1
|
Liu J, Tang L, Chu W, Wei L. Cellular Retinoic Acid Binding Protein 2 (CRABP2), Up-regulated by HPV E6/E7, Leads to Aberrant Activation of the Integrin β1/FAK/ERK Signaling Pathway and Aggravates the Malignant Phenotypes of Cervical Cancer. Biochem Genet 2024; 62:2686-2701. [PMID: 38001389 DOI: 10.1007/s10528-023-10568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The ectopic expression of cellular retinoic acid binding protein 2 (CRABP2) is associated with various tumorigenesis. However, the effects of CRABP2 on the progression of cervical cancer are still unclear. The current study aimed to investigate the role of CRABP2 in the malignant phenotypes of cervical cancer cells. CRABP2 was artificially regulated in CaSki, SiHa, and C-33A cells. CCK-8 assay and flow cytometry were used to assess the cell proliferation and apoptosis abilities, respectively. Wound healing assay and transwell assay were employed to measure the cell migration and invasion abilities, respectively. The results showed that CRABP2 was highly expressed in cervical carcinoma tissues and cell lines, and its high expression was associated with poor overall survival. Knockdown of CRABP2 promoted the cell apoptosis and inhibited cell proliferation, migration, and invasion in cervical carcinoma cells, whereas CRABP2 overexpression exhibited the opposite results. Mechanically, CRABP2 silencing suppressed the Integrin β1/FAK/ERK signaling via HuR. Treatment with siITGB1 or a FAK inhibitor PF-562271 or an ERK inhibitor FR180204 reversed the promoting effects of CRABP2 on cell proliferation, migration, and invasion. Moreover, the overexpression of CRABP2 reverted the HPV16 E6/E7 knockdown-induced inhibition of cell proliferation, migration, and invasion in cervical cancer cells. These results suggested that HPV16 E6/E7 promoted the malignant phenotypes of cervical cancer by upregulating the expression of CRABP2. In conclusion, CRABP2, upregulated by HPV E6/E7, promoted the progression of cervical cancer through activating the Integrin β1/FAK/ERK signaling pathway via HuR.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu, 225300, China
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Lu Tang
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Wenzhu Chu
- Department of Dermatology, Hongqi Hospital, Mudanjiang Medical University, Heilongjiang, 157001, China
| | - Lanlan Wei
- National Clinical Research Center for Infectious Diseases; Institute for Hepatology, The Third People's Hospital of Shenzhen; The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China.
| |
Collapse
|
2
|
Xie B, Peng F, He F, Cheng Y, Cheng J, Zhou Z, Mao W. DNA methylation influences the CTCF-modulated transcription of RASSF1A in lung cancer cells. Cell Biol Int 2022; 46:1900-1914. [PMID: 35989484 DOI: 10.1002/cbin.11868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
Ras-association domain family 1A (RASSF1A) is one of the most methylated genes in lung cancer (LC). We investigate whether the high DNA methylation level of RASSF1A can relieve the resistance of RASSF1A to LC by inhibiting RASSF1A's transcription factor binding to RASSF1A. RASSF1A expression in tissues and cells was tested utilizing quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. RASSF1A expression and RASSF1A methylation level in LC cells exposed to 5-Aza-dc were assessed by qRT-PCR and quantitative methylation-specific PCR. The association between CTCF and RASSF1A was assessed using hTFtarget, ChIP, and luciferase reporter gene analysis. The effects of 5-Aza-dc, CTCF, and RASSF1A on cell biological behaviors and epithelial-mesenchymal transition (EMT)-related markers were assessed by cell function experiments and Western blot. Moreover, we constructed the xenograft tumor and pulmonary nodule metastasis models, and assessed tumor volume and weight. RASSF1A expression and pulmonary nodule metastasis were tested utilizing qRT-PCR, Western blot, and H&E staining. RASSF1A was under-expressed in LC tissues and cells. 5-Aza-dc enhanced RASSF1A level and weakened RASSF1A methylation level in LC cells. RASSF1A silencing neutralized 5-Aza-dc-mediated repressing effects on LC cell biological function and EMT. The loss of CTCF binding to RASSF1A in LC cells was associated with DNA methylation. The effect of 5-Aza-dc on RASSF1A level, LC cell malignant behaviors, and EMT-related factors were strengthened by CTCF upregulation. RASSF1A overexpression suppressed LC tumor growth and pulmonary nodule metastasis in vivo. DNA methylation blocked the modulation of RASSF1A expression by CTCF and relieved the resistance of RASSF1A to LC.
Collapse
Affiliation(s)
- Bin Xie
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Feng Peng
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Fengping He
- Central Laboratory, Yue Bei People's Hospital, Shaoguan, China
| | - Yixing Cheng
- Department of Respiratory Medicine, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Jiangtao Cheng
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Zhibing Zhou
- Department of Respiratory Medicine, Yue Bei People's Hospital, Shaoguan, China
| | - Wei Mao
- Department of Respiratory Medicine, Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021; 13:v13112234. [PMID: 34835040 PMCID: PMC8623401 DOI: 10.3390/v13112234] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
Human papillomaviruses (HPVs), which are small, double-stranded, circular DNA viruses infecting human epithelial cells, are associated with various benign and malignant lesions of mucosa and skin. Intensive research on the oncogenic potential of HPVs started in the 1970s and spread across Europe, including Croatia, and worldwide. Nowadays, the causative role of a subset of oncogenic or high-risk (HR) HPV types, led by HPV-16 and HPV-18, of different anogenital and head and neck cancers is well accepted. Two major viral oncoproteins, E6 and E7, are directly involved in the development of HPV-related malignancies by targeting synergistically various cellular pathways involved in the regulation of cell cycle control, apoptosis, and cell polarity control networks as well as host immune response. This review is aimed at describing the key elements in HPV-related carcinogenesis and the advances in cancer prevention with reference to past and on-going research in Croatia.
Collapse
|
4
|
Significant decrease of a master regulator of genes (REST/NRSF) in high-grade squamous intraepithelial lesion and cervical cancer. Biomed J 2020; 44:S171-S178. [PMID: 35491677 PMCID: PMC9068566 DOI: 10.1016/j.bj.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
5
|
Yanatatsaneejit P, Chalertpet K, Sukbhattee J, Nuchcharoen I, Phumcharoen P, Mutirangura A. Promoter methylation of tumor suppressor genes induced by human papillomavirus in cervical cancer. Oncol Lett 2020; 20:955-961. [PMID: 32566025 DOI: 10.3892/ol.2020.11625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is the most fourth common cancer in women worldwide. The E6 and E7 high-risk human papillomavirus (HPV) types are the main cause of this cancer. Several studies have revealed that promoter methylation of tumor suppressor genes is induced by HPV E7. Recently, it was found that HPV16-E7 and the DNA methyltransferase 1 complex could bind at the cyclin A1 (CCNA1) promoter, resulting in CCNA1 promoter methylation. Therefore, there is a need to study other tumor suppressor genes for which HPV may induce promoter methylation. The present study investigated whether HPV induced cell adhesion molecule 1 (CADM1) and death associated protein kinase 1 (DAPK1) promoter methylation. C33a (no HPV infection) and SiHa (HPV 16 infection) cell lines were used for methylation status and expression observation. It was found that CADM1 and DAPK1 promoter methylation, no expression of CADM1 and decreased expression of DAPK1, was presented in SiHa cells. While no promoter methylation of these two genes was observed in C33a cells, with positive expression of the genes. It was subsequently investigated whether E6 and/or E7 could induce promoter methylation and decrease the expression of these two genes. Methylation-specific primer PCR and quantitative PCR were performed to elucidate the promoter methylation status and expression of CADM1 and DAPK1 in C33a cells transfected with HPV16 E6-PCDNA3 or HPV16 E7-PCDNA3.1 myc-his, compared to empty vector-transfected cells. The results showed that HPV E7 could induce CADM1 promoter methylation and decrease the gene expression in HPV E7 transfected C33a cells, while HPV E6 could induce DAPK1 promoter methylation and decrease its expression in C33a cells transfected with HPV E6. Finally, the mechanism by which HPV E7 induced CADM1 promoter methylation was observed by performing chromatin immunoprecipitation; the data showed that E7 induced CADM1 methylation by the same mechanism as that for CCNA1, by binding at the CADM1 promoter, resulting in the subsequent reduction of its expression in cervical cancer.
Collapse
Affiliation(s)
- Pattamawadee Yanatatsaneejit
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanwalat Chalertpet
- Inter-Department of Biomedical Sciences, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juthamard Sukbhattee
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Irin Nuchcharoen
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyathida Phumcharoen
- Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|
7
|
RASSF1A promoter methylation was associated with the development, progression and metastasis of cervical carcinoma: a meta-analysis with trial sequential analysis. Arch Gynecol Obstet 2017; 297:467-477. [PMID: 29288321 DOI: 10.1007/s00404-017-4639-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND RASSF1A promoter methylation has been reported in cervical cancer. However, clinical effect of RASSF1A promoter methylation in cervical cancer remains unclear. This meta-analysis was conducted to assess the correlation between RASSF1A promoter methylation and cervical cancer and the association of RASSF1A promoter methylation with clinicopathological features. METHODS Electronic databases were searched to identify eligible publications. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Trial sequential analysis (TSA) was performed to assess the required study population information. RESULTS Twenty-six papers published from 2001 to 2017 were analyzed in the meta-analysis, including a total of 1820 patients with cervical cancer, 507 patients with cervical intraepithelial neoplasia (CIN) lesions and 894 nonmalignant controls. RASSF1A promoter methylation was significantly increased in cervical cancer than in CIN lesions and nonmalignant tissue samples. In addition, RASSF1A promoter methylation was correlated with cervical cancer among two studies of blood and cytology samples (cancer vs nonmalignant controls). No correlation was found between RASSF1A promoter methylation and age factor, human papillomavirus (HPV) subtypes or clinical stage. RASSF1A promoter methylation was associated with tumor grade (grade 3-4 vs 1-2: OR 2.31, 95% CI 1.12-4.77, P = 0.023), lymph node metastasis (yes vs no: OR 2.97, 95% CI 1.60-5.52, P = 0.001), tumor histology (squamous cell carcinoma vs adenocarcinoma: OR 0.49, 95% CI 0.22-1.08, P = 0.076), and HPV infection (positive vs negative: OR 0.45, 95% CI 0.28-0.73, P = 0.001). TSA showed that the cumulative Z-curve did not cross the trial sequential monitoring boundary for significant results. CONCLUSIONS RASSF1A promoter methylation may be associated with cervical cancer development, progression and metastasis. Methylated RASSF1A may be a noninvasive blood or cytology biomarker. Based on TSA, more studies are essential in the future.
Collapse
|
8
|
Marx B, Miller-Lazic D, Doorbar J, Majewski S, Hofmann K, Hufbauer M, Akgül B. HPV8-E6 Interferes with Syntenin-2 Expression through Deregulation of Differentiation, Methylation and Phosphatidylinositide-Kinase Dependent Mechanisms. Front Microbiol 2017; 8:1724. [PMID: 28970821 PMCID: PMC5609557 DOI: 10.3389/fmicb.2017.01724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/24/2017] [Indexed: 12/01/2022] Open
Abstract
The E6 oncoproteins of high-risk human papillomaviruses (HPV) of genus alpha contain a short peptide sequence at the carboxy-terminus, the PDZ binding domain, with which they interact with the corresponding PDZ domain of cellular proteins. Interestingly, E6 proteins from papillomaviruses of genus beta (betaPV) do not encode a comparable PDZ binding domain. Irrespective of this fact, we previously showed that the E6 protein of HPV8 (betaPV type) could circumvent this deficit by targeting the PDZ protein Syntenin-2 through transcriptional repression (Lazic et al., 2012). Despite its high binding affinity to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), very little is known about Syntenin-2. This study aimed to extend the knowledge on Syntenin-2 and how its expression is controlled. We now identified that Syntenin-2 is expressed at high levels in differentiating and in lower amounts in keratinocytes cultured in serum-free media containing low calcium concentration. HPV8-E6 led to a further reduction of Syntenin-2 expression only in cells cultured in low calcium. In the skin of patients suffering from Epidermodysplasia verruciformis, who are predisposed to betaPV infection, Syntenin-2 was expressed in differentiating keratinocytes of non-lesional skin, but was absent in virus positive squamous tumors. Using 5-Aza-2′-deoxycytidine, which causes DNA demethylation, Syntenin-2 transcription was profoundly activated and fully restored in the absence and presence of HPV8-E6, implicating that E6 mediated repression of Syntenin-2 transcription is due to promoter hypermethylation. Since Syntenin-2 binds to PI(4,5)P2, we further tested whether the PI(4,5)P2 metabolic pathway might govern Syntenin-2 expression. PI(4,5)P2 is generated by the activity of phosphatidylinositol-4-phosphate-5-kinase type I (PIP5KI) or phosphatidylinositol-5-phosphate-4-kinase type II (PIP4KII) isoforms α, β and γ. Phosphatidylinositide kinases have recently been identified as regulators of gene transcription. Surprisingly, transfection of siRNAs directed against PIP5KI and PIP4KII resulted in higher Syntenin-2 expression with the highest effect mediated by siPIP5KIα. HPV8-E6 was able to counteract siPIP4KIIα, siPIP4KIIβ and siPIP5KIγ mediated Syntenin-2 re-expression but not siPIP5KIα. Finally, we identified Syntenin-2 as a key factor regulating PIP5KIα expression. Collectively, our data demonstrates that Syntenin-2 is regulated through multiple mechanisms and that downregulation of Syntenin-2 expression may contribute to E6 mediated dedifferentiation of infected skin cells.
Collapse
Affiliation(s)
- Benjamin Marx
- Institute of Virology, University of CologneCologne, Germany
| | | | - John Doorbar
- Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Slawomir Majewski
- Department of Dermatology and Venereology, Medical University of WarsawWarsaw, Poland
| | - Kay Hofmann
- Institute for Genetics, University of CologneCologne, Germany
| | - Martin Hufbauer
- Institute of Virology, University of CologneCologne, Germany
| | - Baki Akgül
- Institute of Virology, University of CologneCologne, Germany
| |
Collapse
|