1
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
2
|
Wu Q, Chen JD, Zhou Z. AVL9 promotes colorectal carcinoma cell migration via regulating EGFR expression. Biol Proced Online 2022; 24:1. [PMID: 34991461 PMCID: PMC8903581 DOI: 10.1186/s12575-021-00162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Despite advanced treatments could inhibit progression of colorectal carcinoma (CRC), the recurrence and metastasis remain challenging issues. Accumulating evidences implicated that AVL9 played a vital role in human cancers, but it’s biological function and mechanism in CRC remain unclear. Aim To investigate the biological role and mechanism of AVL9 in colorectal carcinoma. Results AVL9 expression was significantly upregulated in tumor tissues than that in matched normal tissues both at mRNA and protein levels. High expression of AVL9 was closely correlated with M status, stages and poor prognosis of colorectal carcinoma (CRC) patients. Functionally, AVL9 overexpression promoted cell migration rather than cell proliferation in vitro, whereas AVL9 knockdown exhibited the contrary results. Mechanistically, AVL9 regulated EGFR expression, and knockdown of EGFR restrained AVL9-induced cell migration. Conclusion These findings demonstrated that AVL9 contributed to CRC cell migration by regulating EGFR expression, suggesting a potential biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jing De Chen
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Zhuqing Zhou
- Department of Gastrointestinal Surgery, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Yue Y, Lin X, Qiu X, Yang L, Wang R. The Molecular Roles and Clinical Implications of Non-Coding RNAs in Gastric Cancer. Front Cell Dev Biol 2021; 9:802745. [PMID: 34966746 PMCID: PMC8711095 DOI: 10.3389/fcell.2021.802745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies in the world. It is also the fifth most common cancer in China. In recent years, a large number of studies have proved that non-coding RNAs (ncRNAs) can regulate cell proliferation, invasion, metastasis, apoptosis, and angiogenesis. NcRNAs also influence the therapeutic resistance of gastric cancer. NcRNAs mainly consist of miRNAs, lncRNAs and circRNAs. In this paper, we summarized ncRNAs as biomarkers and therapeutic targets for gastric cancer, and also reviewed their role in clinical trials and diagnosis. We sum up different ncRNAs and related moleculars and signaling pathway in gastric cancer, like Bcl-2, PTEN, Wnt signaling. In addition, the potential clinical application of ncRNAs in overcoming chemotherapy and radiotherapy resistance in GC in the future were also focused on.
Collapse
Affiliation(s)
- Yanping Yue
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinyue Qiu
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Lei Yang
- Department of Medical Oncology, Affiliated Cancer Hospital, Nantong University, Nantong, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Gao LF, Li W, Liu YG, Zhang C, Gao WN, Wang L. Inhibition of MIR4435-2HG on Invasion, Migration, and EMT of Gastric Carcinoma Cells by Mediating MiR-138-5p/Sox4 Axis. Front Oncol 2021; 11:661288. [PMID: 34532282 PMCID: PMC8438303 DOI: 10.3389/fonc.2021.661288] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Background The previous investigations have identified that long non-coding RNA (lncRNAs) act as crucial regulators in gastric carcinoma. However, the function of lncRNA MIR4435-2HG in the modulation of gastric carcinoma remains elusive. Here, we aimed to explore the role of MIR4435-2HG in gastric carcinoma. Method The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were applied to select the differently expressed lncRNAs in gastric carcinoma. The qRT-PCR was applied to analyze MIR4435-2HG expression in carcinoma tissues and cell lines. The effect of MIR4435-2HG on proliferation, invasion, migration, and apoptosis of gastric carcinoma cells was detected by Cell Counting Kit-8 (CCK-8) assays, transwell assays, and flow cytometry in vitro. A subcutaneous tumor model was constructed to examine the tumor growth of gastric carcinoma cells after knocking out MIR4435-2HG. RNA immunoprecipitation and luciferase reporting assays were applied to evaluate the interaction of MIR4435-2HG, miR-138-5p, and Sox4. Results The bioinformatics analysis based on TCGA and GEO databases indicated that MIR4435-2HG was obviously elevated in gastric carcinoma samples. The qRT-PCR analysis revealed that MIR4435-2HG was upregulated in clinical gastric carcinoma tissues and cells. The high expression of MIR4435-2HG is associated with the poor survival rate of patients. The knockout of MIR4435-2HG could repress the proliferation, invasion, migration, and epithelial–mesenchymal transition (EMT) and accelerate the apoptosis of gastric carcinoma cells. Moreover, the deletion of MIR4435-2HG was able to attenuate the tumor growth in vivo. Mechanically, we identified that MIR4435-2HG enhanced Sox4 expression by directly interacting with miR-138-5p as a competitive endogenous RNA (ceRNA) in gastric carcinoma cells, in which Sox4 was targeted by miR-138-5p. Conclusion MIR4435-2HG is elevated in gastric carcinoma cells and contributes to the growth, metastasis, and EMT of gastric carcinoma cells by targeting miR-138-5p/Sox4 axis. MIR4435-2HG may be applied as a potential therapeutic target in gastric carcinoma.
Collapse
Affiliation(s)
- Li-Fei Gao
- The Third Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Ya-Gang Liu
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Cui Zhang
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wei-Na Gao
- The Fourth Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Wang
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
5
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
6
|
Fan Y, Liu M, Liu A, Cui N, Chen Z, Yang Q, Su A. Depletion of Circular RNA circ_CORO1C Suppresses Gastric Cancer Development by Modulating miR-138-5p/KLF12 Axis. Cancer Manag Res 2021; 13:3789-3801. [PMID: 34007212 PMCID: PMC8123969 DOI: 10.2147/cmar.s290629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a common and deadly malignancy in the world. CircRNAs have emerged as important regulators in human diseases, including GC. In this work, we intended to explore the role of circ_CORO1C in GC progression and potential mechanism. Methods Quantitative real-time PCR (qRT-PCR) or Western blot assay was performed to examine the expression of circRNA coronin-like actin-binding protein 1C (circ_CORO1C), microRNA (miR)-138-5p and Krueppel-like factor 12 (KLF12) in clinical samples and cells. Cell colony formation ability and viability were measured by colony formation assay and methyl thiazolyl tetrazolium (MTT) assay, respectively. Expression of cell proliferation and epithelia-mesenchymal transition (EMT) biomarker was detected by Western blot analysis. And cell metastasis, including migration and invasion, and apoptosis were analyzed via Transwell assay and flow cytometry, respectively. Target relationship among circ_CORO1C, miR-138-5p and KLF12 was validated by dual-luciferase reporter assay. The in vivo role of circ_CORO1C was investigated by tumor xenograft assay. Results Circ_CORO1C and KLF12 were upregulated, while miR-138-5p was downregulated in GC tissues and cells. Circ_CORO1C knockdown suppressed colony formation ability, viability, migration, invasion and EMT in GC cells, while promoted cell apoptosis in vitro. Circ_CORO1C targeted miR-138-5p, the inhibition of which could attenuate silenced circ_CORO1C-induced inhibitory effects on GC progression. MiR-138-5p repressed the aggressive malignant behaviors of GC cells by directly targeting KLF12. Circ_CORO1C deficiency inhibited GC tumor growth in vivo. Conclusion Depletion of circ_CORO1C suppressed GC progression by regulating miR-138-5p/KLF12 axis, offering a potential molecular target for GC therapy.
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Gastroenterology, Sunshine Union Hospital, Weifang City, Shandong Province, People's Republic of China
| | - Min Liu
- Department of Gastroenterology, Sunshine Union Hospital, Weifang City, Shandong Province, People's Republic of China
| | - Anquan Liu
- Department of Gastroenterology, Sunshine Union Hospital, Weifang City, Shandong Province, People's Republic of China
| | - Nailing Cui
- Department of Gastroenterology, Weifang Medical University, Weifang City, Shandong Province, People's Republic of China
| | - Zhimei Chen
- Department of Gastroenterology, Sunshine Union Hospital, Weifang City, Shandong Province, People's Republic of China
| | - Qian Yang
- Department of Gastroenterology, Sunshine Union Hospital, Weifang City, Shandong Province, People's Republic of China
| | - Aihua Su
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang City, Shandong Province, People's Republic of China
| |
Collapse
|
7
|
Li L, Dong Z, Shi P, Tan L, Xu J, Huang P, Wang Z, Cui H, Yang L. Bruceine D inhibits Cell Proliferation Through Downregulating LINC01667/MicroRNA-138-5p/Cyclin E1 Axis in Gastric Cancer. Front Pharmacol 2021; 11:584960. [PMID: 33390953 PMCID: PMC7774499 DOI: 10.3389/fphar.2020.584960] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Gastric cancer is one of the most common malignant tumors. Bruceine D (BD) is one of the extracts of Brucea javanica. In recent years, it has been reported that BD has anti-tumor activity in some human cancers through different mechanisms. Here, this study try to explore the effect of BD on gastric cancer and its regulatory mechanism. Methods: Cell proliferation ability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays, 5-bromo-2-deoxyuridine (BrdU) staining and soft agar colony formation assay, respectively. The tumor xenograft model was used to verify the effect of BD on the tumorigenicity of gastric cancer cells in vivo. Flow cytometry analysis and Western blot assay were performed to detect cell cycle and apoptosis. Gastric cancer cells were analyzed by transcriptome sequencing. The interaction between LINC01667, microRNA-138-5p (miR-138-5p) and Cyclin E1 was verified by dual luciferase experiment and RT-PCR assays. Results: We found that BD significantly inhibited cell proliferation and induced cell cycle arrest at S phase in gastric cancer cells. Transcriptome analysis found that the expression of a long non-coding RNA, LINC01667, were significantly down-regulated after BD treatment. Mechanically, it was discovered that LINC01667 upregulated the expression of Cyclin E1 by sponging miR-138-5p. Furthermore, BD enhanced the chemosensitivity of gastric cancer cells to doxorubicin, a clinically used anti-cancer agent. Conclusion: BD inhibit the growth of gastric cancer cells by downregulating the LINC01667/miR-138-5p/Cyclin E1 axis. In addition, BD enhances the chemosensitivity of gastric cancer cells to doxorubicin. This study indicates that BD may be used as a candidate drug for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Department of Immunology, School of Basic Medicine, Southwest Medical University, Luzhou, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Li Tan
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China.,NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute), Chongqing, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture and Textile and Biomass Science, Southwest University, Chongqing, China.,Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3860213. [PMID: 32964029 PMCID: PMC7486643 DOI: 10.1155/2020/3860213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
This study was aimed at elucidating the potential mechanisms of quercetin in the treatment of gastric cancer (GC). A network pharmacology approach was used to analyze the targets and pathways of quercetin in treating GC. The predicted targets of quercetin against GC were obtained through database mining, and the correlation of these targets with GC was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, the protein-protein interaction (PPI) network was constructed, and overall survival (OS) analysis of hub targets was performed using the Kaplan–Meier Plotter online tool. Finally, the mechanism was further analyzed via molecular docking of quercetin with the hub targets. Thirty-six quercetin-related genes were identified, 15 of which overlapped with GC-related targets. These targets were further mapped to 319 GO biological process terms and 10 remarkable pathways. In the PPI network analysis, six hub targets were identified, including AKT1, EGFR, SRC, IGF1R, PTK2, and KDR. The high expression of these targets was related to poor OS in GC patients. Molecular docking analysis confirmed that quercetin can bind to these hub targets. In conclusion, this study provided a novel approach to reveal the therapeutic mechanisms of quercetin on GC, which will ease the future clinical application of quercetin in the treatment of GC.
Collapse
|
9
|
Yang S, Chen B, Zhang B, Li C, Qiu Y, Yang H, Huang Z. miR‑204‑5p promotes apoptosis and inhibits migration of gastric cancer cells by targeting HER‑2. Mol Med Rep 2020; 22:2645-2654. [PMID: 32945425 PMCID: PMC7453524 DOI: 10.3892/mmr.2020.11367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is one of the most common types of cancer worldwide, with a high incidence and mortality rate. MicroRNAs (miRs) play an important role in tumorigenesis, cell proliferation, migration, apoptosis and metastasis of cancer. The present study aimed to investigate the role and potential mechanism of miR‑204‑5p in gastric cancer. The mRNA expression levels of miR‑204‑5p in gastric cancer were determined by reverse transcription‑quantitative PCR. Cell proliferation was determined using Cell Counting Kit‑8 and colony formation assays. Flow cytometry analysis was performed to detect the cell apoptosis rate. Wound healing and Transwell assays were carried out to determine the cell migration and invasion rates, respectively. A putative binding site of miR‑204‑5p in the 3' untranslated region of human epidermal growth factor receptor 2 (HER‑2) was predicted using a bioinformatics algorithm and confirmed using a dual‑luciferase reporter assay. miR‑204‑5p levels were downregulated in gastric cancer cells. Overexpression of miR‑204‑5p significantly inhibited cell proliferation and decreased cell colony formation. Additionally, miR‑204‑5p decreased the migration and invasion rates of gastric cancer cells. Furthermore, an increased apoptotic rate was detected following overexpression of miR‑204‑5p, along with increased expression levels of Bax and decreased expression levels of Bcl‑2. HER‑2 was a direct target of miR‑204‑5p, and inhibition of HER‑2 acted as a tumor suppressor by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis, which was reversed by the inhibition of miR‑204‑5p expression. These results suggested that miR‑204‑5p could exert its anti‑tumor function by inhibiting cell proliferation, migration and invasion, and promoting cell apoptosis via regulation of HER‑2, which may be a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Shu Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Binni Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Baogen Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Caiping Li
- Department of Endoscopy Room, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yuena Qiu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Hanhui Yang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhongxin Huang
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
10
|
Shen J, Xiong J, Shao X, Cheng H, Fang X, Sun Y, Di G, Mao J, Jiang X. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer 2020; 11:4550-4559. [PMID: 32489472 PMCID: PMC7255366 DOI: 10.7150/jca.45676] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Gliomas are the most prevalent primary malignant tumors of the central nervous system. Our previous study showed that miR-204-5p is a tumor suppressor gene in glioma. Bioinformatic analyses suggest that long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is a potential target gene of miR-204-5p. Methods: We analyzed the expression of XIST and miR-204-5p in glioma tissues and the correlation with glioma grade. A series of in vitro experiments were carried out to elucidate the role of XIST in glioma progression. A mouse xenograft model was established to detect whether knockdown of XIST can inhibit glioma growth. A luciferase assay was performed to determine whether XIST can bind to miR-204-5p and the binding specificity. Cells stably expressing shXIST or shNC were transfected with anti-miR-204-5p or anti-miR-204-5p-NC to evaluate whether XIST mediates the tumor-suppressive effects of miR-204-5p. Results: XIST was upregulated in glioma tissues compared with normal brain tissues (NBTs), while miR-204-5p expression was significantly decreased in glioma tissues compared with NBTs. Both XIST and miR-204-5p expression levels were clearly related to glioma grade, and the expression of XIST was obviously negatively correlated with miR-204-5p expression. Knockdown of XIST inhibited glioma cell proliferation, migration, and invasion, promoted apoptosis of glioma cells, inhibited tumor growth and increased the survival time in nude mice. miR-204-5p could directly bind to XIST and negatively regulate XIST expression. XIST mediated glioma progression by targeting miR-204-5p in glioma cells. XIST crosstalk with miR-204-5p regulated Bcl-2 expression to promote apoptosis. Conclusion: Our results provide evidence that XIST, miR-204-5p and Bcl-2 form a regulatory axis that controls glioma progression and can serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Hao Cheng
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Xinyun Fang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Yongkang Sun
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, P.R. China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
11
|
Zheng J, Zhang YW, Li TK, Bao Y, Zhang SX. [Effect of miR-204-5p on the proliferation, migration, and invasion on tongue squamous cell carcinoma SCC25 cells by targeting bromodomain-containing protein 4]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:185-192. [PMID: 32314893 PMCID: PMC7184279 DOI: 10.7518/hxkq.2020.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/12/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study aimed to explore the target relationship between miR-204-5p and bromodomain-containing protein (BRD) 4, as well as their effects on cell proliferation, migration, and invasion in tongue squamous cell carcinoma SCC25. METHODS Real-time quantitative polymerase chain reaction (RT-qPCR) was performed to detect miR-204-5p and BRD4 expression levels in tongue squamous cell carcinoma and different cell lines. TargetScan and dual luciferase reporter assay were used to confirm the target relationship between miR-204-5p and BRD4. The effects of miR-204-5p on SCC25 cell proliferation were examined by cell counting kit (CCK) 8 assay, whereas those on SCC25 cell migration and invasion were determined by Transwell assay. RT-qPCR and Western blot were used to detect the effects of miR-204-5p mimics and inhibitors on BRD4 expression. Transwell and CCK8 assays were used to detect the effects of miR-204-5p on proliferation, migration, and invasion through BRD4 regulation. RESULTS miR-204-5p was significantly downregulated in the tissues and cells of squamous cell carcinoma, and BRD4 showed the opposite result. The increase in miR-204-5p expression can inhibit the proliferation, migration, and invasion of SCC25 cells. TargetScan and luciferase test confirmed that miR-204-5p and BRD4 had a negative regulatory relationship with BRD4, respectively. Moreover, miR-204-5p mimics can inhibit BRD4 expression, and miR-204-5p inhibitors can promote BRD4 expression upregulation. When miR-204-5p and BRD4 were overexpressed in SCC25 cells, BRD4 can make up for the inhibitory effect of miR-204-5p on SCC25 cells. CONCLUSIONS miR-204-5p could inhibit proliferation, migration and invasion in tongue squamous cell carcinoma SCC25 cells by targeting BRD4 gene.
Collapse
Affiliation(s)
- Jing Zheng
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yu-Wen Zhang
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Tian-Ke Li
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Yang Bao
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Su-Xin Zhang
- Dept. of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| |
Collapse
|
12
|
Huan C, Xiaoxu C, Xifang R. Zinc Finger Protein 521, Negatively Regulated by MicroRNA-204-5p, Promotes Proliferation, Motility and Invasion of Gastric Cancer Cells. Technol Cancer Res Treat 2020; 18:1533033819874783. [PMID: 31526099 PMCID: PMC6749787 DOI: 10.1177/1533033819874783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study aims to investigate the expression, role, and detailed mechanism of microRNA-204-5p and zinc finger protein 521 in gastric cancer. METHODS Immunohistochemistry was adopted to detect the expressions of zinc finger protein 521 in 82 cases of gastric cancer tissues. Western blot was used to detect the expressions of zinc finger protein 521 in gastric cancer cells and adjacent cells. Moreover, the correlation between zinc finger protein 521 and the prognosis of patients were also evaluated. Cell Counting Kit 8 assay and colony formation assay were performed to figure out the impact of zinc finger protein 521 on the proliferation of gastric cancer cells. By conducting flow cytometry, the effect of zinc finger protein 521 on the apoptosis of gastric cancer cells was determined. The scratch wound healing assay and transwell invasion assay were carried out to determine the effect of zinc finger protein 521 on regulating the motility and invasion of gastric cancer cells. Ultimately, the targeting relationship and interaction between microRNA-204-5p and zinc finger protein 521 were verified by real-time polymerase chain reaction, Western blot, and dual luciferase reporter gene assay. RESULTS Compared with adjacent cells, zinc finger protein 521 was highly expressed in gastric cancer cells, which was related to TNM stage (P = .0388), tumor size (P = .0168), and local lymph node metastasis (P = .0024). Overexpressed zinc finger protein 521 can promote the proliferation, migration, and invasion of gastric cancer cells and inhibit the apoptosis. Zinc finger protein 521 is a target gene of microRNA-106-5p, and there was a negative correlation between the expression of zinc finger protein 521 and microRNA-204-5p. CONCLUSION Zinc finger protein 521 can arrest the apoptosis and enhance the proliferation, migration, and invasion of gastric cancer cells via regulating microRNA-204-5p. Our study may provide novel clues for the treatment of patients with gastric cancer.
Collapse
Affiliation(s)
- Chen Huan
- Department of Gastroenterology, The First People's Hospital of Yichang, Yichang, Hubei, China.,Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China
| | - Cai Xiaoxu
- Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China.,Department of Oncology, The First People's Hospital of Yichang, Yichang, Hubei, China
| | - Ren Xifang
- Department of Gastroenterology, The First People's Hospital of Yichang, Yichang, Hubei, China.,Department of Gastroenterology, The People's Hospital of Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
13
|
Chen XJ, Shen XN, Chen L. Remifentanil regulates proliferation and apoptosis of gastric cancer cells by regulating miR-206/GOLPH3. Shijie Huaren Xiaohua Zazhi 2019; 27:228-237. [DOI: 10.11569/wcjd.v27.i4.228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Remifentanil is a commonly used anesthetic in clinical practice. In recent years, its new efficacy has been continuously discovered, especially its anti-cancer function. However, the role and mechanism of remifentanil in gastric cancer (GC) are still not clear.
AIM To investigate the effect of remifentanil on the expression of miR-206, GOLPH3, cell proliferation, and apoptosis in human GC cell lines AGS and MKN-45.
METHODS The expression of miR-206 and GOLPH3 and the viability and apoptosis of AGS and MKN-45 cells after treatment with 40 nmol/L remifentanil were detected by qRT-PCR, Western blot, MTT assay, and flow cytometry, respectively. Cell viability and apoptosis of AGS and MKN-45 cells with overexpression of miR-206 or knockdown of GOLPH3 were detected by MTT assay and flow cytometry, respectively. The targeting relationship between miR-206 and GOLPH3 was verified by Targetscan online prediction, dual-luciferase assay, and Western blot. After transfection with miR-206 inhibitor or pcDNA-GOLPH3, AGS and MKN-45 cells were treated with 40 nmol/L remifentanil and then detected for cell viability and apoptosis.
RESULTS After treatment with remifentanil, the expression of miR-206 and apoptosis rate were increased while the expression of GOLPH3 and cell viability were decreased in AGS and MKN-45 cells. Cell viability was decreased and apoptotic rate was increased in AGS and MKN-45 cells after overexpression of miR-206 or knockdown of GOLPH3. The results of Targetscan online prediction, dual-luciferase assay, and Western blot indicted that miR-206 could regulate the expression of GOLPH3 protein. Down-regulation of miR-206 or overexpression of GOLPH3 could reverse the inhibition of proliferation and apoptosis of AGS and MKN-45 cells by remifentanil.
CONCLUSION Remifentanil could inhibit the proliferation and induce apoptosis of AGS and MKN-45 cells by regulating the expression of miR-206 and GOLPH3.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Xin-Ning Shen
- Department of Anesthesiology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| | - Liang Chen
- Department of Oncology, Yiwu Central Hospital, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
14
|
Cao Q, Wang Z, Wang Y, Liu F, Dong Y, Zhang W, Wang L, Ke Z. TBL1XR1 promotes migration and invasion in osteosarcoma cells and is negatively regulated by miR-186-5p. Am J Cancer Res 2018; 8:2481-2493. [PMID: 30662805 PMCID: PMC6325474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023] Open
Abstract
TBL1XR1 has been reported to play promoting roles in various malignances, yet little is known about its role in osteosarcoma, and the up-stream molecules regulating TBL1XR1 are also unclear. In the present study, we investigated the clinical significance of TBL1XR1 and its biological role in osteosarcoma, and further explored up-stream miRNAs regulating its expression. The results showed that TBL1XR1 was significantly up-regulated in osteosarcoma cells and tissues by using western blot and immunohistochemical staining. Overexpression of TBL1XR1 was positively related to adverse clinicopathological features and poor prognosis, and which may be an independent prognostic marker for osteosarcoma patients. Functional experiments revealed that down-regulation of TBL1XR1 inhibited proliferation, migration and invasion of osteosarcoma cells. Further studies indicated that TBL1XR1 was a direct target of miR-186-5p, and miR-186-5p negatively regulated TBL1XR1 expression. Moreover, TBL1XR1 was involved in miR-186-5p-repressed migration and invasion in osteosarcoma cells. Taken together, miR-186-5p/TBL1XR1 may be a novel therapeutic candidate target in osteosarcoma treatment.
Collapse
Affiliation(s)
- Qinghua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Zhuo Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Ye Wang
- Faculty of Medicine and Surgery, University of PaviaPavia (PV) 27100, Italy
| | - Fang Liu
- Department of Oncology, Nanfang Hospital of Southern Medical UniversityGuangzhou 510515, China
| | - Yu Dong
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510080, China
| |
Collapse
|