1
|
Fontanella RA, Ghosh P, Pesapane A, Taktaz F, Puocci A, Franzese M, Feliciano MF, Tortorella G, Scisciola L, Sommella E, Ambrosino C, Paolisso G, Barbieri M. Tirzepatide prevents neurodegeneration through multiple molecular pathways. J Transl Med 2024; 22:114. [PMID: 38287296 PMCID: PMC10823712 DOI: 10.1186/s12967-024-04927-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.
Collapse
Affiliation(s)
- Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Federica Feliciano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Song BF, Xu LZ, Jiang K, Cheng F. MiR-124-3p inhibits tumor progression in prostate cancer by targeting EZH2. Funct Integr Genomics 2023; 23:80. [PMID: 36884182 PMCID: PMC9995421 DOI: 10.1007/s10142-023-00991-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023]
Abstract
Prostate cancer (PCa) is widespread cancer with significant morbidity and mortality rates. MicroRNAs (miRNAs) have been identified as important post-transcriptional modulators in various malignancies. This study investigated the miR-124-3p effect on PCa cell proliferation, infiltration, and apoptosis. EZH2 and miR-124-3p expression levels were measured in PCa tissues. PCa cell lines DU145 and PC3 were transfected with miR-124-3p inhibitors or analogs. EZH2 and miR-124-3p linkage was validated by conducting the luciferase enzyme reporter test. The cell viability and apoptosis were assessed by flow cytometry and MTT test. Cell movement was noted during infiltration using transwell assays. EZH2, AKT, and mTOR contents were assessed using qRT-PCR and western blotting. In clinical PCa specimens, miR-124-3p and EZH2 contents were inversely correlated. Further research has demonstrated that EZH2 is the miR-124-3p direct target. Furthermore, miR-124-3p overexpression reduced EZH2 levels and lowered cell viability, infiltration, and promoted cell death, whereas miR-124-3p silencing had the opposite effect. Overexpression of miR-124-3p decreased the phosphorylation level of AKT and mTOR, whereas miR-124-3p downregulation produced the opposite result. Our findings depict that miR-124-3p prevents PCa proliferative and invasive processes while promoting apoptosis by targeting EZH2.
Collapse
Affiliation(s)
- Bao-Feng Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
3
|
Centomo ML, Vitiello M, Poliseno L, Pandolfi PP. An Immunocompetent Environment Unravels the Proto-Oncogenic Role of miR-22. Cancers (Basel) 2022; 14:cancers14246255. [PMID: 36551740 PMCID: PMC9776418 DOI: 10.3390/cancers14246255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
MiR-22 was first identified as a proto-oncogenic microRNA (miRNA) due to its ability to post-transcriptionally suppress the expression of the potent PTEN (Phosphatase And Tensin Homolog) tumor suppressor gene. miR-22 tumorigenic role in cancer was subsequently supported by its ability to positively trigger lipogenesis, anabolic metabolism, and epithelial-mesenchymal transition (EMT) towards the metastatic spread. However, during the following years, the picture was complicated by the identification of targets that support a tumor-suppressive role in certain tissues or cell types. Indeed, many papers have been published where in vitro cellular assays and in vivo immunodeficient or immunosuppressed xenograft models are used. However, here we show that all the studies performed in vivo, in immunocompetent transgenic and knock-out animal models, unanimously support a proto-oncogenic role for miR-22. Since miR-22 is actively secreted from and readily exchanged between normal and tumoral cells, a functional immune dimension at play could well represent the divider that allows reconciling these contradictory findings. In addition to a critical review of this vast literature, here we provide further proof of the oncogenic role of miR-22 through the analysis of its genomic locus vis a vis the genetic landscape of human cancer.
Collapse
Affiliation(s)
- Maria Laura Centomo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Marianna Vitiello
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Poliseno
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Via Moruzzi 1, 56124 Pisa, Italy
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
- William N. Pennington Cancer Institute, Renown Health, Nevada System of Higher Education, Reno, NV 89502, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Correspondence: (L.P.); (P.P.P.); Tel.: +39-050-315-2780 (L.P.); +1-775-982-6210 (P.P.P.); Fax: +39-050-315-3327 (L.P.); +1-775-982-4288 (P.P.P.)
| |
Collapse
|
4
|
Santonja Á, Moya-García AA, Ribelles N, Jiménez-Rodríguez B, Pajares B, Fernández-De Sousa CE, Pérez-Ruiz E, Del Monte-Millán M, Ruiz-Borrego M, de la Haba J, Sánchez-Rovira P, Romero A, González-Neira A, Lluch A, Alba E. Role of germline variants in the metastasis of breast carcinomas. Oncotarget 2022; 13:843-862. [PMID: 35782051 PMCID: PMC9245581 DOI: 10.18632/oncotarget.28250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Most cancer-related deaths in breast cancer patients are associated with metastasis, a multistep, intricate process that requires the cooperation of tumour cells, tumour microenvironment and metastasis target tissues. It is accepted that metastasis does not depend on the tumour characteristics but the host’s genetic makeup. However, there has been limited success in determining the germline genetic variants that influence metastasis development, mainly because of the limitations of traditional genome-wide association studies to detect the relevant genetic polymorphisms underlying complex phenotypes. In this work, we leveraged the extreme discordant phenotypes approach and the epistasis networks to analyse the genotypes of 97 breast cancer patients. We found that the host’s genetic makeup facilitates metastases by the dysregulation of gene expression that can promote the dispersion of metastatic seeds and help establish the metastatic niche—providing a congenial soil for the metastatic seeds.
Collapse
Affiliation(s)
- Ángela Santonja
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Aurelio A Moya-García
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Departmento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain.,These authors contributed equally to this work
| | - Nuria Ribelles
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| | - Begoña Jiménez-Rodríguez
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Bella Pajares
- Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - Cristina E Fernández-De Sousa
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Spain.,Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain
| | | | - María Del Monte-Millán
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain
| | | | - Juan de la Haba
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Biomedical Research Institute, Complejo Hospitalario Reina Sofía, Córdoba, Spain
| | | | - Atocha Romero
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Anna González-Neira
- Human Genotyping-CEGEN Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Lluch
- Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain.,Department of Oncology and Hematology, Hospital Clínico Universitario, Valencia, Spain.,INCLIVA Biomedical Research Institute, Universidad de Valencia, Valencia, Spain
| | - Emilio Alba
- Laboratorio de Biología Molecular del Cáncer, Centro de Investigaciones Médico-Sanitarias (CIMES), Universidad de Málaga, Málaga, Spain.,Unidad de Gestión Clínica Intercentro de Oncología, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain.,Centro de Investigación Biomédica en Red de Oncología, CIBERONC-ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Raji S, Sahranavard M, Mottaghi M, Sahebkar A. MiR-212 value in prognosis and diagnosis of cancer and its association with patient characteristics: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:163. [PMID: 35473623 PMCID: PMC9044851 DOI: 10.1186/s12935-022-02584-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Delayed cancer diagnosis and inefficient cancer prognosis determination are problems faced in cancer diagnosis and treatment. MicroRNAs (miRs), especially miR-212, have shown a promise in cancer diagnosis and prognosis. Herein, we performed a systematic review and meta-analysis to assess the prognostic and diagnostic value of miR-212 level in cancer and evaluated its association with patient characteristics. METHODS A fully electronic literature search using related keywords was performed in PubMed, Scopus, Web of Science, Embase, and ScienceDirect databases by June 6, 2021, with no time or language restriction. Meta-analysis was performed to pool survival prognosis data using hazard ratio (HR), association using odds ratio (OR), and diagnostic data using sensitivity, specificity, and diagnostic odds ratio (DOR). Sub-group analysis and meta-regression were performed as appropriate. RESULTS Results of 28 studies on 1880 patients showed a poor cancer prognosis with high levels of miR-212 in pancreatic ductal adenocarcinoma (PDAC, HR = 2.451 [1.447-4.149]), and a poor cancer prognosis with low levels of miR-212 in other cancers (HR = 2.514 [2.162-2.923]). Higher alpha-fetoprotein (AFP) level and Edmondson-Steiner grade were factors associated with miR-212 low level incidence. Diagnostic odds ratio 10.688 (3.644-31.348) and SROC AUC of 0.84 confirmed high diagnostic performance of miR-212. CONCLUSION Our systematic review and meta-analysis results confirm miR-212 high value in cancer prognosis and diagnosis. High level of miR-212 showed poor prognosis in PDAC and low level of miR-212 showed poor prognosis in other cancers. in conclusion, miR-212 could be a novel potential biomarker in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sara Raji
- Persian Cohort Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Sahranavard
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Mottaghi
- Kidney Transplantation Complications Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Xu LZ, Ning JZ, Ruan Y, Cheng F. MiR-363-3p promotes prostate cancer tumor progression by targeting Dickkopf 3. J Clin Lab Anal 2022; 36:e24360. [PMID: 35303365 PMCID: PMC8993605 DOI: 10.1002/jcla.24360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a frequent malignant tumor worldwide with high morbidity along with mortality. MicroRNAs (miRNAs) have been identified as key posttranscriptional modulators in diverse cancers. Herein, we purposed to explore the impacts of miR-363-3p on PCa growth, migration, infiltration along with apoptosis. METHODS The expressions of miR-363-3p along with Dickkopf 3 (DKK3) were assessed in clinical PCa specimens. We adopted the PCa cell line PC3 and transfected it using miR-363-3p repressors or mimic. The relationship of miR-363-3p with DKK3 was verified by a luciferase enzyme reporter assay. Cell viability along with apoptosis were determined by MTT assay coupled with flow cytometry analysis. Cell migration along infiltration were detected via wound healing, as well as Transwell assays. The contents of DKK3, E-cadherin, vimentin along with N-cadherin were analyzed via Western blotting accompanied with qRT-PCR. RESULTS MiR-363-3p was found to be inversely associated with the content of DKK3 in clinical PCa specimens. Further investigations revealed that DKK3 was miR-363-3p's direct target. Besides, overexpression of miR-363-3p decreased the contents of DKK3, promoted cell viability, migration coupled with infiltration, and reduced cell apoptosis, while silencing of miR-363-3p resulted in opposite influence. Upregulation of miR-363-3p diminished E-cadherin contents but increased vimentin along with N-cadherin protein contents in PC3 cells; in contrast, miR-363-3p downregulation produced the opposite result. CONCLUSION Our study indicates that miR-363-3p promotes PCa growth, migration coupled with invasion while dampening apoptosis by targeting DKK3.
Collapse
Affiliation(s)
- Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Perumal N, Kanchan RK, Doss D, Bastola N, Atri P, Chirravuri-Venkata R, Thapa I, Vengoji R, Maurya SK, Klinkebiel D, Talmon GA, Nasser MW, Batra SK, Mahapatra S. MiR-212-3p functions as a tumor suppressor gene in group 3 medulloblastoma via targeting nuclear factor I/B (NFIB). Acta Neuropathol Commun 2021; 9:195. [PMID: 34922631 PMCID: PMC8684142 DOI: 10.1186/s40478-021-01299-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022] Open
Abstract
Haploinsufficiency of chromosome 17p and c-Myc amplification distinguish group 3 medulloblastomas which are associated with early metastasis, rapid recurrence, and swift mortality. Tumor suppressor genes on this locus have not been adequately characterized. We elucidated the role of miR-212-3p in the pathophysiology of group 3 tumors. First, we learned that miR-212-3p undergoes epigenetic silencing by histone modifications in group 3 tumors. Restoring its expression reduced cancer cell proliferation, migration, colony formation, and wound healing in vitro and attenuated tumor burden and improved survival in vivo. MiR-212-3p also triggered c-Myc destabilization and degradation, leading to elevated apoptosis. We then isolated an oncogenic target of miR-212-3p, i.e. NFIB, a nuclear transcription factor implicated in metastasis and recurrence in various cancers. Increased expression of NFIB was confirmed in group 3 tumors and associated with poor survival. NFIB silencing reduced cancer cell proliferation, migration, and invasion. Concurrently, reduced medullosphere formation and stem cell markers (Nanog, Oct4, Sox2, CD133) were noted. These results substantiate the tumor-suppressive role of miR-212-3p in group 3 MB and identify a novel oncogenic target implicated in metastasis and tumor recurrence.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Doss
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, 68124, USA
| | - Noah Bastola
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shailendra K Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David Klinkebiel
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Geoffrey A Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
8
|
Olivan M, Garcia M, Suárez L, Guiu M, Gros L, Méndez O, Rigau M, Reventós J, Segura MF, de Torres I, Planas J, de la Cruz X, Gomis RR, Morote J, Rodríguez-Barrueco R, Santamaria A. Loss of microRNA-135b Enhances Bone Metastasis in Prostate Cancer and Predicts Aggressiveness in Human Prostate Samples. Cancers (Basel) 2021; 13:6202. [PMID: 34944822 PMCID: PMC8699528 DOI: 10.3390/cancers13246202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
About 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients' quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors. Using genomic high-throughput analysis we identified a miRNA signature involved in bone metastasis that also presents potential as a biomarker of PCa progression in human samples. In particular, the downregulation of miR-135b favored the incidence of bone metastases by significantly increasing PCa cells' migratory capacity. Moreover, the PLAG1, JAKMIP2, PDGFA, and VTI1b target genes were identified as potential mediators of miR-135b's role in the dissemination to bone. In this study, we provide a genomic signature involved in PCa bone growth, contributing to a better understanding of the mechanisms responsible for this process. In the future, our results could ultimately translate into promising new therapeutic targets for the treatment of lethal PCa.
Collapse
Affiliation(s)
- Mireia Olivan
- Translational Oncology Laboratory, Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain;
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marta Garcia
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Leticia Suárez
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marc Guiu
- Cancer Science Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain; (M.G.); (R.R.G.)
| | - Laura Gros
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Olga Méndez
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marina Rigau
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (M.R.); (J.R.)
| | - Jaume Reventós
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (M.R.); (J.R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Miguel F. Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
| | - Inés de Torres
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Pathology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jacques Planas
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Urology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Xavier de la Cruz
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
- Group of Clinical and Translational Bioinformatics, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Roger R. Gomis
- Cancer Science Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain; (M.G.); (R.R.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
| | - Juan Morote
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Urology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ruth Rodríguez-Barrueco
- Translational Oncology Laboratory, Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain;
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Anna Santamaria
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| |
Collapse
|
9
|
Shen M, Li X, Qian B, Wang Q, Lin S, Wu W, Zhu S, Zhu R, Zhao S. Crucial Roles of microRNA-Mediated Autophagy in Urologic Malignancies. Int J Biol Sci 2021; 17:3356-3368. [PMID: 34512152 PMCID: PMC8416737 DOI: 10.7150/ijbs.61175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Urologic oncologies are major public health problems worldwide. Both microRNA and autophagy, separately or concurrently, are involved in a variety of the cellular and molecular processes of multiple cancers, including urologic malignancies. In this review, we have summarized the related studies and found that microRNA-mediated autophagy acted as carcinogenic factors or suppressors in prostate cancer, kidney cancer, and bladder cancer. MiRNAs, targeted genes, and the different signaling pathways constitute a complex network that orchestrates autophagy regulation, militating the oncogenic and tumor-suppressive effects in urologic malignancies. Aberrant expression of miRNAs may induce the dysregulation of the autophagy process, resulting in tumorigenesis, progression, and resistance to anticancer therapies. Targeting specific miRNAs for autophagy modulation may present as reliable diagnostic and prognostic biomarkers or promising therapeutic strategies for urologic oncologies.
Collapse
Affiliation(s)
- Maolei Shen
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Biao Qian
- Department of Urology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiang Wang
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Shanan Lin
- Department of Thoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Wenhao Wu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shuai Zhu
- School of Medicine, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Rui Zhu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Shankun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| |
Collapse
|
10
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
11
|
Zhang Y, Xi H, Nie X, Zhang P, Lan N, Lu Y, Liu J, Yuan W. Assessment of miR-212 and Other Biomarkers in the Diagnosis and Treatment of HBV-infection-related Liver Diseases. Curr Drug Metab 2020; 20:785-798. [PMID: 31608838 DOI: 10.2174/1389200220666191011120434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Our study aims to detect the sensitivity of the new biomarker miR-212 existing in serum exosomes along with other hepatocellular carcinoma biomarkers such as AFP (alpha-fetoprotein), CA125 (carbohydrate antigen-ca125), and Hbx protein in the diagnosis of HBV-related liver diseases. We also aim to study the roles of these biomarkers in the progression of chronic hepatitis B and provide scientific data to show the clinical value of these biomarkers. METHODS We selected 200 patients with HBV-infection (58 cases of chronic hepatitis B, 47 cases of hepatocellular carcinoma, 30 cases of compensatory phase cirrhosis, and 65 cases of decompensatory phase cirrhosis), 31 patients with primary liver cancer without HBV infection, and 70 healthy individuals as the control group. The expression level of serum AFP and CA125 was detected with electrochemiluminescence immunoassay. The expression level of the Hbx protein was detected with ELISA. Meanwhile, the expression level of miR-212 in serum was analyzed with RT-qPCR. We collected patients' clinical information following the Child-Pugh classification and MELD score criterion, and statistical analysis was made between the expression level of miR-212 and the collected clinical indexes. Lastly, we predicted the target genes of the miR-212 and its functions using bioinformatics methods such as cluster analysis and survival prediction. RESULTS Compared to the control group, the expression level of miR-212 in HBV infected patients was remarkably increased (P<0.05), especially between the HBV-infection Hepatocellular carcinoma group and the non-HBVinfection liver cancer group (P<0.05). The expression of miR-212 was increased in patients' Child-Pugh classification, MELD score, and TNM staging. Moreover, the sensitivity and specificity of miR-212 were superior to AFP, CA125, and HBx protein. CONCLUSION There is a linear relationship between disease progression and expression level of miR-212 in the serum of HBV infected patients. This demonstrates that miR-212 plays a significant role in liver diseases. miR-212 is expected to be a new biomarker used for the diagnosis and assessment of patients with HBV-infection-related liver diseases.
Collapse
Affiliation(s)
- Yigan Zhang
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Huaze Xi
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Xin Nie
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ning Lan
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Ying Lu
- The First School of Clinical Medicine, Lanzhou University, 730000, Lanzhou, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Membrane Science and Technology Research Institute Co., Ltd., 730000, Lanzhou, China
| | - Jinrong Liu
- School of Life Science, Lanzhou University, 730000, Lanzhou, China
| | - Wenzhen Yuan
- The Department of Surgical Oncology, the First Hospital of Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
12
|
Zenner ML, Baumann B, Nonn L. Oncogenic and tumor-suppressive microRNAs in prostate cancer. ACTA ACUST UNITED AC 2020; 10:50-59. [PMID: 33043165 DOI: 10.1016/j.coemr.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs are known to be dysregulated in prostate cancer. These small noncoding RNAs can function as biomarkers and are involved in the biology of prostate cancer. The canonical mechanism for microRNAs is post-transcription regulation of gene expression via binding to the 3' untranslated region of mRNAs, resulting in RNA degradation and/or translational repression. Thus, oncogenic microRNAs, also known as oncomiRs, often have high expression in prostate cancer and target the mRNAs of tumor suppressors. Conversely, tumor-suppressive microRNAs have reduced expression in cancer and typically target oncogenes. Some microRNAs function outside the classical mechanism and serve to stabilize their mRNA targets. Herein, we review contemporary studies that demonstrate oncogenic and tumor-suppressive activity of microRNAs in prostate cancer.
Collapse
Affiliation(s)
- Morgan L Zenner
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States.,University of Illinois Cancer Center, Chicago, IL, 60612, United States
| |
Collapse
|
13
|
Chen W, Song J, Bian H, Yang X, Xie X, Zhu Q, Qin C, Qi J. The functions and targets of miR-212 as a potential biomarker of cancer diagnosis and therapy. J Cell Mol Med 2020; 24:2392-2401. [PMID: 31930653 PMCID: PMC7028855 DOI: 10.1111/jcmm.14966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer is a major health problem worldwide. An increasing number of researchers are studying the diagnosis, therapy and mechanisms underlying the development and progression of cancer. The study of noncoding RNA has attracted a lot of attention in recent years. It was found that frequent alterations of miRNA expression not only have various functions in cancer but also that miRNAs can act as clinical markers of diagnosis, stage and progression of cancer. MiR-212 is an important example of miRNAs involved in cancer. According to recent studies, miR-212 may serve as an oncogene or tumour suppressor by influencing different targets or pathways during the oncogenesis and the development and metastasis of cancer. Its deregulation may serve as a marker for the diagnosis or prognosis of cancer. In addition, it was recently reported that miR-212 was related to the sensitivity or resistance of cancer cells to chemotherapy or radiotherapy. Here, we summarize the current understanding of miR-212 functions in cancer by describing the relevant signalling pathways and targets. The role of miR-212 as a biomarker and its therapeutic potential in cancer is also described. The aim of this review was to identify new methods for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Wenjun Chen
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Departments of Gastroenterology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Qingdao, China
| | - Jing Song
- Departments of Gastroenterology, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Qingdao, China
| | - Hongjun Bian
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xia Yang
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoyu Xie
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiang Zhu
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Chengyong Qin
- Departments of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
| | - Jianni Qi
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China.,Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Chen W, Huang Y, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, Dong Y, Chai K. MicroRNA-212 suppresses nonsmall lung cancer invasion and migration by regulating ubiquitin-specific protease-9. J Cell Biochem 2019; 120:6482-6489. [PMID: 30335901 DOI: 10.1002/jcb.27939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in various biological processes, including migration, proliferation, differentiation, cell cycling, and apoptosis. Epithelial-mesenchymal transition (EMT) has been shown to be related to the capability of migration and invasion in many tumor cells. In this study, we used wound-healing assay and transwell invasion to analysis the capability of migration and invasion in non-small-cell lung carcinoma (NSCLC), respectively. The expression of ubiquitin-specific protease-9-X-linked (USP9X) and miR-212 messenger RNA (mRNA) was determined by quantitative real-time polymerase chain reaction and Western blot analysis was used to determine the E-cadherin and vimentin expression. Our results showed that miR-212 mimic inhibited cell migration and invasion, while miR-212 inhibitor increased cell migration and invasion. There was no significant difference between WP1130 and miR-212 mimic combined with WP1130 groups. Moreover, WP1130 inhibited the capability of the migration and invasion of NSCLC cells. Western blot analysis displayed that miR-212 mimic upregulated E-cadherin expression and downregulated vimentin expression, while miR-212 inhibitor downregulated E-cadherin and upregulated vimentin expression. These data showed that miR-212 regulated NSCLC cell invasion and migration by regulating USP9X expression. Taken together, these findings indicated that miR-212 regulated NSCLC cells migration and invasion through targeting USP9X involved in EMT.
Collapse
Affiliation(s)
- Wei Chen
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yuye Huang
- Department of pharmacy, The Affiliated Cangnan Hospital of Wenzhou Medical University, The People's Hospital of Cangnan, Wenzhou, China
| | - Shufen Zhang
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Shangzhi Xie
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jiayan Mao
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Ying Cai
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xuemei Lu
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Liqiang Hu
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jian Shen
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Ying Dong
- Department of Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kequn Chai
- Cancer Institute of Integrated Taditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
15
|
A novel anti‑proliferative pentapeptide (ILYMP) isolated from Cyclina sinensis protein hydrolysate induces apoptosis of DU‑145 prostate cancer cells. Mol Med Rep 2018; 18:771-778. [PMID: 29767237 PMCID: PMC6059706 DOI: 10.3892/mmr.2018.9019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/16/2018] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer is the main causes of cancer associated mortality in men worldwide, cancer patients often suffer serious side effects when treated with chemotherapy or radiotherapy, therefore novel drugs are in high demand to treat prostate cancer. In the present study, a pentapeptide (Ile‑Leu‑Tyr‑Met‑Pro; ILYMP) with a molecular weight of 635.71 Da was isolated from the protein hydrolysate of Cyclina sinensis via ultrafiltration and chromatographic methods, and subsequently named Cyclina sinensis pentapeptide (CSP). The activity of CSP was first investigated in prostate cancer (PCa) DU‑145 cells. CSP was demonstrated to significantly inhibit DU‑145 cell proliferation at a half‑maximal inhibitory concentration of 11.25 mM at a 72 h time interval. In addition, the results of acridine orange/ethidium bromide double staining, scanning electron microscopy and flow cytometry analyses suggested that CSP inhibited DU‑145 cell proliferation via the induction of apoptosis. Following treatment with CSP, Bcl‑2‑associated X (Bax), cleaved caspase‑3 and cleaved caspase‑9 protein expression levels were enhanced in DU‑145 cells; whereas B‑cell lymphoma 2 expression was suppressed in DU‑145 cells. In conclusion, to the best of the authors' knowledge, this is the first study to investigate the effects of an anti‑proliferative peptide derived from Cyclina sinensis on DU‑145 cells, and the results suggested that CSP may represent a therapeutic nutraceutical agent for the treatment of patients with PCa.
Collapse
|
16
|
Rao Z, He Z, He Y, Guo Z, Kong D, Liu J. MicroRNA‑512‑3p is upregulated, and promotes proliferation and cell cycle progression, in prostate cancer cells. Mol Med Rep 2017; 17:586-593. [PMID: 29115469 DOI: 10.3892/mmr.2017.7844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/07/2017] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in males worldwide. MicroRNAs (miRNAs/miRs) are small non‑coding RNAs that participate in the regulation of various biological processes by regulating post‑transcriptional gene expression. However, whether dysregulation of miRNA expression may be associated with the carcinogenesis of PCa remains to be elucidated. The present study identified differentially expressed miRNAs in PCa by analyzing two publicly available gene expression datasets, GSE14857 and GSE21036. The results demonstrated that miR‑512‑3p was significantly upregulated in PCa. Furthermore, the present study explored the molecular functions of miR‑512‑3p in PCa, and demonstrated that overexpression of miR‑512‑3p promoted PCa cell proliferation and reduced G1 phase cell cycle arrest in PCa. These results indicated that miR‑512‑3p may act as an oncogene in PCa. To the best of our knowledge, this is the first study revealed the molecular functions of miR‑512‑3p in PCa. To obtain valuable insights into the potential mechanisms of miR‑512‑3p, bioinformatics analyses were performed to identify the targets of miR‑512‑3p. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology category analyses revealed that miR‑512‑3p may be associated with the mitogen‑activated protein kinase signaling pathway and numerous biological processes, including cell adhesion, cell proliferation, cell cycle and apoptosis. These results suggested that miR‑512‑3p may be considered a potential diagnostic and therapeutic target of PCa.
Collapse
Affiliation(s)
- Zhigang Rao
- Department of Urology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Ziqi He
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yi He
- Department of Obstetrics and Gynecology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Zonghua Guo
- Department of Urology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Dongbo Kong
- Department of Urology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| | - Jufang Liu
- Department of Obstetrics and Gynecology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei 437000, P.R. China
| |
Collapse
|