1
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
2
|
Wu Q, He M, Liu T, Hu H, Liu L, Zhao P, Li Q. Rust Fungi on Medicinal Plants in Guizhou Province with Descriptions of Three New Species. J Fungi (Basel) 2023; 9:953. [PMID: 37755061 PMCID: PMC10532644 DOI: 10.3390/jof9090953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
During the research on rust fungi in medicinal plants of Guizhou Province, China, a total of 9 rust fungal species were introduced, including 3 new species (Hamaspora rubi-alceifolii, Nyssopsora altissima, and Phragmidium cymosum), as well as 6 known species (Melampsora laricis-populina, Melampsoridium carpini, Neophysopella ampelopsidis, Nyssopsora koelrezidis, P. rosae-roxburghii, P. tormentillae). Notably, N. ampelopsidis and P. tormentillae were discovered for the first time in China, while M. laricis-populina, Me. carpini, and Ny. koelreuteriae were first documented in Guizhou Province. Morphological observation and molecular phylogenetic analyses of these species with similar taxa were compared to confirm their taxonomic identities, and taxonomic descriptions, illustrations and host species of those rust fungi on medicinal plant are provided.
Collapse
Affiliation(s)
- Qianzhen Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| | - Minghui He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
| | - Tiezhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Hongmin Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| | - Lili Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550004, China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Qirui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou 550004, China
| |
Collapse
|
3
|
Ou A, Zhao X, Lu Z. Autophagy is involved in Ficus carica fruit extract-induced anti-tumor effects on pancreatic cancer. Biomed Pharmacother 2022; 150:112966. [PMID: 35427822 DOI: 10.1016/j.biopha.2022.112966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Pancreatic cancer (PaCa), a common and highly lethal malignant cancer, is often insensitive to radio- and/or chemotherapy. Therefore, effective treatment regiments are still lacking. Herein, we found that an extract of Ficus carica fruit (EFCF) exerted anti-tumor effects on PaCa cells. EFCF induced cell viability inhibition and apoptotic cell death in two PaCa cell lines in a dose- and time dependent manner. EFCF effectively suppressed the migration, metastasis, invasion, and colony formation of PaCa cells. Mechanistically, EFCF stimulated an increase in intracellular ROS to promote cell death and senescence. EFCF treatment also triggered autophagy, and autophagy inhibition enhanced EFCF-induced cell death. We found that EFCF decreased mitochondrial membrane potential and promoted lipid peroxidation. Moreover, intragastric administration of EFCF effectively suppressed xenograft PaCa growth inhibition by activating cell death. EFCF had no apparent toxicity to normal pancreatic epithelial cells. Together, these findings suggest that EFCF may be a potential treatment for PaCa.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
4
|
Ou A, Zhao X, Lu Z. Autophagy is involved in Ficus carica fruit extract-induced anti-tumor effects on pancreatic cancer. Biomed Pharmacother 2022; 150:112966. [DOI: doi10.1016/j.biopha.2022.112966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
5
|
Ke W, Zhao X, Lu Z. Foeniculum vulgare seed extract induces apoptosis in lung cancer cells partly through the down-regulation of Bcl-2. Biomed Pharmacother 2021; 135:111213. [PMID: 33395604 DOI: 10.1016/j.biopha.2020.111213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
The factors behind the pathogenesis of lung cancer are not clear, and treatment failure is generally caused by drug resistance, recurrence, and metastasis. Development of new therapeutic agents to overcome drug-resistance remains a challenge clinically. Various extracts of Foeniculum vulgare have shown promising anticancer activity; however, effects on lung cancer and the underlying molecular mechanisms of action are not clear. In the present study, we found that the ethanol extract of Foeniculum vulgare seeds (EEFS) significantly reduced lung cancer cell growth in vitro and in vivo. EEFS decreased the viability of and triggered apoptosis in the lung cancer cell lines NCI-H446 and NCI-H661. EEFS induced apoptosis mainly through inhibition of Bcl-2 protein expression, reduction of mitochondrial membrane potential, and release of Cytochrome C. Moreover, EEFS significantly inhibited colony formation and cell migration in lung cancer cells. EEFS also effectively inhibited the growth of xenograft tumors derived from NCI-446 cells by reducing Bcl-2 protein expression and inducing apoptosis. Taken together, these findings suggest that EEFS exerts anti-lung cancer activity by targeting the Bcl-2 protein and may have potential as a therapeutic drug for lung cancer.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
6
|
Ke W, Wang H, Zhao X, Lu Z. Foeniculum vulgare seed extract exerts anti-cancer effects on hepatocellular carcinoma. Food Funct 2021; 12:1482-1497. [PMID: 33502415 DOI: 10.1039/d0fo02243h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The prognosis of HCC is very poor due to the absence of symptoms and a lack of effective treatments. Studies have shown that various Foeniculum vulgare (fennel) extracts exhibit anti-cancer effects on malignant tumors such as skin cancer and prostate cancer. However, the anti-tumor activity of Foeniculum vulgare and its underlying molecular mechanisms towards HCC are unknown. Here, we provide fundamental evidence to show that the 75% ethanol extract of Foeniculum vulgare seeds (FVE) reduced cell viability, induced apoptosis, and effectively inhibited cell migration in HCC cells in vitro. HCC xenograft studies in nude mice showed that FVE significantly inhibited HCC growth in vivo. Mechanistic analyses showed that FVE reduced survivin protein levels and triggered mitochondrial toxicity, subsequently inducing caspase-3 activation and apoptosis. Survivin inhibition effectively sensitized HCC cells to FVE-induced apoptosis. Moreover, FVE did not induce a decrease in survivin or apoptotic toxicity in normal liver cells. Collectively, in vivo and in vitro results suggest that FVE exerts inhibitory effects in HCC by targeting the oncoprotein survivin, suggesting FVE may be a potential anti-cancer agent that may benefit patients with HCC.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
7
|
Yao Z, Li Y, Wang Z, Lan Y, Zeng T, Gong H, Zhu K, Tang H, Gu S. Research on anti-hepatocellular carcinoma activity and mechanism of Polygala fallax Hemsl. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113062. [PMID: 32512042 DOI: 10.1016/j.jep.2020.113062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 05/31/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygala fallax Hemsl. is a kind of traditional medicine of Yao Minority in China. In Chinese medicine practice, Polygala fallax Hemsl. is commonly prescribed to treat all kinds of acute and chronic hepatitis. AIM OF THE STUDY The present study aimed at investigating the effects and its possible mechanism of Polygala fallax Hemsl. on the proliferation and apoptosis of HepG2 cells (a kind of human hepatoma cell). MATERIALS AND METHODS Through a variety of experimental methods, including MTT technique and Hoechst staining to detect apoptosis in Hepatocyte HepG2 cells, flow cytometry to observe the pro-apoptotic and circulatory arrest effects as well as real-time fluorescence quantitative polymerase chain reaction (q-PCR) technique to examine the expression levels of Bcl-2/Bax gene and prote Western blot to examine the expression levels of bcl-2/bax,caspase3,8,9,CyclinA,p21,p27,ERK.Phospho-ERK and AKT, Phospho-AKT in HepG2 cells. RESULTS The results showed that compared with the control group, all polarity fractions of P. fallax had inhibitory effects on HepG2 cells, among which the inhibition effect of ethyl acetate fraction in 0.036 ± 0.001 mg/mL of IC50 for 24 h was the most obvious (P < 0.01). And the HepG2 cells induced at the ethyl acetate fraction could up-regulate Bax gene and protein, while down-regulating Bcl-2 gene and protein (P < 0.05) during S phase in a dose-dependent manner. In addition, the ethyl acetate site of Larch can also down regulate the expression of ERK, AKT and activate caspase 3, 8 and 9. CONCLUSION It could be concluded that the ethyl acetate fraction of Polygala fallax Hemsl. can significantly prohibit the proliferation of HepG2 cells. The possible mechanism is to promote the expression of Bax, inhibit the expression of Bcl-2, and down regulate the expression of AKT and ERK.
Collapse
Affiliation(s)
- Zhiren Yao
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Yu Li
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Zhiwei Wang
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Yuanyuan Lan
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Tiexin Zeng
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Hongfei Gong
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Kaimei Zhu
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China
| | - Hui Tang
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541100, China
| | - Shengjiu Gu
- College of Pharmacy, Guilin Medical University, Guilin, 541100, China.
| |
Collapse
|