1
|
Li X, Song Y, Mu W, Hou X, Ba T, Ji S. Dysregulation of arginine methylation in tumorigenesis. Front Mol Biosci 2024; 11:1420365. [PMID: 38911125 PMCID: PMC11190088 DOI: 10.3389/fmolb.2024.1420365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Yaqiong Song
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Weiwei Mu
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Xiaoli Hou
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Te Ba
- Department of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Kuo CY, Moi SH, Hou MF, Luo CW, Pan MR. Chromatin Remodeling Enzyme Cluster Predicts Prognosis and Clinical Benefit of Therapeutic Strategy in Breast Cancer. Int J Mol Sci 2023; 24:ijms24065583. [PMID: 36982660 PMCID: PMC10055970 DOI: 10.3390/ijms24065583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The treatment provided for breast cancer depends on the expression of hormone receptors, human epidermal growth factor receptor-2 (HER2), and cancer staging. Surgical intervention, along with chemotherapy or radiation therapy, is the mainstay of treatment. Currently, precision medicine has led to personalized treatment using reliable biomarkers for the heterogeneity of breast cancer. Recent studies have shown that epigenetic modifications contribute to tumorigenesis through alterations in the expression of tumor suppressor genes. Our aim was to investigate the role of epigenetic modifications in genes involved in breast cancer. A total of 486 patients from The Cancer Genome Atlas Pan-cancer BRCA project were enrolled in our study. Hierarchical agglomerative clustering analysis further divided the 31 candidate genes into 2 clusters according to the optimal number. Kaplan–Meier plots showed worse progression-free survival (PFS) in the high-risk group of gene cluster 1 (GC1). In addition, the high-risk group showed worse PFS in GC1 with lymph node invasion, which also presented a trend of better PFS when chemotherapy was combined with radiotherapy than when chemotherapy was administered alone. In conclusion, we developed a novel panel using hierarchical clustering that high-risk groups of GC1 may be promising predictive biomarkers in the clinical treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Chia-Yu Kuo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-Wen Luo
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-W.L.); (M.-R.P.); Tel.: +886-7-3121101 (ext. 2260) (C.-W.L.); +886-7-3121101 (ext. 5092-34) (M.-R.P.); Fax: +886-7-3165011 (C.-W.L.); +886-7-3218309 (M.-R.P.)
| |
Collapse
|
3
|
Gahete MD, Herman-Sanchez N, Fuentes-Fayos AC, Lopez-Canovas JL, Luque RM. Dysregulation of splicing variants and spliceosome components in breast cancer. Endocr Relat Cancer 2022; 29:R123-R142. [PMID: 35728261 DOI: 10.1530/erc-22-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022]
Abstract
The dysregulation of the splicing process has emerged as a novel hallmark of metabolic and tumor pathologies. In breast cancer (BCa), which represents the most diagnosed cancer type among women worldwide, the generation and/or dysregulation of several oncogenic splicing variants have been described. This is the case of the splicing variants of HER2, ER, BRCA1, or the recently identified by our group, In1-ghrelin and SST5TMD4, which exhibit oncogenic roles, increasing the malignancy, poor prognosis, and resistance to treatment of BCa. This altered expression of oncogenic splicing variants has been closely linked with the dysregulation of the elements belonging to the macromolecular machinery that controls the splicing process (spliceosome components and the associated splicing factors). In this review, we compile the current knowledge demonstrating the altered expression of splicing variants and spliceosomal components in BCa, showing the existence of a growing body of evidence supporting the close implication of the alteration in the splicing process in mammary tumorigenesis.
Collapse
Affiliation(s)
- Manuel D Gahete
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Natalia Herman-Sanchez
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Juan L Lopez-Canovas
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofía University Hospital, Córdoba, Spain
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain
| |
Collapse
|
4
|
Cura V, Cavarelli J. Structure, Activity and Function of the PRMT2 Protein Arginine Methyltransferase. Life (Basel) 2021; 11:1263. [PMID: 34833139 PMCID: PMC8623767 DOI: 10.3390/life11111263] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
PRMT2 belongs to the protein arginine methyltransferase (PRMT) family, which catalyzes the arginine methylation of target proteins. As a type I enzyme, PRMT2 produces asymmetric dimethyl arginine and has been shown to have weak methyltransferase activity on histone substrates in vitro, suggesting that its authentic substrates have not yet been found. PRMT2 contains the canonical PRMT methylation core and a unique Src homology 3 domain. Studies have demonstrated its clear implication in many different cellular processes. PRMT2 acts as a coactivator of several nuclear hormone receptors and is known to interact with a multitude of splicing-related proteins. Furthermore, PRMT2 is aberrantly expressed in several cancer types, including breast cancer and glioblastoma. These reports highlight the crucial role played by PRMT2 and the need for a better characterization of its activity and cellular functions.
Collapse
Affiliation(s)
- Vincent Cura
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Jean Cavarelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France;
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
5
|
Huang F, Fan H, Yang D, Zhang J, Shi T, Zhang D, Lu G. Ribosomal RNA‑depleted RNA sequencing reveals the pathogenesis of refractory Mycoplasma pneumoniae pneumonia in children. Mol Med Rep 2021; 24:761. [PMID: 34476502 PMCID: PMC8436218 DOI: 10.3892/mmr.2021.12401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Pneumonia caused by Mycoplasma pneumoniae (M. pneumoniae) is a major cause of community-acquired pneumonia in children. In some cases, M. pneumoniae pneumonia (MPP) can develop into refractory MPP (RMPP), which shows no clinical or radiological response to macrolides, and can progress to severe and complicated pneumonia. However, the pathogenesis of RMPP remains poorly understood. The present study aimed to identify target genes that could be used as biomarkers for the clinical diagnosis of early-stage RMPP through high-throughput sequencing technology. The differences in long non-coding (lnc)RNAs, mRNAs and circular (circ)RNAs were examined between whole-blood samples from two patients with non-refractory MPP (NRMPP), two patients with RMPP and three healthy children using ribosomal (r)RNA-depleted RNA-sequencing techniques and an integrated mRNA/circRNA analysis. A total of 17 lncRNAs (four upregulated and 13 downregulated), 18 mRNAs (six upregulated and 12 downregulated) and 24 circRNAs (12 upregulated and 12 downregulated) were the most significantly differentially expressed (P<0.05) between the NRMPP and RMPP groups. Upon functional analysis, the significantly differentially expressed genes encoded by the targeting mRNAs (prostaglandin-endoperoxide synthase 2, IL-8 and fos-like antigen 1) were screened and identified to be enriched in the ‘IL-17 signaling pathway’. Furthermore, the key circRNAs in the NRMPP and RMPP comparative groups were primarily enriched in ‘herpes simplex virus 1 infection’, ‘viral carcinogenesis’ and ‘RNA transport’. In the present study, a comprehensive analysis of the differences between the NRMPP and RMPP cases was performed based on rRNA-depleted RNA-sequencing techniques, and the selected genes and circRNAs may be closely associated with the complex pathogenesis of RMPP.
Collapse
Affiliation(s)
- Feng Huang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Huifeng Fan
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Diyuan Yang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Junsong Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Tingting Shi
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Dongwei Zhang
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Gen Lu
- Department of Respiration, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
6
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
7
|
Bednarz-Misa I, Fleszar MG, Fortuna P, Lewandowski Ł, Mierzchała-Pasierb M, Diakowska D, Krzystek-Korpacka M. Altered L-Arginine Metabolic Pathways in Gastric Cancer: Potential Therapeutic Targets and Biomarkers. Biomolecules 2021; 11:biom11081086. [PMID: 34439753 PMCID: PMC8395015 DOI: 10.3390/biom11081086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
There is a pressing need for molecular targets and biomarkers in gastric cancer (GC). We aimed at identifying aberrations in L-arginine metabolism with therapeutic and diagnostic potential. Systemic metabolites were quantified using mass spectrometry in 293 individuals and enzymes’ gene expression was quantified in 29 paired tumor-normal samples using qPCR and referred to cancer pathology and molecular landscape. Patients with cancer or benign disorders had reduced systemic arginine, citrulline, and ornithine and elevated symmetric dimethylarginine and dimethylamine. Citrulline and ornithine depletion was accentuated in metastasizing cancers. Metabolite diagnostic panel had 91% accuracy in detecting cancer and 70% accuracy in differentiating cancer from benign disorders. Gastric tumors had upregulated NOS2 and downregulated ASL, PRMT2, ORNT1, and DDAH1 expression. NOS2 upregulation was less and ASL downregulation was more pronounced in metastatic cancers. Tumor ASL and PRMT2 expression was inversely related to local advancement. Enzyme up- or downregulation was greater or significant solely in cardia subtype. Metabolic reprogramming in GC includes aberrant L-arginine metabolism, reflecting GC subtype and pathology, and is manifested by altered interplay of its intermediates and enzymes. Exploiting L-arginine metabolic pathways for diagnostic and therapeutic purposes is warranted. Functional studies on ASL, PRMT2, and ORNT1 in GC are needed.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
| | - Mariusz G. Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
| | - Paulina Fortuna
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
| | - Magdalena Mierzchała-Pasierb
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
| | - Dorota Diakowska
- Department of Gastrointestinal and General Surgery, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Nervous System Diseases, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (I.B.-M.); (M.G.F.); (P.F.); (Ł.L.); (M.M.-P.)
- Correspondence:
| |
Collapse
|
8
|
Janisiak J, Kopytko P, Tarnowski M. Dysregulation of protein argininemethyltransferase in the pathogenesis of cancerpy. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arginine methylation is considered to be one of the most permanent and one of the most frequent post-translational modifications. The reaction of transferring a methyl group from S-adenosylmethionine to arginine residue is catalyzed by aginine methyltransferase (PRMT). In humans there are nine members of the PRMT family, named in order of discovery of PRMT1- PRMT9. Arginine methyltransferases were divided into three classes: I, II, III, with regard to the product of the catalyzed reaction. The products of their activity are, respectively, the following: asymmetric dimethylarginine (ADMA), symmetrical dimethylarginine (SDMA) and monomethylarginine (MMA). These modifications significantly affect the chromatin functions; therefore, they can act as co-activators or suppressors of the transcription process. Arginine methylation plays a crucial role in many biological processes in a human organism. Among others, it participates in signal transduction control, mRNA splicing and the regulation of basic cellular processes such as proliferation, differentiation, migration and apoptosis. There is increasing evidence that dysregulation of PRMT levels may lead to the cancer transformation of cells. The correlation between increased PRMT level and cancer has been demonstrated in the following: breast, ovary, lung and colorectal cancer. The activity of arginine methyltransferase can be regulated by small molecule PRMT inhibitors. To date, three substances that inhibit PRMT activity have been evaluated in clinical trials and exhibit anti-tumor activity against hematological cancer. It is believed that the use of specific PRMT inhibitors may become a new, effective and safe treatment of oncological diseases.
Collapse
Affiliation(s)
- Joanna Janisiak
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Patrycja Kopytko
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Maciej Tarnowski
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| |
Collapse
|
9
|
Medina-Gómez C, Bolaños J, Borbolla-Vázquez J, Munguía-Robledo S, Orozco E, Rodríguez MA. The atypical protein arginine methyltrasferase of Entamoeba histolytica (EhPRMTA) is involved in cell proliferation, heat shock response and in vitro virulence. Exp Parasitol 2021; 222:108077. [PMID: 33465379 DOI: 10.1016/j.exppara.2021.108077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/30/2022]
Abstract
Protein arginine methylation regulates several cellular events, including epigenetics, splicing, translation, and stress response, among others. This posttranslational modification is catalyzed by protein arginine methyltransferases (PRMTs), which according to their products are classified from type I to type IV. The type I produces monomethyl arginine and asymmetric dimethyl arginine; in mammalian there are six families of this PRMT type (PRMT1, 2, 3, 4, 6, and 8). The protozoa parasite Entamoeba histolytica has four PRMTs related to type I; three of them are similar to PRMT1, but the other one does not show significant homology to be grouped in any known PRMT family, thus we called it as atypical PRMT (EhPRMTA). Here, we showed that EhPRMTA does not contain several of the canonical amino acid residues of type I PRMTs, confirming that it is an atypical PRMT. A specific antibody against EhPRMTA localized this protein in cytoplasm. The recombinant EhPRMTA displayed catalytic activity on commercial histones and the native enzyme modified its expression level during heat shock and erythrophagocytosis. Besides, the knockdown of EhPRMTA produced an increment in cell growth, and phagocytosis, but decreases cell migration and the survival of trophozoites submitted to heat shock, suggesting that this protein is involved in regulate negatively or positively these events, respectively. Thus, results suggest that this methyltransferase regulates some cellular functions related to virulence and cell surviving.
Collapse
Affiliation(s)
- Christian Medina-Gómez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Jeni Bolaños
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | | | - Susana Munguía-Robledo
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 678] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Wang SCM, Dowhan DH, Muscat GEO. Epigenetic arginine methylation in breast cancer: emerging therapeutic strategies. J Mol Endocrinol 2019; 62:R223-R237. [PMID: 30620710 DOI: 10.1530/jme-18-0224] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is a heterogeneous disease, and the complexity of breast carcinogenesis is associated with epigenetic modification. There are several major classes of epigenetic enzymes that regulate chromatin activity. This review will focus on the nine mammalian protein arginine methyltransferases (PRMTs) and the dysregulation of PRMT expression and function in breast cancer. This class of enzymes catalyse the mono- and (symmetric and asymmetric) di-methylation of arginine residues on histone and non-histone target proteins. PRMT signalling (and R methylation) drives cellular proliferation, cell invasion and metastasis, targeting (i) nuclear hormone receptor signalling, (ii) tumour suppressors, (iii) TGF-β and EMT signalling and (iv) alternative splicing and DNA/chromatin stability, influencing the clinical and survival outcomes in breast cancer. Emerging reports suggest that PRMTs are also implicated in the development of drug/endocrine resistance providing another prospective avenue for the treatment of hormone resistance and associated metastasis. The complexity of PRMT signalling is further underscored by the degree of alternative splicing and the scope of variant isoforms (with distinct properties) within each PRMT family member. The evolution of PRMT inhibitors, and the ongoing clinical trials of PRMT inhibitors against a subgroup of solid cancers, coupled to the track record of lysine methyltransferases inhibitors in phase I/II clinical trials against cancer underscores the potential therapeutic utility of targeting PRMT epigenetic enzymes to improve survival outcomes in aggressive and metastatic breast cancer.
Collapse
Affiliation(s)
- Shu-Ching M Wang
- Cell Biology and Molecular Medicine Division, The University of Queensland, Institute for Molecular Bioscience, St Lucia, Australia
| | - Dennis H Dowhan
- Cell Biology and Molecular Medicine Division, The University of Queensland, Institute for Molecular Bioscience, St Lucia, Australia
| | - George E O Muscat
- Cell Biology and Molecular Medicine Division, The University of Queensland, Institute for Molecular Bioscience, St Lucia, Australia
| |
Collapse
|
12
|
Chen Y, Dai X, Yao Y, Wang J, Yang X, Zhang Y, Yang J, Cao R, Wen G, Zhong J. PRMT2β suppresses autophagy and glycolysis pathway in human breast cancer MCF-7 cell lines. Acta Biochim Biophys Sin (Shanghai) 2019; 51:335-337. [PMID: 30883646 DOI: 10.1093/abbs/gmz006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/07/2019] [Accepted: 01/12/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yajun Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Xianpeng Dai
- Department of General Surgery, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Yao Yao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Wang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xinzhi Yang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yunsheng Zhang
- Institute of Clinical Medicine, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Yang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Renxian Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Gebo Wen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|