1
|
Kumari R, Banerjee S. Regulation of Different Types of Cell Death by Noncoding RNAs: Molecular Insights and Therapeutic Implications. ACS Pharmacol Transl Sci 2025; 8:1205-1226. [PMID: 40370994 PMCID: PMC12070317 DOI: 10.1021/acsptsci.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
Noncoding RNAs (ncRNAs) are crucial regulatory molecules in various biological processes, despite not coding for proteins. ncRNAs are further divided into long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) based on the size of their nucleotides. These ncRNAs play crucial roles in transcriptional, post-transcriptional, and epigenetic regulation. The regulatory roles of noncoding RNAs, including lncRNAs, miRNAs, and circRNAs, are essential in various modalities of cellular death, such as apoptosis, ferroptosis, cuproptosis, pyroptosis, disulfidptosis, and necroptosis. These noncoding RNAs are integral to modulating gene expression and protein functionality during cellular death mechanisms. In apoptosis, lncRNAs, miRNAs, and circRNAs influence the transcription of apoptotic genes. In ferroptosis, these noncoding RNAs target genes and proteins involved in iron homeostasis and oxidative stress responses. For cuproptosis, noncoding RNAs regulate pathways associated with the accumulation of copper ions, leading to cellular death. During pyroptosis, noncoding RNAs modulate inflammatory mediators and caspases, affecting the proinflammatory cell death pathway. In necroptosis, noncoding RNAs oversee the formation and functionality of necrosomes, thereby influencing the balance between cellular survival and death. Disulfidptosis is a unique type of regulated cell death caused by the excessive formation of disulfide bonds within cells, leading to cytoskeletal collapse and oxidative stress, especially under glucose-limited conditions. This investigation highlights the complex mechanisms through which noncoding RNAs coordinate cellular death, emphasizing their therapeutic promise as potential targets, particularly in the domain of cancer treatment.
Collapse
Affiliation(s)
- Reshmi Kumari
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Satarupa Banerjee
- Department of Biotechnology, School
of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
2
|
Tsuchiya T, Miyawaki S, Teranishi Y, Ohara K, Hirano Y, Ogawa S, Torazawa S, Sakai Y, Hongo H, Ono H, Saito N. Current molecular understanding of central nervous system schwannomas. Acta Neuropathol Commun 2025; 13:24. [PMID: 39910685 PMCID: PMC11796276 DOI: 10.1186/s40478-025-01937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Schwannomas are tumors that originate from myelinating Schwann cells and can occur in cranial, spinal, and peripheral nerves. Although our understanding of the molecular biology underlying schwannomas remains incomplete, numerous studies have identified various molecular findings and biomarkers associated with schwannomas of the central nervous system (CNS). The development of these tumors is primarily linked to mutations in the NF2 gene. Merlin, the protein encoded by NF2, is integral to several signaling pathways, including Ras/Raf/MEK/ERK, PI3K/Akt/mTORC1, Wnt/β-catenin, and the Hippo pathway. MAIN BODY Recent research has also uncovered novel genetic alterations, such as the SH3PXD2A::HTRA1 fusion gene, VGLL-fusions in intraparenchymal CNS schwannomas, and the SOX10 mutation particularly in non-vestibular cranial nerve schwannomas. In addition to genetic alterations, research is also being conducted on gene expression and epigenetic regulation, with a focus on NF2 methylation and post-transcriptional silencing by micro RNA. Furthermore, the advent of advanced techniques like single-cell sequencing and multi-omics analysis has facilitated rapid discoveries related to the tumor microenvironment and tumor heterogeneity in schwannomas. CONCLUSION A deeper exploration of these molecular findings could clarify the mechanisms of schwannoma tumorigenesis and progression, ultimately guiding the development of new therapeutic targets. This review offers a comprehensive overview of the current molecular understanding of CNS schwannomas, emphasizing the insights gained from previous research, while addressing existing controversies and outlining future research and treatment perspectives.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Yu Teranishi
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenta Ohara
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yudai Hirano
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shotaro Ogawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Seiei Torazawa
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yu Sakai
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroki Hongo
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ono
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Cao G, Fan P, Ma R, Wang Q, He L, Niu H, Luo Q. MiR-210 regulates lung adenocarcinoma by targeting HIF-1α. Heliyon 2023; 9:e16079. [PMID: 37215862 PMCID: PMC10192744 DOI: 10.1016/j.heliyon.2023.e16079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Object This study sought to elucidate the role of microRNA-210 (miR-210) in the occurrence and development of lung adenocarcinoma (LUAD). Methods The levels of lncRNA miR-210HG and miR-210 in LUAD tissues and corresponding normal tissues were analyzed by real-time quantitative PCR. The expression of the anti-hypoxia factor hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by qRT-PCR and Western blot. The target of miR-210 on HIF-1α was confirmed using TCGA, Western blot and luciferase reporter assay. The regulatory role of miR-210 on HIF-1α and VEGF in LUAD was investigated. The correlation of genes with clinical prognosis was analyzed using bioinformatics methods. The effect of miR-210 on LUAD cells was verified through apoptosis assays. Results The expression of miR-210 and miR-210HG was significantly higher in LUAD tissues than in normal tissues. The expression of hypoxia-related indicators HIF-1α and VEGF was also significantly higher in LUAD tissues. MiR-210 suppressed HIF-1α expression by targeting site 113 of HIF-1α, thereby affecting VEGF expression. Overexpression of miR-210 inhibited HIF-1 expression by targeting the 113 site of HIF-1, thereby affecting VEGF expression. Conversely, inhibition of miR-210 resulted in a significant increase in HIF-1α and VEGF expression in LUAD cells. In TCGA-LUAD cohorts, the expression of VEGF-c and VEGF-d genes in LUAD tissues was significantly lower than in normal tissues, while overall survival was worse in LUAD patients with high expression of HIF-1α, VEGF-c and VEGF-d. Apoptosis was significantly lower in H1650 cells after miR-210 inhibition. Conclusion This study reveals that miR-210 exerts an inhibitory effect on VEGF expression by down-regulating HIF-1α expression in LUAD. Conversely, inhibition of miR-210 significantly reduced H1650 apoptosis and led to worse patient survival by upregulating HIF-1α and VEGF. These results suggest that miR-210 could serve as a potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Guolei Cao
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Peiwen Fan
- Cancer Institution, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Ronghui Ma
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Qinghe Wang
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Lili He
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Haiwen Niu
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Qin Luo
- Department of Respiratory and Neurology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
4
|
Shirvaliloo M. LncRNA H19 promotes tumor angiogenesis in smokers by targeting anti-angiogenic miRNAs. Epigenomics 2023; 15:61-73. [PMID: 36802727 DOI: 10.2217/epi-2022-0145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
A key concept in drug discovery is the identification of candidate therapeutic targets such as long noncoding RNAs (lncRNAs) because of their extensive involvement in neoplasms, and impressionability by smoking. Induced by exposure to cigarette smoke, lncRNA H19 targets and inactivates miR-29, miR-30a, miR-107, miR-140, miR-148b, miR-199a and miR-200, which control the rate of angiogenesis by inhibiting BiP, DLL4, FGF7, HIF1A, HIF1B, HIF2A, PDGFB, PDGFRA, VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2 and VEGFR3. Nevertheless, these miRNAs are often dysregulated in bladder cancer, breast cancer, colorectal cancer, glioma, gastric adenocarcinoma, hepatocellular carcinoma, meningioma, non-small-cell lung carcinoma, oral squamous cell carcinoma, ovarian cancer, prostate adenocarcinoma and renal cell carcinoma. As such, the present perspective article seeks to establish an evidence-based hypothetical model of how a smoking-related lncRNA known as H19 might aggravate angiogenesis by interfering with miRNAs that would otherwise regulate angiogenesis in a nonsmoking individual.
Collapse
Affiliation(s)
- Milad Shirvaliloo
- Infectious & Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, 15731, Iran.,Future Science Group, Unitec House, 2 Albert Place, London, N3 1QB, UK
| |
Collapse
|
5
|
Yang M, Zhang Y, Li M, Liu X, Darvishi M. The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies. Cancer Cell Int 2023; 23:24. [PMID: 36765409 PMCID: PMC9912632 DOI: 10.1186/s12935-022-02837-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 02/12/2023] Open
Abstract
After skin malignancy, breast cancer is the most widely recognized cancer detected in women in the United States. Breast cancer (BCa) can happen in all kinds of people, but it's much more common in women. One in four cases of cancer and one in six deaths due to cancer are related to breast cancer. Angiogenesis is an essential factor in the growth of tumors and metastases in various malignancies. An expanded level of angiogenesis is related to diminished endurance in BCa patients. This function assumes a fundamental part inside the human body, from the beginning phases of life to dangerous malignancy. Various factors, referred to as angiogenic factors, work to make a new capillary. Expanding proof demonstrates that angiogenesis is managed by microRNAs (miRNAs), which are small non-coding RNA with 19-25 nucleotides. MiRNA is a post-transcriptional regulator of gene expression that controls many critical biological processes. Endothelial miRNAs, referred to as angiomiRs, are probably concerned with tumor improvement and angiogenesis via regulation of pro-and anti-angiogenic factors. In this article, we reviewed therapeutic functions of miRNAs in BCa angiogenesis, several novel delivery carriers for miRNA-based therapeutics, as well as CRISPR/Cas9 as a targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Ying Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Min Li
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin, 132101 China
| | - Mohammad Darvishi
- Infectious Diseases and Tropical Medicine Research Center (IDTMRC), Department of Aerospace and Subaquatic Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Zhuang Y, Cheng M, Li M, Cui J, Huang J, Zhang C, Si J, Lin K, Yu H. Small extracellular vesicles derived from hypoxic mesenchymal stem cells promote vascularized bone regeneration through the miR-210-3p/EFNA3/PI3K pathway. Acta Biomater 2022; 150:413-426. [PMID: 35850484 DOI: 10.1016/j.actbio.2022.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Angiogenesis is closely coupled with osteogenesis and has equal importance. Thus, promoting angiogenesis during the bone repair process is vital for ideal bone regeneration. As important mediators of cell-cell communication and biological homeostasis, mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proved to be highly involved in bone and vascular regeneration. Because hypoxia microenvironment promotes the proangiogenic activity of MSCs, in the present study, we investigate the effect and underlying molecular mechanisms of sEVs from hypoxia-preconditioned MSCs (hypo-sEVs) on angiogenesis and develop an effective strategy to promote vascularized bone regeneration. Compared to sEVs from normoxia MSCs (nor-sEVs), hypo-sEVs promoted the proliferation, migration, and angiogenesis of HUVECs and ultimately enhanced bone regeneration and new blood vessel reconstruction in a critical-size calvarial bone defect model. miRNA sequence and the verified results showed that miR-210-3p in hypo-sEVs was increased via HIF-1α under hypoxia. The upregulated miR-210-3p in hypo-sEVs promoted angiogenesis by downregulating EFNA3 expression and enhancing the phosphorylation of the PI3K/AKT pathway. Thus, this study suggests a successful strategy to enhance vascularized bone regeneration by utilizing hypo-sEVs via the miR-210-3p/EFNA3/PI3K/AKT pathway. STATEMENT OF SIGNIFICANCE: Considering the significance of vascularization in ideal bone regeneration, strategies to promote angiogenesis during bone repair are required. Hypoxia microenvironment can promote the proangiogenic potential of mesenchymal stem cells (MSCs). Nonetheless, the therapeutic effect of small extracellular vesicles (sEVs) from hypoxia-preconditioned MSCs on cranio-maxillofacial bone defect remains unknown, and the underlying mechanism is poorly understood. This study shows that hypo-sEVs significantly enhance the proliferation, migration, and angiogenesis of HUVECs as well as promote vascularized bone formation. Moreover, this work indicates that HIF-1α can induce overexpression of miR-210-3p under hypoxia, and miR-210-3p can hinder EFNA3 expression and subsequently activate the PI3K/AKT pathway. The application of hypo-sEVs provides a facile and promising strategy to promote vascularized bone regeneration in a critical-size bone defect model.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Meng Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Jinjie Cui
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Jiawen Si
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Hongbo Yu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
7
|
Zhang P, Li X, Huang L, Hu F, Niu X, Sun Y, Yao W. Association between microRNA 671 polymorphisms and the susceptibility to soft tissue sarcomas in a Chinese population. Front Oncol 2022; 12:960269. [PMID: 36016604 PMCID: PMC9396023 DOI: 10.3389/fonc.2022.960269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the association between the microRNA (miRNA) gene polymorphisms and the susceptibility to soft tissue sarcomas (STSs). In this case–control study, DNA was extracted from leukocytes in peripheral blood, which was collected from 169 STSs patients and 170 healthy controls. Three SNPs for miR-210, five SNPs for miR-206, two SNPs for miR-485, two SNPs for miR-34b, two SNPs for miR-671, and three SNPs for miR-381 were investigated and genotyped using a Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform. Unconditional logistic regression analysis was used to analyze the association between miRNA gene polymorphisms and the susceptibility to STSs. The results showed that miR-671 rs1870238 GC + CC (OR = 1.963, 95% CI = 1.258–3.064, P = 0.003) and miR-671 rs2446065 CG + GG (OR =1.838, 95% CI = 1.178–2.868, P = 0.007) may be genetic risk factors for STSs after adjustment for age and smoking. Therefore, this study suggests that individuals carrying the GC + CC genotype for miR-671 rs1870238 or the CG + GG genotype for miR-671 rs2446065 are susceptible to STSs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Peng Zhang,
| | - Xinling Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
9
|
miRNA signatures in diabetic retinopathy and nephropathy: delineating underlying mechanisms. J Physiol Biochem 2022; 78:19-37. [DOI: 10.1007/s13105-021-00867-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
|
10
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|
11
|
Zhong JC, Li XB, Lyu WY, Ye WC, Zhang DM. Natural products as potent inhibitors of hypoxia-inducible factor-1α in cancer therapy. Chin J Nat Med 2021; 18:696-703. [PMID: 32928513 DOI: 10.1016/s1875-5364(20)60008-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Hypoxia is a prominent feature of tumors. Hypoxia-inducible factor-1α (HIF-1α), a major subunit of HIF-1, is overexpressed in hypoxic tumor tissues and activates the transcription of many oncogenes. Accumulating evidence has demonstrated that HIF-1α promotes tumor angiogenesis, metastasis, metabolism, and immune evasion. Natural products are an important source of antitumor drugs and numerous studies have highlighted the crucial role of these agents in modulating HIF-1α. The present review describes the role of HIF-1α in tumor progression, summarizes natural products used as HIF-1α inhibitors, and discusses the potential of developing natural products as HIF-1α inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Cheng Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wen-Yu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Sun Z, Tan Z, Peng C, Yi W. HK2 is associated with the Warburg effect and proliferation in liver cancer: Targets for effective therapy with glycyrrhizin. Mol Med Rep 2021; 23:343. [PMID: 33760124 PMCID: PMC7974329 DOI: 10.3892/mmr.2021.11982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 11/06/2022] Open
Abstract
Glycyrrhizin (GA) is the most essential active ingredient in licorice root, and has a wide range of biological and pharmacological activities. The present study aimed to conduct a detailed analysis of the effects of GA on liver cancer (LC) cell proliferation and the Warburg effect. Hexokinase‑2 (HK2) is a glycolytic enzyme that catalyzes the Warburg effect. To this end, the LC HepG2 cell line was transfected with small interfering RNA‑HK2 or pCDNA3.1‑HK2, followed by GA treatment. A Cell Counting Kit‑8 assay and EdU staining were employed to evaluate the proliferation rate of LC cells. The expression levels of HK2 and the phosphorylation level of AKT were measured by reverse transcription‑quantitative PCR and western blotting, respectively. Furthermore, the glucose uptake capacity and lactic acid content were assessed by kits, and the glycolysis level was evaluated by assessing the extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR). A pronounced increase in the OCR, and decreases in the cell proliferation, glucose uptake capacity, lactic acid content, ECAR and HK2 expression were detected in LC cells subjected to GA treatment or HK2‑knockdown. Conversely, overexpression of HK2 reversed these trends, indicating that glycyrrhizin may inhibit LC cell proliferation and the Warburg effect through suppression of HK2. In addition, it was revealed that the PI3K/AKT signaling pathway was associated with LC cell proliferation and the Warburg effect; notably, treatment of LC cells with the AKT agonist SC79 induced elevation of the ECAR, cell proliferation, glucose uptake capacity, lactic acid content, phosphorylated‑AKT and HK2 expression, and suppressed the OCR. In conclusion, GA may inhibit the Warburg effect and cell proliferation in LC by suppressing HK2 through blockade of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zengpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Zhiguo Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Weimin Yi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| |
Collapse
|
13
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
14
|
Shan C, Chen X, Cai H, Hao X, Li J, Zhang Y, Gao J, Zhou Z, Li X, Liu C, Li P, Wang K. The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021; 17:134-150. [PMID: 33390839 PMCID: PMC7757044 DOI: 10.7150/ijbs.50773] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a conserved catabolic process involving the degradation and recycling of damaged biomacromolecules or organelles through lysosomal-dependent pathways and plays a crucial role in maintaining cell homeostasis. Consequently, abnormal autophagy is associated with multiple diseases, such as infectious diseases, neurodegenerative diseases and cancer. Currently, autophagy is considered to be a dual regulator in cancer, functioning as a suppressor in the early stage while supporting the growth and metastasis of cancer cells in the later stage and may also produce therapeutic resistance. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level by silencing targeted mRNA. MiRNAs have great regulatory potential for several fundamental biological processes, including autophagy. In recent years, an increasing number of studies have linked miRNA dysfunction to the growth, metabolism, migration, metastasis, and responses of cancer cells to therapy. Therefore, the study of autophagy-related miRNAs in cancer will provide insights into cancer biology and lead to the development of novel anti-cancer strategies. In the present review, we summarise the current knowledge of miRNA dysregulation during autophagy in cancer, focusing on the relationship between autophagy and miRNAs, and discuss their involvement in cancer biology and cancer treatment.
Collapse
Affiliation(s)
- Chan Shan
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinzhe Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Hongjing Cai
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiaodan Hao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jing Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yinfeng Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Zhixia Zhou
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xinmin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cuiyun Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
15
|
Ma J, Tao X, Huang Y. Silencing microRNA-210 in Hypoxia-Induced HUVEC-Derived Extracellular Vesicles Inhibits Hemangioma. Cerebrovasc Dis 2020; 49:462-473. [PMID: 32877893 DOI: 10.1159/000508302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hemangioma (Hem) is a benign tumor commonly seen in infancy with a relative high morbidity. Human umbilical vein endothelial cell (HUVEC)-derived extracellular vesicles (EVs) are actively participated in Hem. Therefore, this study is designed to figure out the underlying mechanism of HUVEC-derived EVs in Hem. METHODS Initially, EVs were separated from HUVECs and identified. HUVEC-derived EVs in normoxia or hypoxia were then cultivated with Hem endothelial cells (HemECs) to test the proliferation, apoptosis, and migration of HemECs. Microarray analysis was performed to select microRNAs (miRs) with differential expression. miR-210 in hypoxia-induced HUVECs was silenced, and the relevant EVs were extracted and then co-cultured with HemECs to perform biological effect experiments. Then, the target relation between miR-210 and homeobox A9 (HOXA9) was identified by the dual luciferase reporter gene assay and RNA immunoprecipitation assay. Moreover, xenograft transplantation was also applied to confirm the in vitro experiments. RESULTS Hypoxia-induced HUVECs promoted release of EVs, which were absorbed by HemECs. Hypoxia-induced HUVEC-EVs promoted HemEC proliferation and migration and inhibited apoptosis. miR-210 from the hypoxia-induced HUVEC-EVs was highly expressed and promoted HemEC growth. Silencing miR-210 expression in the hypoxia-induced HUVEC-EVs suppresses Hem development in vivo. In addition, miR-210 targeted HOXA9. CONCLUSION Silencing miR-210 in HUVEC-derived EVs could suppress Hem by targeting HOXA9. This investigation may provide novel insights for Hem treatment.
Collapse
Affiliation(s)
- Jingwen Ma
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou, China,
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
16
|
Li F, Zhang J, Liao R, Duan Y, Tao L, Xu Y, Chen A. Mesenchymal stem cell‑derived extracellular vesicles prevent neural stem cell hypoxia injury via promoting miR‑210‑3p expression. Mol Med Rep 2020; 22:3813-3821. [PMID: 33000190 PMCID: PMC7533502 DOI: 10.3892/mmr.2020.11454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Neural stem cells (NSCs) have the potential to give rise to offspring cells and hypoxic injury can impair the function of NSCs. The present study investigated the effects of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) on NSC injury, as well as the underlying mechanisms. MSC-EVs were isolated and identified via morphological and particle size analysis. Cobalt chloride was used to establish a hypoxic injury model in NSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to detect apoptosis. Reverse transcription-quantitative PCR was performed to detect the expression levels of miR-210-3p, and western blotting was used to detect the expression levels of apoptosis-inducing factor (AIF) and Bcl-2 19 kDa interacting protein (BNIP3). Compared with the control group, NSC apoptosis, and the expression of miR-210-3p, AIF and BNIP3 were significantly higher in the cobalt chloride-induced hypoxia group. By contrast, treatment with MSC-EVs further increased miR-210-3p expression levels, but reduced NSC apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). In addition, miR-210-3p inhibitor reduced miR-210-3p expression, but promoted hypoxia-induced apoptosis and the expression levels of AIF and BNIP3 compared with the model group (P<0.05). Collectively, the results suggested that MSC-EVs prevented NSC hypoxia injury by promoting miR-210-3p expression, which might reduce AIF and BNIP3 expression levels and NSC apoptosis.
Collapse
Affiliation(s)
- Fang Li
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie Zhang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rui Liao
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yongchun Duan
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lili Tao
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yuwei Xu
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Anbao Chen
- Department of Emergency Internal Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
17
|
Hermanowicz JM, Kwiatkowska I, Pawlak D. Important players in carcinogenesis as potential targets in cancer therapy: an update. Oncotarget 2020; 11:3078-3101. [PMID: 32850012 PMCID: PMC7429179 DOI: 10.18632/oncotarget.27689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of cancer is a problem that has accompanied mankind for years. The growing number of cases, emerging drug resistance, and the need to reduce the serious side effects of pharmacotherapy are forcing scientists to better understand the complex mechanisms responsible for the initiation, promotion, and progression of the disease. This paper discusses the modulation of the particular stages of carcinogenesis by selected physiological factors, including: acetylcholine (ACh), peroxisome proliferator-activated receptors (PPAR), fatty acid-binding proteins (FABPs), Bruton's tyrosine kinase (Btk), aquaporins (AQPs), insulin-like growth factor-2 (IGF-2), and exosomes. Understanding their role may contribute to the development of more effective and safer therapies based on new binding sites.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza, Bialystok, Poland
| |
Collapse
|
18
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|
19
|
OSCC Exosomes Regulate miR-210-3p Targeting EFNA3 to Promote Oral Cancer Angiogenesis through the PI3K/AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2125656. [PMID: 32695810 PMCID: PMC7368228 DOI: 10.1155/2020/2125656] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
This study is aimed at determining how oral squamous cell carcinoma (OSCC) regulates the angiogenesis of HUVECs through miR-210-3p expression and exploring the relationship among miR-210-3p, its target protein, and the possible mechanism of angiogenesis regulation. miR-210-3p expression was detected in OSCC tissues and juxta cancerous tissues (JCT), and the relationship among miR-210-3p, microvessel density (MVD), and histopathologic features was analyzed. A conditioned medium (CM) of the OSCC cell line CAL27 was collected to stimulate human umbilical vein endothelial cells (HUVECs), and the miR-210-3p levels and tube formation capability of HUVECs were measured. The target protein level of miR-210-3p was altered; then, PI3K/AKT pathway activation in HUVECs was detected. miR-210-3p was tested in exosomes separated from CAL27 CM, and the transfer of miR-210-3p from OSCC exosomes to HUVECs was verified. Then, we found that the OSCC tissues had higher miR-210-3p levels than the JCT, and miR-210-3p level was positively correlated with MVD and tumor grade. CAL27 CM was able to elevate miR-210-3p levels in HUVECs and promoted tube formation. EFNA3 was the target gene of miR-210-3p, and ephrinA3 protein level was able to influence the migration and proliferation of HUVECs. The levels of phosphorylated AKT in the HUVECs increased when ephrinA3 was downregulated, and the upregulation of ephrinA3 resulted in the suppression of the PI3K/AKT pathway. miR-210-3p was detected in exosomes isolated from the CM of CAL27 cells, and miR-210-3p level in the HUVECs was elevated after absorbing the OSCC exosomes. In conclusion, miR-210-3p was more overexpressed in OSCC tissues than in the JCT. The exosomes secreted by OSCC cells were able to upregulate miR-210-3p expression and reduce ephrinA3 expression in HUVECs and promoted tube formation through the PI3K/AKT signaling pathway.
Collapse
|
20
|
Pourhanifeh MH, Mahjoubin-Tehran M, Karimzadeh MR, Mirzaei HR, Razavi ZS, Sahebkar A, Hosseini N, Mirzaei H, Hamblin MR. Autophagy in cancers including brain tumors: role of MicroRNAs. Cell Commun Signal 2020; 18:88. [PMID: 32517694 PMCID: PMC7285723 DOI: 10.1186/s12964-020-00587-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract
Collapse
Affiliation(s)
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Razavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayyerehsadat Hosseini
- Medical Genetics Research Center, Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Yin C, Lin X, Sun Y, Ji X. Dysregulation of miR-210 is involved in the development of diabetic retinopathy and serves a regulatory role in retinal vascular endothelial cell proliferation. Eur J Med Res 2020; 25:20. [PMID: 32498701 PMCID: PMC7271497 DOI: 10.1186/s40001-020-00416-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Diabetic retinopathy is a common complication of diabetes mellitus (DM). The purpose of this study was to investigate the expression and clinical significance of miR-210 in DR patients and explore the regulatory effect of miR-210 on vascular endothelial cell function under high-glucose condition. Methods Quantitative real-time PCR was used to estimate miR-210 expression. A receiver operating characteristics curve (ROC) was plotted to evaluate the diagnostic value of miR-210. Human umbilical vein endothelial cells (HUVECs) were used and treated with high glucose (30 mM), and the cell proliferation was assessed by MTT assay. Results Serum expression of miR-210 was upregulated in DR patients compared with DM without DR patients and healthy controls. The expression of miR-210 in proliferative DR (PDR) patients was higher than non-proliferative DR (NPDR) patients. The increased serum miR-210 could be used to distinguish DR cases from healthy individuals and also simple DM patients, and can screen PDR cases from NPDR cases. The overexpression of miR-210 promoted HUVEC proliferation, while the knockdown of miR-210 resulted in the opposite effect under a high-glucose condition. Conclusion The data of this study demonstrated that serum increased miR-210 serves as a diagnostic biomarker in DR patients and may have the ability to predict DR development and severity. The regulatory effect of miR-210 on vascular endothelial cell proliferation under high-glucose condition, indicating its therapeutic potential in the treatment of diabetic vascular diseases.
Collapse
Affiliation(s)
- Chengyu Yin
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, No. 600, Changcheng Road, Qingdao, Shandong, 266000, China.
| | - Xiangqiang Lin
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, No. 600, Changcheng Road, Qingdao, Shandong, 266000, China
| | - Yafei Sun
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, No. 600, Changcheng Road, Qingdao, Shandong, 266000, China
| | - Xinli Ji
- Department of Ophthalmology, Qingdao Chengyang People's Hospital, No. 600, Changcheng Road, Qingdao, Shandong, 266000, China
| |
Collapse
|
22
|
Velásquez C, Mansouri S, Gutiérrez O, Mamatjan Y, Mollinedo P, Karimi S, Singh O, Terán N, Martino J, Zadeh G, Fernández-Luna JL. Hypoxia Can Induce Migration of Glioblastoma Cells Through a Methylation-Dependent Control of ODZ1 Gene Expression. Front Oncol 2019; 9:1036. [PMID: 31649891 PMCID: PMC6795711 DOI: 10.3389/fonc.2019.01036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/24/2019] [Indexed: 01/31/2023] Open
Abstract
The transmembrane protein ODZ1 has been associated with the invasive capacity of glioblastoma (GBM) cells through upregulation of RhoA/ROCK signaling, but the mechanisms triggering the ODZ1 pathway remain elusive. In addition, it is widely accepted that hypoxia is one of the main biological hallmarks of the GBM microenvironment and it is associated with treatment resistance and poor prognosis. Here we show that hypoxic tumor regions express higher levels of ODZ1 and that hypoxia induces ODZ1 expression in GBM cells by regulating the methylation status of the ODZ1 promoter. Hypoxia-induced upregulation of ODZ1 correlates with higher migration capacity of GBM cells that is drastically reduced by knocking down ODZ1. In vitro methylation of the promoter decreases its transactivation activity and we found a functionally active CpG site at the 3'end of the promoter. This site is hypermethylated in somatic neural cells and mainly hypomethylated in GBM cells. Mutagenesis of this CpG site reduces the promoter activity in response to hypoxia. Overall, we identify hypoxia as the first extracellular activator of ODZ1 expression and describe that hypoxia controls the levels of this migration-inducer, at least in part, by regulating the methylation status of the ODZ1 gene promoter.
Collapse
Affiliation(s)
- Carlos Velásquez
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.,MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Sheila Mansouri
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Olga Gutiérrez
- Genetics Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Yasin Mamatjan
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Pilar Mollinedo
- Genetics Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Shirin Karimi
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Olivia Singh
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Nuria Terán
- Department of Pathology, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Juan Martino
- Department of Neurological Surgery and Spine Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Gelareh Zadeh
- MacFeeters-Hamilton Centre for Neuro-Oncology Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Division of Neurosurgery, Toronto Western Hospital/University Health Network, University of Toronto, Toronto, ON, Canada
| | - José L Fernández-Luna
- Genetics Unit, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
23
|
Zhu FX, Wang XT, Zeng HQ, Yin ZH, Ye ZZ. A predicted risk score based on the expression of 16 autophagy-related genes for multiple myeloma survival. Oncol Lett 2019; 18:5310-5324. [PMID: 31612041 PMCID: PMC6781562 DOI: 10.3892/ol.2019.10881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy has an important role in the pathogenesis of plasma cell development and multiple myeloma (MM); however, the prognostic role of autophagy-related genes (ARGs) in MM remains undefined. In the present study, the expression profiles of 234 ARGs were obtained from a Gene Expression Omnibus dataset (accession GSE24080), which contains 559 samples of patients with MM analyzed with 54,675 probes. Univariate Cox regression analysis identified 55 ARGs that were significantly associated with event-free survival of MM. Furthermore, a risk score with 16 survival-associated ARGs was developed using multivariate Cox regression analysis, including ATIC, BNIP3L, CALCOCO2, DNAJB1, DNAJB9, EIF4EBP1, EVA1A, FKBP1B, FOXO1, FOXO3, GABARAP, HIF1A, NCKAP1, PRKAR1A and SUPT20H, was constructed. Using this prognostic signature, patients with MM could be separated into high- and low-risk groups with distinct clinical outcomes. The area under the curve values for the receiver operating characteristic curves were 0.740, 0.741 and 0.712 for 3, 5 and 10 years prognosis predictions, respectively. Notably, the prognostic role of this risk score could be validated with another four independent cohorts (accessions: GSE57317, GSE4581, GSE4452 and GSE4204). In conclusion, ARGs may serve vital roles in the progression of MM, and the ARGs-based prognostic model may provide novel ideas for clinical applications in MM.
Collapse
Affiliation(s)
- Fang-Xiao Zhu
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Xiao-Tao Wang
- Department of Hematology, The Second Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China
| | - Hui-Qiong Zeng
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Hua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| | - Zhi-Zhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
24
|
Yang X, Wang P. MiR-188-5p and MiR-141-3p influence prognosis of bladder cancer and promote bladder cancer synergistically. Pathol Res Pract 2019; 215:152598. [PMID: 31562019 DOI: 10.1016/j.prp.2019.152598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/28/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
MicroRNA (miRNA) plays a significant role in suppressing the occurrence and development of tumor by inhibiting the translation of target proteins. Although previous researches have verified many miRNAs' functions in bladder cancer (BC), the function of miR-188-5p and miR-141-3p in BC still remains unknown. Our experiment manifested that miR-188-5p and miR-141-3p were highly expressed in BC tissues and cells, which indicated a poor prognosis. In vitro functional assays suggested that down-regulated miR-188-5p and miR-141-3p inhibited the proliferation, migration and invasion of BC cells, while a combination of half dose down-regulated miR-188-5p and half dose down-regulated miR-141-3p demonstrated a more obvious inhibition effect. All results indicated that miR-188-5p and miR-141-3p promoted BC respectively and synergistically. Therefore, miR-188-5p and miR-141-3p will not only assist the diagnosis of BC, but also serve as more effective joint markers to predict the progression of BC.
Collapse
Affiliation(s)
- Xianxu Yang
- China Medical University, Shenyang 110013, China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Shenyang 110122, China.
| |
Collapse
|
25
|
Han B, Zheng Y, Wang L, Wang H, Du J, Ye F, Sun T, Zhang L. A novel microRNA signature predicts vascular invasion in hepatocellular carcinoma. J Cell Physiol 2019; 234:20859-20868. [PMID: 30997686 DOI: 10.1002/jcp.28690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 12/14/2022]
Abstract
Vascular invasion (VI) in hepatocellular carcinoma (HCC) is an important clinical parameter to predict survival. In this study, we collected microRNA (miRNA) expression data from HCC patients using The Cancer Genome Atlas database and identified a novel miRNA signature associated with VI. First, we categorized HCC patients into groups with or without VI (VI+ and VI-). We identified three miRNAs (miRNA-210, miRNA-10b, and miRNA-9-1) that were associated with VI according to a Kaplan-Meier analysis. This three-miRNA signature exhibited good predictive ability for VI in patients with HCC according to a receiver operating characteristic curve analysis at 1, 3, and 5 years. Patients with HCC with a high risk score exhibited a trend toward worse outcomes as determined by multivariable Cox regression and stratified analyses. This three-miRNA signature provides an accurate prediction of VI and can be used as an independent prognostic indicator for predicting VI in HCC patients.
Collapse
Affiliation(s)
- Bing Han
- Department of GICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Zheng
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haixu Wang
- Department of GICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxin Du
- Department of GICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tongwen Sun
- Department of GICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lianfeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci 2019; 76:453-471. [PMID: 30317527 PMCID: PMC11105242 DOI: 10.1007/s00018-018-2941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Hypoxia inducible factor-1α (HIF-1α) is a central molecule involved in mediating cellular processes. Alterations of HIF-1α and hypoxically regulated microRNAs (miRNAs) are correlated with patients' outcome in various cancers, indicating their crucial roles on cancer development. Recently, an increasing number of studies have revealed the intricate regulations between miRNAs and HIF-1α in modulating a wide variety of processes, including proliferation, metastasis, apoptosis, and drug resistance, etc. miRNAs are a class of small noncoding RNAs which function as negative regulators by directly targeting mRNAs. Evidence shows that miRNAs can be regulated by HIF-1α at transcriptional level. In turn, HIF-1α itself can be modulated by many miRNAs whose alterations have been implicated in tumorigenesis, thus forming a reciprocal regulation network. These findings add a new layer of complexity to our understanding of HIF-1α regulatory networks. Here, we will provide a comprehensive overview of the current advances about the bidirectional interactions between HIF-1α and miRNAs in human cancers. Besides, the review will summarize the roles of miRNAs/HIF-1α crosstalk according to various cellular processes. Finally, the potential values of miRNAs/HIF-1α loops in clinical applications are discussed.
Collapse
Affiliation(s)
- Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Jiaojiao Ma
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Bo Cao
- Air Force Military Medical University, Xi'an, China
| | - Xin Zhou
- Air Force Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Kong F, Ran W, Jiang N, Li S, Zhang D, Sun D. Identification and characterization of differentially expressed miRNAs in HepG2 cells under normoxic and hypoxic conditions. RSC Adv 2019; 9:16884-16891. [PMID: 35516357 PMCID: PMC9064406 DOI: 10.1039/c9ra01523j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are important post-transcriptional regulators involved in hypoxia conditions; however, their roles in HepG2 cells remain poorly understood. Our previous study showed that hypoxia treatment modulated gene expression accompanied by with HepG2 cell proliferation arrest and increased cell death. To better understand the mechanism of phenotypic changes of HepG2 under hypoxia conditions; we conducted a comparative RNA sequencing to identify differentially expressed miRNAs between hypoxia treatment and control cells. In total, 165 differentially expressed miRNAs were identified, among which the expression of 114 miRNAs were up-regulated and that of 51 miRNAs were down-regulated in hypoxia treated HepG2 cells. Expression profiles of eleven randomly selected miRNAs were validated by qRT-PCR. Furthermore, 19 367 annotated target genes of differentially expressed miRNAs were predicted by bioinformatics tools. The Gene Ontology analysis indicated that the molecular function of target genes was primarily related to binding and catalytic activity, and that the Kyoto Encyclopedia of Genes and Genomes annotation for target genes were further classified into pathways involved in cellular processes, metabolism, organismal systems, genetic information processing, human disease and environmental information processing. Among the environmental information processing, certain pathways associated with cell proliferation and apoptosis, such as the hippo signalling pathway, wnt signalling pathway, MAPK signalling pathway and Jak-STAT signaling pathways, represented potential factors in the response to hypoxia treatment. In conclusion, the expression profiles of miRNA in HepG2 cells were significantly altered under hypoxia conditions; which were closely related to cell proliferation arrest and apoptosis. Our findings expand our understanding of miRNAs function in regulating cell fate under hypoxia conditions. MicroRNAs (miRNAs) are important post-transcriptional regulators involved in hypoxia conditions; however, their roles in HepG2 cells remain poorly understood.![]()
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| | - Wei Ran
- College of Animal Science and Veterinary Medicine
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| | - Ning Jiang
- College of Animal Science and Veterinary Medicine
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| | - Shize Li
- College of Animal Science and Veterinary Medicine
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| | - Dongjie Zhang
- College of Food Science
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine
- Heilongjiang Bayi Agricultural University
- Daqing 163319
- P. R. China
| |
Collapse
|
28
|
Sun L, Li W, Lei F, Li X. The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med 2018; 22:4568-4587. [PMID: 29956461 PMCID: PMC6156236 DOI: 10.1111/jcmm.13700] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level via either the degradation or translational repression of a target mRNA. They play an irreplaceable role in angiogenesis by regulating the proliferation, differentiation, apoptosis, migration and tube formation of angiogenesis-related cells, which are indispensable for multitudinous physiological and pathological processes, especially for the occurrence and development of vascular diseases. Imbalance between the regulation of miRNAs and angiogenesis may cause many diseases such as cancer, cardiovascular disease, aneurysm, Kawasaki disease, aortic dissection, phlebothrombosis and diabetic microvascular complication. Therefore, it is important to explore the essential role of miRNAs in angiogenesis, which might help to uncover new and effective therapeutic strategies for vascular diseases. This review focuses on the interactions between miRNAs and angiogenesis, and miRNA-based biomarkers in the diagnosis, treatment and prognosis of angiogenesis-related diseases, providing an update on the understanding of the clinical value of miRNAs in targeting angiogenesis.
Collapse
Affiliation(s)
- Li‐Li Sun
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wen‐Dong Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| | - Feng‐Rui Lei
- Department of Vascular Surgerythe Second Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiao‐Qiang Li
- Department of Vascular Surgerythe Affiliated Drum Tower HospitalNanjing University Medical SchoolNanjingChina
| |
Collapse
|
29
|
Silakit R, Kitirat Y, Thongchot S, Loilome W, Techasen A, Ungarreevittaya P, Khuntikeo N, Yongvanit P, Yang JH, Kim NH, Yook JI, Namwat N. Potential role of HIF-1-responsive microRNA210/HIF3 axis on gemcitabine resistance in cholangiocarcinoma cells. PLoS One 2018; 13:e0199827. [PMID: 29953500 PMCID: PMC6023215 DOI: 10.1371/journal.pone.0199827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-210 (miR-210) is a robust target for hypoxia-inducible factor, and its overexpression has been detected in a variety of solid tumors. However, the role of miR-210 in the development, progression and response to therapy in cholangiocarcinoma (CCA) remains undefined. We report here that high miR-210 expression was significantly correlated with the shorter survival of CCA patients. Overexpression of miR-210 inhibited CCA cell proliferation at the G2/M phase and reduced the gemcitabine sensitivity in CCA cells under CoCl2-induced pseudohypoxia. Concomitantly, inhibition of endogenous miR-210 activity using miRNA sponges increased cell proliferation under CoCl2-induced pseudohypoxia, resulting in an increase in gemcitabine sensitivity in CCA cells. We showed that HIF-3α, a negative controller of HIF-1α, was a target of miR-210 constituting a feed-forward hypoxic regulatory loop. Our data suggest an important role of miR-210 in sustaining HIF-1α activity via the suppression of HIF-3α, regulating cell growth and chemotherapeutic drug resistance in CCA.
Collapse
Affiliation(s)
- Runglawan Silakit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Yingpinyapat Kitirat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Suyanee Thongchot
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Puangrat Yongvanit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Ji Hye Yang
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, Korea
- * E-mail: (NN); (JIY)
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail: (NN); (JIY)
| |
Collapse
|
30
|
Liu X, Zhang C, Wang C, Sun J, Wang D, Zhao Y, Xu X. miR-210 promotes human osteosarcoma cell migration and invasion by targeting FGFRL1. Oncol Lett 2018; 16:2229-2236. [PMID: 30008923 PMCID: PMC6036426 DOI: 10.3892/ol.2018.8939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a common bone tumor and a frequently occuring cancer-associated threat to children. Notably, the prognosis of osteosarcoma is very poor when it is diagnosed with metastasis. A growing number of studies have indicated that various microRNAs (miRs) serve important regulatory roles in the pathogeny of different types of cancer. However, the functions of miR-210 in osteosarcoma need to be elucidated comprehensively. The aim of the present study was to investigate the potential roles of miR-210 in osteosarcoma by targeting fibroblast growth factor receptor-like 1 (FGFRL1). Reverse transcription-quantitative polymerase chain reaction results revealed that the expression of miR-210 was highly elevated while FGFRL1 expression was reduced inversely in osteosarcoma tissues compared with matched normal tissues. The results of Transwell assays showed that miR-210 promoted osteosarcoma cell migration and invasion. Furthermore, the luciferase reporter assay results suggested that miR-210 could directly bind to FGFRL1 in osteosarcoma cells. In addition, the present findings demonstrated that miR-210 could negatively regulate FGFRL1 expression by targeting the 3′untranslated region. In conclusion, the findings of the present study suggested that miR-210 exerted tumor carcinogenic functions in osteosarcoma by targeting FGFRL1. The findings of this study demonstrated that FGFRL1 was a direct target of miR-210 in osteosarcoma involved in the promoting functions mediated by miR-210 in the invasion and migration of osteosarcoma, suggesting that miR-210/FGFRL1 may be promising for discovering diagnostic and prognostic biomarkers for the therapies of osteosarcoma.
Collapse
Affiliation(s)
- Xiangjun Liu
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Chengfeng Zhang
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Cunhua Wang
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Jianwei Sun
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Deliang Wang
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Yansheng Zhao
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Xiaohui Xu
- Department of Orthopedics, The People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|
31
|
Song W, Yan D, Wei T, Liu Q, Zhou X, Liu J. Tumor-derived extracellular vesicles in angiogenesis. Biomed Pharmacother 2018; 102:1203-1208. [PMID: 29710539 DOI: 10.1016/j.biopha.2018.03.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is crucial for tumor growth and metastasis. Recent studies revealed that tumor cells promote angiogenesis by secreting extracellular vesicles, which can be captured by endothelial cells. These tumor-derived extracellular vesicles carry microRNAs, long non-coding RNAs, and proteins, which activate pro-angiogenic signaling in endothelial cells. In this review, we will summarize the roles of tumor-derived extracellular vesicles in angiogenesis and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Wei Song
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Dong Yan
- Department of Orthopaedics, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Tianshu Wei
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Qiang Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Xia Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 85 Jingyi Road, Jinan, Shandong, 250001, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|