, migration and invasion of NPC cells. Through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analyses, the expression of metastasis-associated genes, including E-cadherin, metastatic tumor antigen 1, matrix metalloproteinase-2 and metalloproteinase inhibitor 2 were demonstrated to be regulated by miR-122 in NPC cells. Additionally, through a luciferase assay, RT-qPCR and western blot analysis, it was demonstrated that TRIM29 may be a direct target of miR-122. In addition, it was noted that miR-122 decreased the expression of phosphorylated (p) phosphatidylinositol 3-kinase (PI3K) and p-RAC-α serine/threonine-protein kinase (AKT). Collectively, the results of the present study demonstrated that miR-122 may exert its tumor suppressive role by targeting TRIM29 and inhibiting the activity of PI3K/AKT signaling. It was indicated that miR-122 and TRIM29 may be developed as biomarkers of NPC, and possible molecular targets for the prevention of metastasis in patients with NPC.
Collapse
Affiliation(s)
- Yan Yang
- Clinical Laboratory, South Region of Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Qing Li
- Clinical Laboratory, North Region of Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Lili Guo
- Clinical Laboratory, Jingmen No. 2 People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
46
|
Duan S, Wu A, Chen Z, Yang Y, Liu L, Shu Q. miR-204 Regulates Cell Proliferation and Invasion by Targeting EphB2 in Human Cervical Cancer. Oncol Res 2017; 26:713-723. [PMID: 28800788 PMCID: PMC7844721 DOI: 10.3727/096504017x15016337254641] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are involved in human carcinogenesis and progression. miR-204 has been reported to be a tumor suppressor in several cancer types. However, the function and underlying molecular mechanism of miR-204 in cervical cancer (CC) are still unclear. In the present study, the expression level of miR-204 was measured using the qRT-PCR method in 30 paired CC clinical samples and in 6 CC cell lines. We found that the expression of miR-204 was significantly downregulated in CC tissues and cell lines compared to normal cervical tissues and cell line. miR-204 was overexpressed by transfection with the miR-204 mimic in HeLa and C33A cell lines in the following experiments. The results showed that overexpression of miR-204 dramatically suppressed cell proliferation, migration, and invasion, caused cell cycle arrest at the G0/G1 phase, promoted cell apoptosis in vitro, and inhibited tumor growth in vivo. Western blot results indicated that overexpressing miR-204 decreased the expressions of CDK2, cyclin E, MMP2, MMP9, Bcl2, whereas it enhanced Bax expression and suppressed the activation of the PI3K/AKT signaling pathways in CC cells. Ephrin type B receptor 2 (EphB2) was identified as a direct target of miR-204 in CC cells according to bioinformatics analysis and luciferase reporter assay. Furthermore, knockdown of EphB2 mimicked the inhibitory effect of miR-204 on the proliferation, invasion, and migration of CC cells. These findings suggested that miR-204 might serve as a tumor suppressor in the development of CC by directly targeting EphB2.
Collapse
Affiliation(s)
- Shanhong Duan
- Department of Gynecology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, P.R. China
| | - Ali Wu
- Department of Endoscopy, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, P.R. China
| | - Zhengyu Chen
- Department of Spine Surgery, The First People's Hospital of Xianyang City, Xianyang, Shaanxi, P.R. China
| | - Yarong Yang
- Department of Gynecology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, P.R. China
| | - Liying Liu
- Department of Gynecology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, P.R. China
| | - Qi Shu
- Department of Gynecology, Shaanxi Nuclear Industry 215 Hospital, Xianyang, Shaanxi, P.R. China
| |
Collapse
|