1
|
Chen L, Xu YX, Wang YS, Ren YY, Chen YM, Zheng C, Xie T, Jia YJ, Zhou JL. Integrative Chinese-Western medicine strategy to overcome docetaxel resistance in prostate cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118265. [PMID: 38677579 DOI: 10.1016/j.jep.2024.118265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicines (TCMs) have emerged as a promising complementary therapy in the management of prostate cancer (PCa), particularly in addressing resistance to Docetaxel (DTX) chemotherapy. AIM OF THE REVIEW This review aims to elucidate the mechanisms underlying the development of resistance to DTX in PCa and explore the innovative approach of integrating TCMs in PCa treatment to overcome this resistance. Key areas of investigation include alterations in microtubule proteins, androgen receptor and androgen receptor splice variant 7, ERG rearrangement, drug efflux mechanisms, cancer stem cells, centrosome clustering, upregulation of the PI3K/AKT signaling pathway, enhanced DNA damage repair capability, and the involvement of neurotrophin receptor 1/protein kinase C. MATERIALS AND METHODS With "Prostate cancer", "Docetaxel", "Docetaxel resistance", "Natural compounds", "Traditional Chinese medicine", "Traditional Chinese medicine compound", "Medicinal plants" as the main keywords, PubMed, Web of Science and other online search engines were used for literature retrieval. RESULTS Our findings underscore the intricate interplay of molecular alterations that collectively contribute to the resistance of PCa cells to DTX. Moreover, we highlight the potential of TCMs as a promising complementary therapy, showcasing their ability to counteract DTX resistance and enhance therapeutic efficacy. CONCLUSION The integration of TCMs in PCa treatment emerges as an innovative approach with significant potential to overcome DTX resistance. This review not only provides insights into the mechanisms of resistance but also presents new prospects for improving the clinical outcomes of patients with PCa undergoing DTX therapy. The comprehensive understanding of these mechanisms lays the foundation for future research and the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yi-Min Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Department of Traditional Chinese Medicines, Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang 310052, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Ying-Jie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
2
|
Davies CR, Guo T, Burke E, Stankiewicz E, Xu L, Mao X, Scandura G, Rajan P, Tipples K, Alifrangis C, Wimalasingham AG, Galazi M, Crusz S, Powles T, Grey A, Oliver T, Kudahetti S, Shaw G, Berney D, Shamash J, Lu YJ. The potential of using circulating tumour cells and their gene expression to predict docetaxel response in metastatic prostate cancer. Front Oncol 2023; 12:1060864. [PMID: 36727071 PMCID: PMC9885040 DOI: 10.3389/fonc.2022.1060864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Docetaxel improves overall survival (OS) in castration-resistant prostate cancer (PCa) (CRPC) and metastatic hormone-sensitive PCa (mHSPC). However, not all patients respond due to inherent and/or acquired resistance. There remains an unmet clinical need for a robust predictive test to stratify patients for treatment. Liquid biopsy of circulating tumour cell (CTCs) is minimally invasive, can provide real-time information of the heterogeneous tumour and therefore may be a potentially ideal docetaxel response prediction biomarker. Objective In this study we investigate the potential of using CTCs and their gene expression to predict post-docetaxel tumour response, OS and progression free survival (PFS). Methods Peripheral blood was sampled from 18 mCRPC and 43 mHSPC patients, pre-docetaxel treatment, for CTC investigation. CTCs were isolated using the epitope independent Parsortix® system and gene expression was determined by multiplex RT-qPCR. We evaluated CTC measurements for post-docetaxel outcome prediction using receiver operating characteristics and Kaplan Meier analysis. Results Detection of CTCs pre-docetaxel was associated with poor patient outcome post-docetaxel treatment. Combining total-CTC number with PSA and ALP predicted lack of partial response (PR) with an AUC of 0.90, p= 0.037 in mCRPC. A significantly shorter median OS was seen in mCRPC patients with positive CTC-score (12.80 vs. 37.33 months, HR= 5.08, p= 0.0005), ≥3 total-CTCs/7.5mL (12.80 vs. 37.33 months, HR= 3.84, p= 0.0053), ≥1 epithelial-CTCs/7.5mL (14.30 vs. 37.33 months, HR= 3.89, p= 0.0041) or epithelial to mesenchymal transitioning (EMTing)-CTCs/7.5mL (11.32 vs. 32.37 months, HR= 6.73, p= 0.0001). Significantly shorter PFS was observed in patients with ≥2 epithelial-CTCs/7.5mL (7.52 vs. 18.83 months, HR= 3.93, p= 0.0058). mHSPC patients with ≥5 CTCs/7.5mL had significantly shorter median OS (24.57 vs undefined months, HR= 4.14, p= 0.0097). In mHSPC patients, expression of KLK2, KLK4, ADAMTS1, ZEB1 and SNAI1 was significantly associated with shorter OS and/or PFS. Importantly, combining CTC measurements with clinical biomarkers increased sensitivity and specificity for prediction of patient outcome. Conclusion While it is clear that CTC numbers and gene expression were prognostic for PCa post-docetaxel treatment, and CTC subtype analysis may have additional value, their potential predictive value for docetaxel chemotherapy response needs to be further investigated in large patient cohorts.
Collapse
Affiliation(s)
- Caitlin R. Davies
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Tianyu Guo
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Cell Biology and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Edwina Burke
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Elzbieta Stankiewicz
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Central Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lei Xu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xueying Mao
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Glenda Scandura
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Prabhakar Rajan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Karen Tipples
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom
| | - Constantine Alifrangis
- University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom,Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | | | - Myria Galazi
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Shanthini Crusz
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Thomas Powles
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Centre for Experimental Cancer Medicine, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Alistair Grey
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tim Oliver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Sakunthala Kudahetti
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Greg Shaw
- Department of Urology, Barts Health National Health Service Trust (NHS), London, United Kingdom,Division of Surgery and Interventional Sciences, University College London, London, United Kingdom,University College London Hospitals, National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Daniel Berney
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Yong-Jie Lu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom,*Correspondence: Yong-Jie Lu,
| |
Collapse
|
3
|
Wang S, Wang H, Su X, Liu B, Wang L, Yan H, Mao S, Huang H, Huang C, Cheng M, Wu G. β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy: β-adrenergic activation results in MLCK degradation. Biomed Pharmacother 2020; 129:110438. [PMID: 32768940 DOI: 10.1016/j.biopha.2020.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-adrenergic activation is able to exacerbate cardiac hypertrophy. Myosin light chain kinase (MLCK) and its phosphorylated substrate, phospho-myosin light chain 2 (p-MLC2), play vital roles in regulating cardiac hypertrophy. However, it is not yet clear whether there is a relationship between β-adrenergic activation and MLCK in the progression of cardiac hypertrophy. Therefore, we explored this relationship and the underlying mechanisms in this work. METHODS Cardiac hypertrophy and cardiomyocyte hypertrophy were induced by pressure overload and isoproterenol (ISO) stimulation, respectively. Echocardiography, histological analysis, immunofluorescence and qRT-PCR were used to confirm the successful establishment of the models. A β-blocker (metoprolol) and a calpain inhibitor (calpeptin) were administered to inhibit β-adrenergic activity in rats and calpain in cardiomyocytes, respectively. The protein expression levels of MLCK, myosin light chain 2 (MLC2), p-MLC2, myosin phosphatase 2 (MYPT2), calmodulin (CaM) and calpain were measured using western blotting. A cleavage assay was performed to assess the degradation of recombinant human MLCK by recombinant human calpain. RESULTS The β-blocker alleviated cardiac hypertrophy and dysfunction, increased MLCK and MLC2 phosphorylation and decreased calpain expression in pressure overload-induced cardiac hypertrophy. Additionally, the calpain inhibitor calpeptin attenuated cardiomyocyte hypertrophy, upregulated MLCK and p-MLC2 and reduced MLCK degradation in ISO-induced cardiomyocyte hypertrophy. Recombinant human calpain degraded recombinant human MLCK in vitro in concentration- and time-dependent manners, and this degradation was inhibited by the calpain inhibitor calpeptin. CONCLUSION Our study suggested that β-adrenergic activation may promote the degradation of MLCK through calpain in pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hui Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, 436000, China.
| |
Collapse
|
4
|
Donkor IO, Xu J, Liu J, Cameron K. Synthesis and antiproliferative activity of sulfonamide-based peptidomimetic calpain inhibitors. Bioorg Med Chem 2020; 28:115433. [PMID: 32199690 DOI: 10.1016/j.bmc.2020.115433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
The calpains are a conserved family of cysteine proteases that includes several isoforms of which µ-calpain and m-calpain are the most widely distributed in mammalian cells. Calpains have been implicated in normal physiological processes as well as cellular abnormalities such as neurodegenerative disorders, cataract, and cancer. Therefore, calpain inhibitors are of interest as potential therapeutic agents. We have synthesized four new sulfonamide-based peptidomimetic compounds 2-5 as inhibitors of μ-calpain that incorporate (E)-1-(phenyl)-2-phenyldiazene and (E)-1-(phenyl)-2-phenylethene functionalities as the N-terminal capping groups of the inhibitors. Compound 5 with Ki value of 9 nM versus μ-calpain was the most potent member of the group. The compounds were predicted to be more lipophilic compared to MDL28170 based on CLogP estimation. They displayed moderate to good antiproliferative activity versus melanoma cell lines (A-375 and B-16F1) and PC-3 prostate cancer cells in vitro. Additionally, one member of the group (compound 3) inhibited DU-145 cell invasion by 80% at 2 μM concentration in the Matrigel cell invasion assay.
Collapse
Affiliation(s)
- Isaac O Donkor
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States.
| | - Jin Xu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Jiuyu Liu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| | - Keyuna Cameron
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, United States
| |
Collapse
|
5
|
Wang S, Yang S, Nan C, Wang Y, He Y, Mu H. Expression of Androgen Receptor Variant 7 (AR-V7) in Circulated Tumor Cells and Correlation with Drug Resistance of Prostate Cancer Cells. Med Sci Monit 2018; 24:7051-7056. [PMID: 30284554 PMCID: PMC6183102 DOI: 10.12659/msm.909669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer is a common type of malignant tumor invading the male reproductive-urinary system, which has increasing incidence worldwide. Androgen receptor variant 7 (AR-V7) participates in regulating prostate cancer cell proliferation and gene expression. This study aimed to investigate the expression of AR-V7 in circulated tumor cells (CTCs) in patients with prostate cancer and to assess its correlation with drug sensitivity against enzalutamide or abiraterone. MATERIAL AND METHODS Blood samples of prostate cancer patients were collected for separating CTCs, in which mRNA expression level of full-length AR and AR-V7 was measured to analyze their correlation with enzalutamide or abiraterone resistance. Progression-free survival (PFS) of patients with different AR-V7 expression levels was compared. AR-V7 was overexpressed in transfected prostate cancer cells, and its effects on proliferation were analyzed by clonal formation assay. RESULTS qRT-PCR showed AR-V7 overexpression in a total of 13 patients; 76.92% of these patients developed drug resistance, the distal metastasis of which was significantly higher than that in the group with AR-V7 downregulation, with lower PFS (p<0.01). In cultured prostate cancer cells, AR-V7 upregulation resulted in a significantly higher clonal formation rate than in the control group with enzalutamide-containing medium (p<0.05). CONCLUSIONS In prostate cancer cells, AR-V7 expression is correlated with drug resistance, as AR-V7 upregulation leads to enhanced proliferation potency of cancer cells, indicating unfavorable prognosis of patients.
Collapse
MESH Headings
- Adult
- Aged
- Androstenes/pharmacology
- Benzamides
- Case-Control Studies
- Drug Resistance, Neoplasm
- Humans
- Male
- Middle Aged
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Prognosis
- Progression-Free Survival
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- RNA, Messenger/genetics
- Receptors, Androgen/biosynthesis
- Receptors, Androgen/blood
- Receptors, Androgen/genetics
Collapse
|