1
|
Liu G, Sun L, Lv P, Qiao R, Wang L, Jin A. Systematic review and meta-analysis of the impact of abnormal expression of long non coding RNA on the prognosis of acute myeloid leukemia. Front Genet 2025; 16:1524449. [PMID: 39967688 PMCID: PMC11832533 DOI: 10.3389/fgene.2025.1524449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Long non-coding RNA (lncRNA) is aberrantly expressed in a variety of tumor diseases. To date, its specific role in acute myeloid leukemia (AML) has not been fully elucidated. This study aims to evaluate the association between aberrant lncRNA expression and poor prognosis in AML patients, and to systematically assess the relationship between aberrant lncRNA expression and AML prognosis. Methods We conducted a comprehensive literature search in PubMed, Embase, Cochrane Library, CNKI (China National Knowledge Infrastructure), WanFang (China Wanfang Database), VIP (China VIP Database), and Sinomed (China Biomedical Literature Database) to identify relevant Chinese and English articles. The search period covered from the inception of these databases to 4 August 2024. Articles were screened according to predefined inclusion and exclusion criteria, and meta-analysis was performed using Stata. Results A total of 25 articles were included in the analysis. Aberrant lncRNA expression was significantly associated with reduced overall survival (univariate HR = 2.46, 95%CI 2.11-2.88, P < 0.001; multivariate HR = 2.46, 95%CI 2.11-2.88, P < 0.001), event-free survival (HR = 1.51, 95%CI 1.19-1.90, P = 0.001), recurrence-free survival (HR = 2.82, 95%CI 2.03-3.91, P < 0.001), and disease-free survival (HR = 2.390, 95%CI 1.037-5.507, P = 0.041). These findings were statistically significant. The 25 articles collectively identified 22 lncRNAs whose aberrant expression was associated with AML prognosis. Notably, multiple studies highlighted the aberrant expression of lncRNA CRNDE, ZEB2-AS1, and TUG1 as being particularly relevant to AML prognosis. Our meta-analysis revealed that high expression of lncRNA CRNDE and TUG1 was associated with reduced overall survival, while high expression of lncRNA ZEB2-AS1 was linked to decreased disease-free survival, both with statistically significant differences. Conclusion The expression levels of lncRNAs are closely associated with the prognosis of AML patients and may serve as important indicators for monitoring prognosis in the future. However, further high-quality studies are needed to validate these findings.
Collapse
Affiliation(s)
- Guihong Liu
- Graduate School, Inner Mongolia Medical University, Hohhot, China
| | - Liangliang Sun
- Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Peng Lv
- Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Rong Qiao
- Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Lihang Wang
- Graduate School, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Arong Jin
- Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| |
Collapse
|
2
|
Priya, Garg M, Talwar R, Bharadwaj M, Ruwali M, Pandey AK. Clinical relevance of long non-coding RNA in acute myeloid leukemia: A systematic review with meta-analysis. Leuk Res 2024; 147:107595. [PMID: 39341086 DOI: 10.1016/j.leukres.2024.107595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) may function as prognostic biomarkers in acute myeloid leukaemia (AML). However, it is still unknown exactly how significant lncRNAs are for the prognosis of AML. With a focus on their prognostic and therapeutic potential, the study aimed to provide a comprehensive review of the literature regarding the role of lncRNAs in AML. METHOD Pub Med, The Cochrane Library, Embase, Science Direct, Web of science, Scopus, and Google scholar were searched until November, 2023. Original publications of any type exploring the prognostic and therapeutic potential of lncRNAs in AML patients were included. Heterogeneity and publication bias were examined using the I2 test and a funnel plot, respectively. To quantify the relationship between various lncRNA expression in AML patient survival, odds ratios (ORs) or hazards ratios (HRs) with 95 % confidence intervals (CIs) were pooled. Quality of studies was assessed using the Critical Appraisal Checklists for Studies created by the Joanna Briggs Institute (JBI). RESULTS Twenty-seven studies including 5665 subjects were selected for the final analysis. In patients with AML, abnormal lncRNA expression has been associated with significant worse overall survival (pooled HR = 2.05, 95 % CI = 1.79-2.30, P <0.001), shorter disease-free survival (pooled HR = 2.17, 95 % CI = 1.13-3.22, P< 0.001), and lower complete remission rate (pooled HR = 0.27, 95 % CI = 0.11-0.43, P< 0.001). Poor prognoses have been attributed to increased expression of HOX transcript antisense intergenic RNA (HOTAIR), Promoter Of CDKN1A Antisense DNA Damage Activated RNA (PANDAR), Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), RP11-222K16.2, Taurine Upregulated Gene 1 (TUG1), Small Nucleolar RNA Host Gene 5 (SNHG5), Growth Arrest Specific 5 (GAS5), and H19 and decreased expression of IGF1R Antisense Imprinted Non-Protein Coding RNA (IRAIN). CONCLUSION The prognoses of AML patients are significantly associated with abnormally expressed lncRNAs, which may be used as prognostic indicators for predicting the patient outcomes.
Collapse
Affiliation(s)
- Priya
- Amity Institute of Biotechnology, Amity University, Gurugram, Haryana 122413, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh 201313, India.
| | - Rashmi Talwar
- Clinical Reference Lab, Agilus Diagnostic Limited, Plot No. 31, Second Floor, Urban Estate Electronic City, Sector-18, Gurgaon 120015, India.
| | | | - Munindra Ruwali
- Department of Education in Science and Mathematics (DESM), National Council of Educational Research and Training (NCERT), Sri Aurobindo Marg, New Delhi, India.
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
3
|
Kubaski Benevides AP, Marin AM, Wosniaki DK, Oliveira RN, Koerich GM, Kusma BN, Munhoz EC, Zanette DL, Aoki MN. Expression of HOTAIR and PTGS2 as potential biomarkers in chronic myeloid leukemia patients in Brazil. Front Oncol 2024; 14:1443346. [PMID: 39450252 PMCID: PMC11499243 DOI: 10.3389/fonc.2024.1443346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasm in which all the patients has the translocation (9;22) that generates de BCR::ABL1 tyrosine kinase. Despite this disease possessing a good biomarker (BCR::ABL1 transcripts level) for diagnosis and prognosis, many studies has been performed to investigate other molecules, such as the long noncoding RNAs (lncRNAs) and mRNAs, as potential biomarkers with the aim of predicting a change in BCR::ABL1 levels and as an associated biomarker. A RNAseq was performed comparing 6 CML patients with high BCR::ABL1 expression with 6 healthy control individuals, comprising the investigation cohort to investigate these molecules. To validate the results obtained by RNAseq, samples of 87 CML patients and 42 healthy controls were used in the validation cohort by RT-qPCR assays. The results showed lower expression of HOTAIR and PTGS2 in CML patients. The HOTAIR expression is inversely associated with BCR::ABL1 expression in imatinib-treated CML patients, and to PTGS2 showing that CML patients with high BCR::ABL1 expression showed reduced PTGS2 expression.
Collapse
Affiliation(s)
- Ana Paula Kubaski Benevides
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Denise K. Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Rafaela Noga Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Gabriela Marino Koerich
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Bianca Nichele Kusma
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | | | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba, Brazil
| |
Collapse
|
4
|
Peng S, Yang Q, Pan Y, Li H, Wang J, Hu P, Zhang N. Expression of the long noncoding RNA CASC2 in acute myeloid leukemia and its prognostic significance. Indian J Cancer 2024; 61:728-735. [PMID: 39960701 DOI: 10.4103/ijc.ijc_1365_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 05/09/2025]
Abstract
BACKGROUND Cancer susceptibility candidate 2 (CASC2) was found underexpressed in multiple types of human malignancies. However, the specific role of CASC2 in AML remains uncertain. The purpose of this study is to explore the expression of CASC2 in patients with AML and healthy donors and its prognostic significance in AML. METHODS Total RNA was isolated from bone marrow samples or peripheral blood samples of 87 patients with AML and 26 healthy adult donors. The expression of long noncoding RNA CASC2 was detected by quantitative real-time polymerase chain reaction. The association between CASC2 expression and other clinicopathological factors as well as its prognosis significance were analyzed. RESULTS The peripheral blood mononuclear cell (PBMC) expression level of CASC2 in AML was significantly lower than that in the healthy control cohort (P = 0.0048), and in the bone marrow samples, CASC2 was significantly upregulated in patients with AML after the achievement of CR (median value: 0.041, range: 0.015-0.064) compared with that at newly diagnosis (median value: 0.017, range: 0.008-0.041) (P = 0.002). The expression of CASC2 had a significant relationship with complete remission (P = 0.019). Survival data assessed by Kaplan-Meier curves showed that patients with lower CASC2 expression had shorter overall survival and disease-free survival than patients with higher CASC2 expression. Finally, Cox proportional hazards analysis demonstrated that CASC2 was an independent prognostic indicator for both OS (P = 0.013) and DFS (P = 0.001) of AML. CONCLUSIONS LncRNA CASC2 may serve as a new molecular biomarker for the early diagnosis and of AML, and may be an independent prognostic factor affecting the survival of patients with AML.
Collapse
Affiliation(s)
- Sida Peng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Qingqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Yuhang Pan
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Huan Li
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
5
|
Lv X, Yang L, Xie Y, Momeni MR. Non-coding RNAs and exosomal non-coding RNAs in lung cancer: insights into their functions. Front Cell Dev Biol 2024; 12:1397788. [PMID: 38859962 PMCID: PMC11163066 DOI: 10.3389/fcell.2024.1397788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Lung cancer is the second most common form of cancer worldwide Research points to the pivotal role of non-coding RNAs (ncRNAs) in controlling and managing the pathology by controlling essential pathways. ncRNAs have all been identified as being either up- or downregulated among individuals suffering from lung cancer thus hinting that they may play a role in either promoting or suppressing the spread of the disease. Several ncRNAs could be effective non-invasive biomarkers to diagnose or even serve as effective treatment options for those with lung cancer, and several molecules have emerged as potential targets of interest. Given that ncRNAs are contained in exosomes and are implicated in the development and progression of the malady. Herein, we have summarized the role of ncRNAs in lung cancer. Moreover, we highlight the role of exosomal ncRNAs in lung cancer.
Collapse
Affiliation(s)
- Xiaolong Lv
- Department of Cardiothoracic Surgery, The People’s Hospital of Changshou, Chongqing, China
| | - Lei Yang
- Department of Cardiothoracic Surgery, The People’s Hospital of Tongliang District, Chongqing, China
| | - Yunbo Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
6
|
Zhang C, Qin Y, Wu Y, Xu H, Shu Y. Long non-coding RNA MALAT1 in hematological malignancies and its clinical applications. Chin Med J (Engl) 2024; 137:1151-1159. [PMID: 38557962 PMCID: PMC11101235 DOI: 10.1097/cm9.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 04/04/2024] Open
Abstract
ABSTRACT Metastasis-associated lung adenocarcinoma transcript 1 ( MALAT1 ) is a well-established oncogenic long non-coding RNA, the higher expression of which is strongly correlated with cancer events such as tumorigenesis, progression, metastasis, drug resistance, and treatment outcome in solid cancers. Recently, a series of studies has highlighted its potential role in hematological malignancies in terms of these events. Similar to solid cancers, MALAT1 can regulate various target genes via sponging and epigenetic mechanisms, but the miRNAs sponged by MALAT1 differ from those identified in solid cancers. In this review, we systematically describe the role and underlying mechanisms of MALAT1 in multiple types of hematological malignancies, including regulation of cell proliferation, metastasis, stress response, and glycolysis. Clinically, MALAT1 expression is related to poor treatment outcome and drug resistance, therefore exhibiting potential prognostic value in multiple myeloma, lymphoma, and leukemia. Finally, we discuss the evaluation of MALAT1 as a novel therapeutic target against cancer in preclinical studies.
Collapse
Affiliation(s)
- Chunlan Zhang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of General Surgery, Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Piórkowska K, Zygmunt K, Hunter W, Wróblewska K. MALAT1: A Long Non-Coding RNA with Multiple Functions and Its Role in Processes Associated with Fat Deposition. Genes (Basel) 2024; 15:479. [PMID: 38674413 PMCID: PMC11049917 DOI: 10.3390/genes15040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) belongs to the lncRNA molecules, which are involved in transcriptional and epigenetic regulation and the control of gene expression, including the mechanism of chromatin remodeling. MALAT1 was first discovered during carcinogenesis in lung adenocarcinoma, hence its name. In humans, 66 of its isoforms have been identified, and in pigs, only 2 are predicted, for which information is available in Ensembl databases (Ensembl Release 111). MALAT1 is expressed in numerous tissues, including adipose, adrenal gland, heart, kidney, liver, ovary, pancreas, sigmoid colon, small intestine, spleen, and testis. MALAT1, as an lncRNA, shows a wide range of functions. It is involved in the regulation of the cell cycle, where it has pro-proliferative effects and high cellular levels during the G1/S and mitotic (M) phases. Moreover, it is involved in invasion, metastasis, and angiogenesis, and it has a crucial function in alternative splicing during carcinogenesis. In addition, MALAT1 plays a significant role in the processes of fat deposition and adipogenesis. The human adipose tissue stem cells, during differentiation into adipocytes, secrete MALAT1 as one the most abundant lncRNAs in the exosomes. MALAT1 expression in fat tissue is positively correlated with adipogenic FABP4 and LPL. This lncRNA is involved in the regulation of PPARγ at the transcription stage, fatty acid metabolism, and insulin signaling. The wide range of MALAT1 functions makes it an interesting target in studies searching for drugs to prevent obesity development in humans. In turn, in farm animals, it can be a source of selection markers to control the fat tissue content.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Karolina Zygmunt
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| | - Walter Hunter
- Faculty of Biotechnology and Horticulture, University of Agriculture in Cracow, 31-120 Cracow, Poland;
| | - Ksenia Wróblewska
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047 Cracow, Poland; (K.Z.); (K.W.)
| |
Collapse
|
8
|
Sabaghi F, Sadat SY, Mirsaeedi Z, Salahi A, Vazifehshenas S, Kesh NZ, Balavar M, Ghoraeian P. The Role of Long Noncoding RNAs in Progression of Leukemia: Based on Chromosomal Location. Microrna 2024; 13:14-32. [PMID: 38275047 DOI: 10.2174/0122115366265540231201065341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/29/2023] [Accepted: 10/12/2023] [Indexed: 01/27/2024]
Abstract
Long non-coding RNA [LncRNA] dysregulation has been seen in many human cancers, including several kinds of leukemia, which is still a fatal disease with a poor prognosis. LncRNAs have been demonstrated to function as tumor suppressors or oncogenes in leukemia. This study covers current research findings on the role of lncRNAs in the prognosis and diagnosis of leukemia. Based on recent results, several lncRNAs are emerging as biomarkers for the prognosis, diagnosis, and even treatment outcome prediction of leukemia and have been shown to play critical roles in controlling leukemia cell activities, such as proliferation, cell death, metastasis, and drug resistance. As a result, lncRNA profiles may have superior predictive and diagnostic potential in leukemia. Accordingly, this review concentrates on the significance of lncRNAs in leukemia progression based on their chromosomal position.
Collapse
Affiliation(s)
- Fatemeh Sabaghi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saina Yousefi Sadat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zohreh Mirsaeedi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aref Salahi
- Department of Molecular cell biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Vazifehshenas
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Zahmat Kesh
- Department of Genetics, Zanjan Branch Islamic Azad University, Zanjan, Iran
| | - Mahdieh Balavar
- Department of Genetics, Falavarjan Branch Islamic Azad University, Falavarjan, Iran
| | - Pegah Ghoraeian
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
10
|
Zhou Q, Shu X, Chai Y, Liu W, Li Z, Xi Y. The non-coding competing endogenous RNAs in acute myeloid leukemia: biological and clinical implications. Biomed Pharmacother 2023; 163:114807. [PMID: 37150037 DOI: 10.1016/j.biopha.2023.114807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic carcinoma that has seen a considerable improvement in patient prognosis because of genetic diagnostics and molecularly-targeted therapies. Nevertheless, recurrence and drug resistance remain significant obstacles to leukemia treatment. It is critical to investigate the underlying molecular mechanisms and find solutions. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circular RNAs, long non-coding RNAs, and pseudogenes, have been found to be crucial components in driving cancer. The competing endogenous RNA (ceRNA) mechanism has expanded the complexity of miRNA-mediated gene regulation. A great deal of literature has shown that ncRNAs are essential to the biological functions of the ceRNA network (ceRNET). NcRNAs can compete for the same miRNA response elements to influence miRNA-target RNA interactions. Recent evidence suggests that ceRNA might be a potential biomarker and therapeutic strategy. So far, however, there have been no comprehensive studies on ceRNET about AML. What is not yet clear is the clinical application of ceRNA in AML. This study attempts to summarize the development of research on the related ceRNAs in AML and the roles of ncRNAs in ceRNET. We also briefly describe the mechanisms of ceRNA and ceRNET. What's more significant is that we explore the clinical value of ceRNAs to provide accurate diagnostic and prognostic biomarkers as well as therapeutic targets. Finally, limitations and prospects are considered.
Collapse
Affiliation(s)
- Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojun Shu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Vascular Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wenling Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zijian Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China; Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
11
|
Costa PMDS, Sales SLA, Pinheiro DP, Pontes LQ, Maranhão SS, Pessoa CDÓ, Furtado GP, Furtado CLM. Epigenetic reprogramming in cancer: From diagnosis to treatment. Front Cell Dev Biol 2023; 11:1116805. [PMID: 36866275 PMCID: PMC9974167 DOI: 10.3389/fcell.2023.1116805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Disruption of the epigenetic program of gene expression is a hallmark of cancer that initiates and propagates tumorigenesis. Altered DNA methylation, histone modifications and ncRNAs expression are a feature of cancer cells. The dynamic epigenetic changes during oncogenic transformation are related to tumor heterogeneity, unlimited self-renewal and multi-lineage differentiation. This stem cell-like state or the aberrant reprogramming of cancer stem cells is the major challenge in treatment and drug resistance. Given the reversible nature of epigenetic modifications, the ability to restore the cancer epigenome through the inhibition of the epigenetic modifiers is a promising therapy for cancer treatment, either as a monotherapy or in combination with other anticancer therapies, including immunotherapies. Herein, we highlighted the main epigenetic alterations, their potential as a biomarker for early diagnosis and the epigenetic therapies approved for cancer treatment.
Collapse
Affiliation(s)
- Pedro Mikael da Silva Costa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Leyenne Alves Sales
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Sarah Sant’Anna Maranhão
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Claudia do Ó. Pessoa
- Department of Physiology and Pharmacology, Drug Research and Development Center, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Biotechnology Northeastern Network of Biotechnology, Federal University of Ceará, Fortaleza, Ceará, Brazil,Postgraduation Program in Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, FIOCRUZ-Ceará, Sector of Biotechnology, Eusebio, Ceará, Brazil,Postgraduation Program in Biotechnology and Natural Resources, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cristiana Libardi Miranda Furtado
- Drug Research and Development Center, Postgraduate Program in Translational Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil,Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil,*Correspondence: Cristiana Libardi Miranda Furtado,
| |
Collapse
|
12
|
Bahramy A, Zafari N, Rajabi F, Aghakhani A, Jayedi A, Khaboushan AS, Zolbin MM, Yekaninejad MS. Prognostic and diagnostic values of non-coding RNAs as biomarkers for breast cancer: An umbrella review and pan-cancer analysis. Front Mol Biosci 2023; 10:1096524. [PMID: 36726376 PMCID: PMC9885171 DOI: 10.3389/fmolb.2023.1096524] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Background: Breast cancer (BC) is the most common cancer in women. The incidence and morbidity of BC are expected to rise rapidly. The stage at which BC is diagnosed has a significant impact on clinical outcomes. When detected early, an overall 5-year survival rate of up to 90% is possible. Although numerous studies have been conducted to assess the prognostic and diagnostic values of non-coding RNAs (ncRNAs) in breast cancer, their overall potential remains unclear. In this field of study, there are various systematic reviews and meta-analysis studies that report volumes of data. In this study, we tried to collect all these systematic reviews and meta-analysis studies in order to re-analyze their data without any restriction to breast cancer or non-coding RNA type, to make it as comprehensive as possible. Methods: Three databases, namely, PubMed, Scopus, and Web of Science (WoS), were searched to find any relevant meta-analysis studies. After thoroughly searching, the screening of titles, abstracts, and full-text and the quality of all included studies were assessed using the AMSTAR tool. All the required data including hazard ratios (HRs), sensitivity (SENS), and specificity (SPEC) were extracted for further analysis, and all analyses were carried out using Stata. Results: In the prognostic part, our initial search of three databases produced 10,548 articles, of which 58 studies were included in the current study. We assessed the correlation of non-coding RNA (ncRNA) expression with different survival outcomes in breast cancer patients: overall survival (OS) (HR = 1.521), disease-free survival (DFS) (HR = 1.33), recurrence-free survival (RFS) (HR = 1.66), progression-free survival (PFS) (HR = 1.71), metastasis-free survival (MFS) (HR = 0.90), and disease-specific survival (DSS) (HR = 0.37). After eliminating low-quality studies, the results did not change significantly. In the diagnostic part, 22 articles and 30 datasets were retrieved from 8,453 articles. The quality of all studies was determined. The bivariate and random-effects models were used to assess the diagnostic value of ncRNAs. The overall area under the curve (AUC) of ncRNAs in differentiated patients is 0.88 (SENS: 80% and SPEC: 82%). There was no difference in the potential of single and combined ncRNAs in differentiated BC patients. However, the overall potential of microRNAs (miRNAs) is higher than that of long non-coding RNAs (lncRNAs). No evidence of publication bias was found in the current study. Nine miRNAs, four lncRNAs, and five gene targets showed significant OS and RFS between normal and cancer patients based on pan-cancer data analysis, demonstrating their potential prognostic value. Conclusion: The present umbrella review showed that ncRNAs, including lncRNAs and miRNAs, can be used as prognostic and diagnostic biomarkers for breast cancer patients, regardless of the sample sources, ethnicity of patients, and subtype of breast cancer.
Collapse
Affiliation(s)
- Afshin Bahramy
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Zafari
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Aghakhani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Soltani Khaboushan
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,*Correspondence: Mir Saeed Yekaninejad, , ; Masoumeh Majidi Zolbin, ,
| |
Collapse
|
13
|
Ghazimoradi MH, Karimpour-Fard N, Babashah S. The Promising Role of Non-Coding RNAs as Biomarkers and Therapeutic Targets for Leukemia. Genes (Basel) 2023; 14:131. [PMID: 36672872 PMCID: PMC9859176 DOI: 10.3390/genes14010131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Early-stage leukemia identification is crucial for effective disease management and leads to an improvement in the survival of leukemia patients. Approaches based on cutting-edge biomarkers with excellent accuracy in body liquids provide patients with the possibility of early diagnosis with high sensitivity and specificity. Non-coding RNAs have recently received a great deal of interest as possible biomarkers in leukemia due to their participation in crucial oncogenic processes such as proliferation, differentiation, invasion, apoptosis, and their availability in body fluids. Recent studies have revealed a strong correlation between leukemia and the deregulated non-coding RNAs. On this basis, these RNAs are also great therapeutic targets. Based on these advantages, we tried to review the role of non-coding RNAs in leukemia. Here, the significance of several non-coding RNA types in leukemia is highlighted, and their potential roles as diagnostic, prognostic, and therapeutic targets are covered.
Collapse
Affiliation(s)
- Mohammad H. Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Naeim Karimpour-Fard
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
14
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
15
|
Xue S, Rogers LR, Zheng M, He J, Piermarocchi C, Mias GI. Applying differential network analysis to longitudinal gene expression in response to perturbations. Front Genet 2022; 13:1026487. [PMID: 36324501 PMCID: PMC9618823 DOI: 10.3389/fgene.2022.1026487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Differential Network (DN) analysis is a method that has long been used to interpret changes in gene expression data and provide biological insights. The method identifies the rewiring of gene networks in response to external perturbations. Our study applies the DN method to the analysis of RNA-sequencing (RNA-seq) time series datasets. We focus on expression changes: (i) in saliva of a human subject after pneumococcal vaccination (PPSV23) and (ii) in primary B cells treated ex vivo with a monoclonal antibody drug (Rituximab). The DN method enabled us to identify the activation of biological pathways consistent with the mechanisms of action of the PPSV23 vaccine and target pathways of Rituximab. The community detection algorithm on the DN revealed clusters of genes characterized by collective temporal behavior. All saliva and some B cell DN communities showed characteristic time signatures, outlining a chronological order in pathway activation in response to the perturbation. Moreover, we identified early and delayed responses within network modules in the saliva dataset and three temporal patterns in the B cell data.
Collapse
Affiliation(s)
- Shuyue Xue
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Lavida R.K. Rogers
- Department of Biological Sciences, University of the Virgin Islands, St Thomas, US Virgin Islands
| | - Minzhang Zheng
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
Relationship Between the MicroRNAs and PI3K/AKT/mTOR Axis: Focus on Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 239:154093. [DOI: 10.1016/j.prp.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
17
|
Huang J, Fang J, Chen Q, Chen J, Shen J. Epigenetic silencing of E-cadherin gene induced by lncRNA MALAT-1 in acute myeloid leukaemia. J Clin Lab Anal 2022; 36:e24556. [PMID: 35747989 PMCID: PMC9396179 DOI: 10.1002/jcla.24556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Epigenetic abnormalities in acute myeloid leukaemia provide us with a target for novel therapeutic strategies. The aim of the study was to verify the epigenetic regulatory mechanism of E‐cadherin gene silencing induced by long non‐coding RNA MALAT‐1 in AML. Methods Expression of MALAT‐1, E‐cadherin, EZH2, SUZ12 and EED genes in AML patients was detected by RT‐qPCR. After MALAT‐1 silencing in AML cell lines, levels of the E‐cadherin, EZH2, SUZ12, EED, DNMT1, DNMT3A and DNMT3B genes and encoded proteins were detected by RT‐qPCR and Western blotting. The level of CpG island methylation and trimethylation modification of histone H3K27 in the promoter region of E‐cadherin was detected by pyrosequencing and ChIP‐qPCR. RIP‐qPCR was used to detect the interaction between MALAT‐1 and proteins. Results MALAT‐1, EZH2 and EED gene expression was markedly increased in AML patients with E‐cadherin down‐regulation. A positive correlation between EZH2 or SUZ12 and MALAT‐1 expression was observed. After MALAT‐1 silencing, the expression of E‐cadherin was up‐regulated, whereas the expression of EZH2, SUZ12, DNMT1, DNMT3A and DNMT3B was down‐regulated. Results of Western blotting were consistent with those of RT‐qPCR. Methylation levels of E‐cadherin in AML patients were higher than that in normal controls, which appeared to increase with age. Methylation of the CpG island and H3K27 trimethylation of E‐cadherin were decreased after MALAT‐1 silencing. RIP‐qPCR suggested that MALAT‐1 might be enriched by EZH2 and SUZ12. Conclusion Our findings verified that MALAT‐1 might lead to the transcriptional silencing of E‐cadherin gene through the trimethylation of H3K27 mediated by recruiting EZH2 and SUZ12.
Collapse
Affiliation(s)
- Jinlong Huang
- Department of Hematology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jinyuan Chen
- The Central Laboratory, Fujian Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fuzhou, China
| | - Jianzhen Shen
- Department of Hematology, Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Bhattacharya M, Gutti RK. Non-coding RNAs: are they the protagonist or antagonist in the regulation of leukemia? Am J Transl Res 2022; 14:1406-1432. [PMID: 35422954 PMCID: PMC8991171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The idea of functional non-coding RNAs is taking precedence over the previous notion which believed that they only comprise the auxiliary and junk material of the genome. Newer technologies and studies have proven their importance in regulating and affecting several cellular processes. One such area of research wherein their importance has started to take light is in cancer research, particularly leukemia. Myeloid leukemia is a blood malignancy birthed from mutations in hematopoiesis that disable myeloid progenitor cells from proper differentiation. This review will compile the most recent findings regarding the effects of these regulatory non-coding RNAs on the two types of myeloid leukemia. In particular, the effects of circular RNAs, micro RNAs and long non-coding RNAs, on the pathogenesis and proliferation of Acute and Chronic myeloid leukemia will be revealed in a molecular, cellular and prognostic light. The mechanisms of proliferation, gene-to-gene interactions and possible therapeutic effects will also be discussed. Finally, an understanding of the overall "goodness" and "badness" of these non-coding RNAs will be summarised. This review hopes to provide a platform for easy access to data regarding the current non-coding RNAs in myeloid leukemia, for faster and easier research. Finally, the review will summarize a few key players that have protagonistic and antagonistic functions, and those that regulate multiple pathways in leukemia simultaneously.
Collapse
Affiliation(s)
- Mrinnanda Bhattacharya
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad(PO) Gachibowli, Hyderabad 500046 (TS), India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad(PO) Gachibowli, Hyderabad 500046 (TS), India
| |
Collapse
|
19
|
Cao Z, Oyang L, Luo X, Xia L, Hu J, Lin J, Tan S, Tang Y, Zhou Y, Cao D, Liao Q. The roles of long non-coding RNAs in lung cancer. J Cancer 2022; 13:174-183. [PMID: 34976181 PMCID: PMC8692699 DOI: 10.7150/jca.65031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the most common malignancy, being a serious threat of human lives. The incidence and mortality of lung cancer has been increasing rapidly in the past decades. Although the development of new therapeutic modes, such as target therapy, the overall survival rate of lung cancer remains low. It is urgent to advance the understanding of molecular oncology and find novel biomarkers and targets for the early diagnosis, treatment, and prognostic prediction of lung cancer. Long non-coding RNAs (lncRNAs) are non-protein coding RNA transcripts that are more than 200 nucleotides in length. LncRNAs exert diverse biological functions by regulating gene expressions at transcriptional, translational, and post-translational levels. In the past decade, it has been shown that lncRNAs are extensively involved in the pathogenesis of various diseases, including lung cancer. In this review, we highlighted the lncRNAs characterized in lung cancer and discussed their translational potential in lung cancer clinics.
Collapse
Affiliation(s)
- Zhe Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaqi Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Deliang Cao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Clinical Research Center for Wound Healing in Hunan Province, Changsha 410013, Hunan, China
| |
Collapse
|
20
|
Norouzi A, Motaghi M, Hassanshahi G, Nazari-Robati M. Exploring the expression profile of vitamin D receptor and its related long non-coding RNAs in patients with acute lymphoblastic leukemia. Rev Assoc Med Bras (1992) 2021; 67:1113-1117. [PMID: 34669855 DOI: 10.1590/1806-9282.20210451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer. Previous studies have indicated the involvement of vitamin D receptor (VDR) and related long noncoding RNAs (lncRNAs) signaling in the pathophysiology of several cancers. However, their contribution to ALL remains to be elucidated. METHODS In this case-control study, 30 patients with newly diagnosed ALL and 30 age- and sex-matched healthy children were selected. Then, the level of 25(OH) vitamin D and the expression of VDR and four VDR-related lncRNAs were assessed. RESULTS No significant difference in serum 25(OH) vitamin D was observed between patients with ALL (20.42±6.5 ng/mL) and healthy subjects (25.45±11 ng/mL). In addition, the expression of MALAT-1, HOTAIR, and P-21 was not statistically significant between the two groups. However, a significant reduction in VDR and H19 expression was observed in patients with ALL (p<0.05). CONCLUSIONS 25(OH) vitamin D insufficiency was evident in both groups. VDR and H19 signaling might be contributed to the pathogenesis of ALL, which needs further investigations.
Collapse
Affiliation(s)
- Akram Norouzi
- Student Research Committee, Kerman University of Medical Sciences, - Kerman, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences - Kerman, Iran
| | - Marzieh Motaghi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences - Kerman, Iran
| | - Gholamhossein Hassanshahi
- Department of Hematology and Blood Banking, Kerman University of Medical Sciences - Kerman, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences - Rafsanjan, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences - Kerman, Iran
| |
Collapse
|
21
|
Singh VK, Thakral D, Gupta R. Regulatory noncoding RNAs: potential biomarkers and therapeutic targets in acute myeloid leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:504-519. [PMID: 34824883 PMCID: PMC8610797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The noncoding RNAs (ncRNA) comprise a substantial segment of the human transcriptome and have emerged as key elements of cellular homeostasis and disease pathogenesis. Dysregulation of these ncRNAs by alterations in the primary RNA motifs and/or aberrant expression levels is relevant in various diseases, especially cancer. The recent research advances indicate that ncRNAs regulate vital oncogenic processes, including hematopoietic cell differentiation, proliferation, apoptosis, migration, and angiogenesis. The ever-expanding role of ncRNAs in cancer progression and metastasis has sparked interest as potential diagnostic and prognostic biomarkers in acute myeloid leukemia. Moreover, advances in antisense oligonucleotide technologies and pharmacologic discoveries of small molecule inhibitors in targeting RNA structures and RNA-protein complexes have opened newer avenues that may help develop the next generation anti-cancer therapeutics. In this review, we have discussed the role of ncRNA in acute myeloid leukemia and their utility as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Vivek Kumar Singh
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Deepshi Thakral
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| | - Ritu Gupta
- Laboratory Oncology, Dr B.R.A, IRCH, All India Institute of Medical Sciences New Delhi 110029, India
| |
Collapse
|
22
|
Fan Y, Chen M, Pan X. GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field. Brief Bioinform 2021; 23:6363052. [PMID: 34486019 DOI: 10.1093/bib/bbab361] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes, and are closely related to the occurrence and development of diseases. Identifying lncRNA-disease associations is valuable for revealing the molecular mechanism of diseases and exploring treatment strategies. Thus, it is necessary to computationally predict lncRNA-disease associations as a complementary method for biological experiments. In this study, we proposed a novel prediction method GCRFLDA based on the graph convolutional matrix completion. GCRFLDA first constructed a graph using the available lncRNA-disease association information. Then, it constructed an encoder consisting of conditional random field and attention mechanism to learn efficient embeddings of nodes, and a decoder layer to score lncRNA-disease associations. In GCRFLDA, the Gaussian interaction profile kernels similarity and cosine similarity were fused as side information of lncRNA and disease nodes. Experimental results on four benchmark datasets show that GCRFLDA is superior to other existing methods. Moreover, we conducted case studies on four diseases and observed that 70 of 80 predicted associated lncRNAs were confirmed by the literature.
Collapse
Affiliation(s)
- Yongxian Fan
- School of Computer Science and Information Security, Guilin University of Electronic Technology
| | - Meijun Chen
- Guilin University of Electronic Technology, Guilin 541004, China
| | - Xiaoyong Pan
- Department of Automation of Shanghai Jiao Tong University
| |
Collapse
|
23
|
Xue L, Li C, Ren J, Wang Y. KDM4C contributes to cytarabine resistance in acute myeloid leukemia via regulating the miR-328-3p/CCND2 axis through MALAT1. Ther Adv Chronic Dis 2021; 12:2040622321997259. [PMID: 34394903 PMCID: PMC8358730 DOI: 10.1177/2040622321997259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Aims Acute myeloid leukemia (AML) is an aggressive hematologic neoplasm, in which relapse due to drug resistance is the main cause for treatment failure and the disease progression. In this study, we aimed to investigate the molecular mechanism of KDM4C-dependent MALAT1/miR-328-3p/CCND2 axis in cytarabine (Ara-C) resistance in the context of AML. Methods Bioinformatics analysis was performed to predict the targeting relationships among KDM4C, MALAT1, miR-328-3p, and CCND2 in AML, which were validated with chromatin immunoprecipitation and dual-luciferase reporter assay. Methylation-specific polymerase chain reaction was conducted to detect the methylation of MALAT1 promoter. After conducting gain- and loss-of-function assays, we investigated the effect of KDM4C on cell Ara-C resistance. A NOD/SCID mouse model was established to further investigate the roles of KDM4C/MALAT1/miR-328-3p/CCND2 in Ara-C resistant AML cells. Results KDM4C expression was upregulated in AML. KDM4C upregulation promoted the demethylation in the promoter region of MALAT1 to increase its expression, MALAT1 targeted and inhibited miR-328-3p expression, enhancing the Ara-C resistance of HL-60/A. miR-328-3p targeted and suppressed the expression of CCND2 in HL-60/A to inhibit the Ara-C resistance. Mechanistically, KDM4C regulated miR-328-3p/CCND2 through MALAT1, resulting in Ara-C resistance in AML. Findings in an in vivo xenograft NOD/SCID mouse model further confirmed the contribution of KDM4C/MALAT1/miR-328-3p/CCND2 in the Ara-C resistant AML. Conclusion Our study demonstrated that KDM4C may up-regulate MALAT1 expression, which decreases the expression of miR-328-3p. The downregulation of miR-328-3p increased the level of CCND2, which induced the Ara-C resistance in AML.
Collapse
Affiliation(s)
- Lu Xue
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Chunhuai Li
- Department of Pediatrics Hematology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jin Ren
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatrics Hematology, The First Hospital of Jilin University, No. 1, Xinmin Street, Chaoyang District, Changchun, Jilin Province 130021, P.R. China
| |
Collapse
|
24
|
Shi J, Shi X, Dai RQ. The prognostic impact of abnormally expressed, long noncoding RNAs in acute myeloid leukemia: a meta-analysis. ACTA ACUST UNITED AC 2021; 25:219-228. [PMID: 33346694 DOI: 10.1080/16078454.2020.1779480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: A growing number of studies demonstrate that long noncoding RNAs (lncRNAs) could act as biomarkers to determine the prognosis of acute myeloid leukemia (AML) patients. Nonetheless, the significance of lncRNAs in AML prognosis remains unclear. We conducted a meta-analysis to assess the prognostic indicators of abnormally expressed lncRNAs in AML. Methods: Literature was searched using PubMed, EMBASE, and Web of Science databases up to November 10, 2018. Results: Thirteen studies with 2755 individuals were included. The abnormal expression of lncRNAs was associated with worse overall survival (OS) in AML patients, especially in cytogenetically normal AML (CN-AML), and was associated with shorter disease-free survival and event-free survival. Subgroup analysis showed that high levels of HOTAIR and TUG1 were associated with poor OS. Discussion: Overexpression of lncRNA HOTAIR and TUG1 were reported in two separate studies, and correlated with worse AML prognoses. Conclusion: Abnormally expressed lncRNAs are significantly related to worse prognoses of AML patients and might serve as potential prognostic markers to predict the prognosis of AML patients.
Collapse
Affiliation(s)
- Jie Shi
- Department of Hematology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin Shi
- Department of Critical Care Medicine, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rong-Qin Dai
- Department of Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
25
|
Zhu R, Hu X, Xu W, Wu Z, Zhu Y, Ren Y, Cheng L. LncRNA MALAT1 inhibits hypoxia/reoxygenation-induced human umbilical vein endothelial cell injury via targeting the microRNA-320a/RAC1 axis. Biol Chem 2021; 401:349-360. [PMID: 31408432 DOI: 10.1515/hsz-2019-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Angiogenesis is believed to protect against hypoxia/reoxygenation (H/R)-induced cell injury. MALAT1 and microRNA-320a (miR-320a) are involved in cancer angiogenesis. To investigate the function of the MALAT1/miR-320a axis in H/R-induced cell injury, human umbilical vein endothelial cell (HUVEC) angiogenesis was detected using the Cell Counting Kit-8 (CCK-8), Transwell migration, cell adhesion and tube formation assays. The expression of MALAT1 and miR-320a was revealed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The direct binding relationship between miR-320a and MALAT1 was detected by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. The data indicated that H/R induces angiogenesis injury and that the expression of MALAT1 was augmented in H/R-stimulated HUVECs. Overexpression of MALAT1 alleviated H/R-stimulated HUVEC dysfunction, whereas silencing of MALAT1 exerted the opposite effects. MALAT1 also reduced miR-320a levels in HUVECs. Overexpression of miR-320a repressed the function of MALAT1 on H/R-stimulated HUVECs, whereas inhibition of miR-320a exerted the opposite effect. Additionally, miR-320a inhibition alleviated H/R-stimulated HUVEC injury via RAC1. Taken together, this investigation concluded that MALAT1 represses H/R-stimulated HUVEC injury by targeting the miR-320a/RAC1 axis.
Collapse
Affiliation(s)
- Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| |
Collapse
|
26
|
Izadirad M, Jafari L, James AR, Unfried JP, Wu ZX, Chen ZS. Long noncoding RNAs have pivotal roles in chemoresistance of acute myeloid leukemia. Drug Discov Today 2021; 26:1735-1743. [PMID: 33781951 DOI: 10.1016/j.drudis.2021.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Many patients with acute myeloid leukemia (AML) experience poor outcomes following traditional high-dose chemotherapies and complete remission rates remain suboptimal. Chemoresistance is an obstacle to effective chemotherapy and the precise mechanisms involved remain to be determined. Recently, long noncoding RNAs (lncRNAs) have been identified as relevant factors in the development of drug resistance in patients with AML. Furthermore, accumulating data support the importance of lncRNAs as potentially useful novel therapeutic targets in many cancers. Here, we review the role of lncRNAs in the development and induction of the chemoresistance in AML, and suggest lncRNAs as novel molecular markers for diagnosis, prediction of patient response to chemotherapy, and novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Mehrdad Izadirad
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Jafari
- Department of Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alva Rani James
- Digital Health & Machine Learning, Hasso Plattner Institute, University of Potsdam, Germany
| | - Juan Pablo Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St John's University, New York, NY, USA.
| |
Collapse
|
27
|
Qu Y, Wang Y, Wang P, Lin N, Yan X, Li Y. Overexpression of long noncoding RNA HOXA-AS2 predicts an adverse prognosis and promotes tumorigenesis via SOX4/PI3K/AKT pathway in acute myeloid leukemia. Cell Biol Int 2020; 44:1745-1759. [PMID: 32369230 DOI: 10.1002/cbin.11370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in diverse cellular processes and carcinogenesis. Homeobox A cluster antisense RNA 2 (HOXA-AS2) is a 1,048-basepairs lncRNA located between human HOXA3 and HOXA4 genes, whose overactivation was previously found to promote the proliferation and invasion of solid tumors. However, its clinical and biological roles in acute myeloid leukemia (AML) remain unclear. This study showed that HOXA-AS2 was overexpressed in AML patients. In addition, the increased HOXA-AS2 expression was correlated with higher white blood cell and bone marrow blast counts, unfavorable karyotype classification, more measurable residual disease positivity, and earlier death. There was also a tendency toward inferior survival in patients with high HOXA-AS2 expression, and HOXA-AS2 was an independent prognostic factor among the normal-karyotype AMLs. Furthermore, the results of in vitro study showed that silencing HOXA-AS2 significantly inhibited the growth of leukemic cells by inducing G1/G0-phase arrest and apoptosis. Further analysis demonstrated that silencing HOXA-AS2 suppressed the phosphorylation level of PI3K and AKT, which thereafter promoted the expression of P21 and P27. Moreover, it was suggested that the sex-determining region Y-box 4 (SOX4), which is closely involved in the PI3K/AKT pathway, might be one of the major downstream targets of HOXA-AS2. Silencing HOXA-AS2 decreased the expression of SOX4, whereas the upregulation of SOX4 partially abrogated the inhibitory effect of silencing HOXA-AS2 on leukemic cells. In conclusion, these findings suggest that HOXA-AS2 probably functions as an oncogene via SOX4/PI3K/AKT pathway and might be a useful biomarker for the prognostic prediction in AML patients, providing a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Yi Qu
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Wang
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pingping Wang
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Na Lin
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaojing Yan
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Li
- Department of Hematology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
28
|
Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA Expression in Leukemia. J Cancer 2020; 11:4284-4296. [PMID: 32368311 PMCID: PMC7196264 DOI: 10.7150/jca.42093] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Leukemia is a common malignant cancer of the hematopoietic system, whose pathogenesis has not been fully elucidated. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein-coding function. Recent studies report their role in cellular processes such as the regulation of gene expression, as well as in the carcinogenesis, occurrence, development, and prognosis of various tumors. Evidence indicating relationships between a variety of lncRNAs and leukemia pathophysiology has increased dramatically in the previous decade, with specific lncRNAs expected to serve as diagnostic biomarkers, novel therapeutic targets, and predictors of clinical outcomes. Furthermore, these lncRNAs might offer insight into disease pathogenesis and novel treatment options. This review summarizes progress in studies on the role(s) of lncRNAs in leukemia.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fujue Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pengqiang Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
29
|
Association of long non-coding RNA and leukemia: A systematic review. Gene 2020; 735:144405. [DOI: 10.1016/j.gene.2020.144405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
30
|
Silencing of long non-coding RNA MALAT1 suppresses inflammation in septic mice: role of microRNA-23a in the down-regulation of MCEMP1 expression. Inflamm Res 2020; 69:179-190. [PMID: 31893303 DOI: 10.1007/s00011-019-01306-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Sepsis is a life-threatening disease without ideal biomarkers. Some long non-coding RNAs (lncRNAs) are found to be implicated in sepsis. Thus, we investigated the effects of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on inflammation in septic mice and the potential mechanisms of the MALAT1/microRNA-23a (miR-23a)/MCEMP1 axis. METHODS The sepsis mice model was generated by cecal ligation and puncture (CLP). Then the expressions of lncRNA MALAT1, mast cell-expressed membrane protein 1 (MCEMP1), and miR-23a in septic mice were determined. The interaction between lncRNA MALAT1, miR-23a and MCEMP1 was confirmed. Loss- and gain-of-function approaches were used to verify the roles of the lncRNA MALAT1, miR-23a, and MCEMP1 in inflammation, cell proliferation and apoptosis in septic mice. RESULTS AND CONCLUSION The myeloperoxidase (MPO) activity and the expression of interleukin 6 (IL-6), IL-1β, IL-10, and tumor necrosis factor-α (TNF-α) were detected. High expression of the lncRNA MALAT1 and MCEMP1, as well as low expression of miR-23a, was observed in septic mice. LncRNA MALAT1 competitively bound to miR-23a, and miR-23a targeted MCEMP1. Moreover, the down-regulation of lncRNA MALAT1 repressed the expression of MPO, IL-6, IL-10, TNF-α, and IL-1β. Silencing of lncRNA MALAT1 or overexpression of miR-23a reduced inflammation, inhibited cell proliferation, and promoted cell apoptosis in septic mice. Taken together, MALAT1 promotes the inflammation in septic mice by binding to miR-23a to up-regulate MCEMP1. Therefore, silencing of lncRNA MALAT1 might provide a novel therapeutic target for sepsis.
Collapse
|
31
|
Metastasis Associated Lung Adenocarcinoma Transcript 1: An update on expression pattern and functions in carcinogenesis. Exp Mol Pathol 2019; 112:104330. [PMID: 31712117 DOI: 10.1016/j.yexmp.2019.104330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/03/2019] [Indexed: 12/28/2022]
Abstract
The Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is among long non-coding RNAs (lncRNAs) which has disapproved the old term of "junk DNA" which was used for majority of human genome which are not transcribed to proteins. An extensive portion of literature points to the fundamental role of this lncRNA in tumorigenesis process of diverse cancers ranging from solid tumors to leukemia. Being firstly identified in lung cancer, it has prognostic and diagnostic values in several cancer types. Consistent with the proposed oncogenic roles for this lncRNA, most of studies have shown up-regulation of MALAT1 in malignant tissues compared with non-malignant/normal tissues of the same source. However, few studies have shown down-regulation of MALAT1 in breast cancer, endometrial cancer, colorectal cancer and glioma. In the current study, we have conducted a comprehensive literature search and provided an up-date on the role of MALAT1 in cancer biology. Our investigation underscores a potential role as a diagnostic/prognostic marker and a putative therapeutic target for MALAT1.
Collapse
|
32
|
Chateauvieux S, Gaigneaux A, Gérard D, Orsini M, Morceau F, Orlikova-Boyer B, Farge T, Récher C, Sarry JE, Dicato M, Diederich M. Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia. Haematologica 2019; 105:e280-e284. [PMID: 31582551 DOI: 10.3324/haematol.2019.217281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Sébastien Chateauvieux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.,College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Anthoula Gaigneaux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg.,College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Thomas Farge
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christian Récher
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France.,Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Toulouse, France
| | - Jean-Emmanuel Sarry
- Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France.,Université Toulouse III Paul Sabatier, Toulouse, France
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
33
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:1015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 575] [Impact Index Per Article: 95.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|
34
|
Peng L, Zhang Y, Xin H. lncRNA SNHG3 facilitates acute myeloid leukemia cell growth via the regulation of miR-758-3p/SRGN axis. J Cell Biochem 2019; 121:1023-1031. [PMID: 31452272 DOI: 10.1002/jcb.29336] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
Small nucleolar RNA host gene 3 (SNHG3) is a newly identified long non-coding RNA whose dysregulation has been reported in several cancers. However, the details about clinical significances and biological functions of SNHG3 on acute myeloid leukemia (AML) remain covered. In this study, we revealed increased SNHG3 expression in AML samples and cells and its high potential as a prognostic biomarker for AML patients. Likewise, serglycin (SRGN), which plays an important role in granule-mediated apoptosis, was previously verified to be upregulated in AML and confirmed again by the present study, and its upregulation predicted poor outcomes in AML. Furthermore, knockdown of SNHG3 or SRGN inhibited cell proliferation and induced cell apoptosis. Besides, silencing SNHG3 noticeably decreased the expression of SRGN in AML cells. Moreover, we uncovered that SNHG3 modulated SRGN expression by competitively binding with miR-758-3p. Importantly, both miR-758-3p suppression and SRGN overexpression could mitigate the inhibitory effects of SNHG3 depletion on AML cell growth. Intriguingly, the higher SRGN expression in AML samples with a higher SNHG3 level exhibited an enhanced Ki67 level but a reduced caspase 3 level. To sum up, SNHG3 elicits a growth-promoting function in AML via sponging miR-758-3p to regulate SRGN expression, providing a new therapeutic road for AML patients.
Collapse
Affiliation(s)
- Linqiang Peng
- Department of Pediatrics, Baoji People's Hospital Shaanxi Province, Baoji, Shaanxi, China
| | - Yanzhi Zhang
- Department of Pediatrics, Lanling County People's Hospital, Lanling, Shandong, China
| | - Hongli Xin
- Department of Pediatrics, Lanling County People's Hospital, Lanling, Shandong, China
| |
Collapse
|
35
|
Huang HH, Chen FY, Chou WC, Hou HA, Ko BS, Lin CT, Tang JL, Li CC, Yao M, Tsay W, Hsu SC, Wu SJ, Chen CY, Huang SY, Tseng MH, Tien HF, Chen RH. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2019; 19:617. [PMID: 31234830 PMCID: PMC6591843 DOI: 10.1186/s12885-019-5822-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) represent the majority of cellular transcripts and play pivotal roles in hematopoiesis. However, their clinical relevance in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remains largely unknown. Here, we investigated the functions of HOXB-AS3, a lncRNA located at human HOXB cluster, in the myeloid cells, and analyzed the prognostic significances in patients with AML and MDS. Methods shRNAs were used to downregulate HOXB-AS3 in the cell lines and the effect was evaluated by quantitative polymerase chain reaction. The proliferation of the cell lines was illustrated by proliferation and BrdU flow assays. Further, we retrospectively analyzed the HOXB-AS3 expression in 193 patients with AML and 157 with MDS by microarray analysis, and evaluated its clinical importance. Results Downregulation of HOXB-AS3 suppressed cell proliferation. Mechanistically, HOXB-AS3 potentiated the expressions of several key factors in cell cycle progression and DNA replication without affecting the expressions of HOX genes. In AML, patients with higher HOXB-AS3 expression had shorter survival than those with lower HOXB-AS3 expression (median overall survival (OS), 17.7 months versus not reached, P < 0.0001; median relapse-free survival, 12.9 months versus not reached, P = 0.0070). In MDS, patients with higher HOXB-AS3 expression also had adverse prognosis compared with those with lower HOXB-AS3 expression (median OS, 14.6 months versus 42.4 months, P = 0.0018). The prognostic significance of HOXB-AS3 expression was validated in the TCGA AML cohort and another MDS cohort from our institute. The subgroup analyses in MDS patients showed that higher HOXB-AS3 expressions could predict poor prognosis only in lower-risk (median OS, 29.2 months versus 77.3 months, P = 0.0194), but not higher-risk group. Conclusions This study uncovers a promoting role of HOXB-AS3 in myeloid malignancies and identifies the prognostic value of HOXB-AS3 expression in AML and MDS patients, particularly in the lower-risk group. Electronic supplementary material The online version of this article (10.1186/s12885-019-5822-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huai-Hsuan Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Lin
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jih-Luh Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Chi-Cheng Li
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Woei Tsay
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Shang-Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yuan Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| | - Ruey-Hwa Chen
- Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Hu N, Chen L, Wang C, Zhao H. MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells. Biomed Pharmacother 2019; 112:108720. [PMID: 30970520 DOI: 10.1016/j.biopha.2019.108720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Drug resistance remains a major cause of relapse and therapeutic failure in acute myeloid leukemia (AML). Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been documented to act as an oncogene and is frequently highly expressed in human cancers including AML. However, the function and molecular mechanism of MALAT1 in regulating cytarabine (Ara-C) resistance of AML are largely unknown. The expressions of MALAT1 and miR-96 in AML patients and healthy controls were examined by qRT-PCR. CCK-8 and flow cytometry assay were performed to assess the proliferation and apoptosis of AML cells. The interaction between MALAT1 and miR-96 was investigated by luciferase reporter assay. We found that MALAT1 was upregulated while miR-96 was downregulated in AML patients compared with healthy controls. A negative correlation between MALAT1 and miR-96 expressions was observed in AML patients. Knockdown of MALAT1 inhibited the proliferation, induced apoptosis, and enhanced Ara-C sensitivity of AML cells. Additionally, MALAT1 suppressed miR-96 expression by acting as a molecular sponge of miR-96 in AML cells. miR-96 downregulation abolished the effects of MALAT1 knockdown on the proliferation, apoptosis, Ara-C sensitivity in AML cells. In conclusion, MALAT1 knockdown inhibited proliferation, promoted apoptosis and enhanced Ara-C sensitivity in AML cells by upregulating miR-96, providing novel insights into the critical role of MALAT1 as a miRNA sponge in AML.
Collapse
Affiliation(s)
- Ning Hu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Li Chen
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Chao Wang
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China.
| |
Collapse
|
37
|
Ahmadi A, Kaviani S, Yaghmaie M, Pashaiefar H, Ahmadvand M, Jalili M, Alimoghaddam K, Eslamijouybari M, Ghavamzadeh A. Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings. Blood Res 2018; 53:320-324. [PMID: 30588470 PMCID: PMC6300670 DOI: 10.5045/br.2018.53.4.320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023] Open
Abstract
Background Recent studies have devoted much attention to non-protein-coding transcripts in relation to a wide range of malignancies. MALAT1, a long non-coding RNA, has been reported to be associated with cancer progression and prognosis. Thus, we here determined MALAT1 gene expression in chronic lymphocytic leukemia (CLL), a genetically heterogeneous disease, and explored its possible relationships with cytogenetic abnormalities. Methods MALAT1 expression level was evaluated using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) on blood mononuclear cells from 30 non-treated CLL patients and 30 matched healthy controls. Cytogenetic abnormalities were determined in patients by fluorescence in situ hybridization (FISH). Results MALAT1 expression level was up-regulated in the CLL group compared to healthy controls (P=0.008). Del13q14, followed by Del11q22, were the most prevalent cytogenetic abnormalities. We found no association between the FISH results and MALAT1 expression in patients. Conclusion Altered expression of MALAT1 is associated with CLL development. Further investigations are required to assess the relationship between this long non-coding RNA and CLL patient survival and prognosis.
Collapse
Affiliation(s)
- Abdolrahim Ahmadi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran
| | - Marjan Yaghmaie
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Pashaiefar
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Jalili
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Alimoghaddam
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ardeshir Ghavamzadeh
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran, Iran.,Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Tehran, Iran.,Hematologic Malignancies Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Wong NK, Huang CL, Islam R, Yip SP. Long non-coding RNAs in hematological malignancies: translating basic techniques into diagnostic and therapeutic strategies. J Hematol Oncol 2018; 11:131. [PMID: 30466456 PMCID: PMC6251105 DOI: 10.1186/s13045-018-0673-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Recent studies have revealed that non-coding regions comprise the vast majority of the human genome and long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs that has been implicated in a variety of biological processes. Abnormal expression of lncRNAs has also been linked to different human diseases including cancers, yet the regulatory mechanisms and functional effects of lncRNAs are still ambiguous, and the molecular details also need to be confirmed. Unlike protein-coding gene, it is much more challenging to unravel the roles of lncRNAs owing to their unique and complex features such as functional diversity and low conservation among species, which greatly hamper their experimental characterization. In this review, we summarize and discuss both conventional and advanced approaches for the identification and functional characterization of lncRNAs related to hematological malignancies. In particular, the utility and advancement of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system as gene-editing tools are envisioned to facilitate the molecular dissection of lncRNAs via different knock-in/out strategies. Besides experimental considerations specific to lncRNAs, the roles of lncRNAs in the pathogenesis and progression of leukemia are also highlighted in the review. We expect that these insights may ultimately lead to clinical applications including development of biomarkers and novel therapeutic approaches targeting lncRNAs.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China.
| | - Rashidul Islam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Y9/F, Lee Shau Kee Building, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
39
|
Xu Y, Zhang X, Hu X, Zhou W, Zhang P, Zhang J, Yang S, Liu Y. The effects of lncRNA MALAT1 on proliferation, invasion and migration in colorectal cancer through regulating SOX9. Mol Med 2018; 24:52. [PMID: 30285605 PMCID: PMC6171136 DOI: 10.1186/s10020-018-0050-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background For the study, we determine the potential biomarkers and uncover the regulatory mechanisms of lncRNA MALAT1 / miR-145 / SOX9 axis on the abilities of cell growth and cell metastasis of colorectal cancer. Methods Previously published dataset GSE18105 from GEO database was used for microarray analysis to identify differential-expressed lncRNAs and mRNAs. The miRNA which had targeted relationships with both lncRNA and mRNA was predicted using miRCode and Targetscan. The association between lncRNA and miRNA, miRNA and mRNA was verified using dual-luciferase reporter assay. Expression levels of lncRNA MALAT1, miR-145 and SOX9 were examined by quantitative RT-PCR analysis. The cell viability of two cancer cell lines was compared by CCK-8 assay. Colony formation was hired to detected cell proliferation. The cell cycle distribution and apoptotic cell rate were conducted by flow cytometry assay. Wound healing as well as transwell assay were compare the cell migration and cell invasion respectively among groups. The effect of MALAT1 on colorectal cancer in vivo was constructed by xenograft model. Results Significantly dysregulated lncRNAs and mRNAs were identified by microarray analysis. By experimental verification, MALAT1 and SOX9 were expressed in a high percentage of colorectal cancer tumors and cells, while miR-145 was in a low expression. We also identified miR-145 as a target of MALAT1 and SOX9. MALAT1 played a role in regulating cancer process by functioning as a competing endogenous RNA. Silencing MALAT1 could effectively decrease the expression level of SOX9, thus suppress cell viability and metastasis. Down-regulated MALAT1 could induce resistance of G1 phase in cell cycle, and facilitation of colorectal cancer cell apoptosis. Nude mice injected with cells transfected with si-MALAT1 had smaller tumor on size and weight. Conclusions The regulatory function of lncRNA MALAT1 / miR-145 / SOX9 axis was revealed in colorectal cancer based on bioinformatics analysis. LncRNA MALAT1 could facilitate colorectal cancer cell proliferation, invasion and migration by down-regulating miR-145 and up-regulating SOX9. LncRNA MALAT1 could suppress cell cycle and apoptosis through MALAT1 / miR-145 / SOX9 axis.
Collapse
Affiliation(s)
- Yuanlin Xu
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China
| | - Xihong Zhang
- Department of Gynaecology and Obstetric, Pepole's Hospital of Henan University of Chinese Medicine (Pepole's Hospital of Zhengzhou), Zhengzhou, 450003, Henan, China
| | - Xiufeng Hu
- Department of Respiratory, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenping Zhou
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China
| | - Peipei Zhang
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China
| | - Jiuyang Zhang
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China
| | - Shujun Yang
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China
| | - Yanyan Liu
- Department of Lymphatic Comprehensive Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, No.127 Dongming Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
40
|
Lei L, Chen J, Huang J, Lu J, Pei S, Ding S, Kang L, Xiao R, Zeng Q. Functions and regulatory mechanisms of metastasis‐associated lung adenocarcinoma transcript 1. J Cell Physiol 2018; 234:134-151. [PMID: 30132842 DOI: 10.1002/jcp.26759] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital Central South University Changsha Hunan China
- Department of Hunan Key Laboratory of Skin Cancer and Psoriasis Xiangya Hospital, Central South University Changsha Hunan China
| | - Jing Chen
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jinhua Huang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Jianyun Lu
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shiyao Pei
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Shu Ding
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Liyang Kang
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| | - Rong Xiao
- Department of Dermatology Second Xiangya Hospital, Central South University Changsha Hunan China
| | - Qinghai Zeng
- Department of Dermatology Third Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
41
|
Camacho CV, Choudhari R, Gadad SS. Long noncoding RNAs and cancer, an overview. Steroids 2018; 133:93-95. [PMID: 29317255 DOI: 10.1016/j.steroids.2017.12.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in several biological processes, including but not limited to cardiovascular physiology, reproduction, differentiation, metabolism, DNA repair, and inflammation. Under normal physiological conditions, expression of lncRNAs is tissue-specific and tightly regulated. In contrast, prevalent cancer types exhibit aberrant expression of lncRNAs. In this context, lncRNAs can drive cancer cell characteristics by controlling gene expression programs related to tumor suppressive and oncogenic functions. Hence, they can be excellent biomarkers and targets for therapeutic intervention in cancers. Understanding the molecular mechanisms by which lncRNAs drive cancer progression will improve our understanding of the etiology of cancer and suggest new ways to treat this disease. This review will provide a perspective on the role of lncRNAs in cancer initiation and progression.
Collapse
Affiliation(s)
- Cristel V Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States; Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
42
|
Danis J, Széll M. VELUCT, a long non-coding RNA with an important cellular function despite low abundance. J Thorac Dis 2017; 9:3638-3640. [PMID: 29268362 DOI: 10.21037/jtd.2017.09.66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Judit Danis
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Márta Széll
- MTA-SZTE Dermatological Research Group, Szeged, Hungary.,Department of Medical Genetics, University of Szeged, Szeged, Hungary
| |
Collapse
|