1
|
Wang S, Liu C, Li Y, Qiao J, Chen X, Bao J, Li R, Xing Y. Suppression of KLF5 targets RREB1 to restrain the proliferation of ovarian cancer cells through ERK/MAPK signaling pathway. 3 Biotech 2025; 15:4. [PMID: 39676889 PMCID: PMC11635078 DOI: 10.1007/s13205-024-04171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR. Then, NC-siRNA or KLF5-siRNA was transfected into SK-OV-3 and OVCAR-3 cells. RT-qPCR and WB were used to detect the efficiency of KLF5 silence, CCK-8, colony formation assay, IHC staining, flow cytometry, and WB were performed to investigate the KLF5 function on OC cell proliferation and the activation of the extracellular signal-regulated Kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling pathway. Next, a dual-luciferase and IF assay were used to determine the relationship between KLF5 and the Ras response element-binding protein (RREB1). SK-OV-3 and OVCAR-3 cells were treated with KLF5-siRNA and C16-PAF + EGF (MAPK agonist), separately or in combination. Proteins including KLF5, RREB1, p-p38, p-ERK1/2, ERK5, p-ERK5, Cyclin D1, CDK4, and CDK6 were quantified by WB. Finally, CCK-8, colony formation assay, and flow cytometry were employed again. KLF5 is highly expressed in OC cells compared with normal cells. When KLF5 knockdowns in SK-OV-3 and OVCAR-3 cells, the cell proliferation restrains, and the G1 phase prolongs. In addition, KLF5 silence caused a decrease of Cyclin D1, CDK4, CDK6, p-p38, p-ERK1/2, and p-ERK5/ERK5 expression levels. However, these statuses could be revised by C16-PAF + EGF. Results also found that when the ERK/MAPK signaling is activating, RREB1 is expressed low. The KLF5 silence could up-regulate the RREB1 expression. The KLF5 silence could restrain the OC cell proliferation and cell cycle. KLF5-siRNA may target upregulating RREB1 expression, thereby inhibiting the activation of the ERK/MAPK signaling pathway in OC cells.
Collapse
Affiliation(s)
- Shenglan Wang
- Department of Pathophysiology, Qinghai University Medical College, Xining, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatidosis Research, Qinghai University Affiliated Hospital, Xining, China
| | - Yongchuan Li
- Department of Gynaecology, Qinghai Red Cross Hospital, Xining, China
| | - Jinwan Qiao
- Department of Scientific Research and Teaching, Fifth People’s Hospital of Qinghai Province, Xining, China
| | - Xinling Chen
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Jin Bao
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Ran Li
- Department of Basic Medicine, Qinghai University, Xining, China
| | - Yanxia Xing
- Department of Gynaecology, The Fifth People’s Hospital of Qinghai Province, No.166, Nanshan East Road, Chengdong District, Xining, 810007 Qinghai China
| |
Collapse
|
2
|
MicroRNA-375 repression of Kruppel-like factor 5 improves angiogenesis in diabetic critical limb ischemia. Angiogenesis 2023; 26:107-127. [PMID: 36074222 DOI: 10.1007/s10456-022-09856-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Peripheral artery disease (PAD) is an occlusive disease of limb arteries. Critical limb ischemia (CLI) is an advanced form of PAD that is prognostically worse in subjects with diabetes and can result in limb loss, gangrene, and death, although the underlying signaling mechanisms that contribute to its development remain poorly understood. By comparing plasma samples from diabetic humans with PAD and mouse models of PAD, we identified miR-375 to be significantly downregulated in humans and mice during progression to CLI. Overexpression of miR-375 was pro-angiogenic in endothelial cells in vitro and induced endothelial migration, proliferation, sprouting, and vascular network formation, whereas miR-375 inhibition conferred anti-angiogenic effects. Intramuscular delivery of miR-375 improved blood flow recovery to diabetic mouse hindlimbs following femoral artery ligation (FAL) and improved neovessel growth and arteriogenesis in muscle tissues. Using RNA-sequencing and prediction algorithms, Kruppel-like factor 5 (KLF5) was identified as a direct target of miR-375 and siRNA knockdown of KLF5 phenocopied the effects of miR-375 overexpression in vitro and in vivo through regulatory changes in NF-kB signaling. Together, a miR-375-KLF5-NF-kB signaling axis figures prominently as a potential therapeutic pathway in the development CLI in diabetes.
Collapse
|
3
|
Zhang Y, Yao C, Ju Z, Jiao D, Hu D, Qi L, Liu S, Wu X, Zhao C. Krüppel-like factors in tumors: Key regulators and therapeutic avenues. Front Oncol 2023; 13:1080720. [PMID: 36761967 PMCID: PMC9905823 DOI: 10.3389/fonc.2023.1080720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Krüppel-like factors (KLFs) are a group of DNA-binding transcriptional regulators with multiple essential functions in various cellular processes, including proliferation, migration, inflammation, and angiogenesis. The aberrant expression of KLFs is often found in tumor tissues and is essential for tumor development. At the molecular level, KLFs regulate multiple signaling pathways and mediate crosstalk among them. Some KLFs may also be molecular switches for specific biological signals, driving their transition from tumor suppressors to promoters. At the histological level, the abnormal expression of KLFs is closely associated with tumor cell stemness, proliferation, apoptosis, and alterations in the tumor microenvironment. Notably, the role of each KLF in tumors varies according to tumor type and different stages of tumor development rather than being invariant. In this review, we focus on the advances in the molecular biology of KLFs, particularly the regulations of several classical signaling pathways by these factors, and the critical role of KLFs in tumor development. We also highlight their strong potential as molecular targets in tumor therapy and suggest potential directions for clinical translational research.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyong Ju
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danli Jiao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Xueqing Wu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Chen Zhao, ; Xueqing Wu,
| |
Collapse
|
4
|
Chen C, Shen Z. FN1 Promotes Thyroid Carcinoma Cell Proliferation and Metastasis by Activating the NF-Κb Pathway. Protein Pept Lett 2023; 30:54-64. [PMID: 36278453 DOI: 10.2174/0929866530666221019162943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Thyroid cancer (THCA) is a common endocrine tumor. This study aims to identify the THCA-related key gene Fibronectin 1 (FN1) by bioinformatics methods and explore its function and regulatory mechanism. METHODS Gene Expression Omnibus database (GSE3678, GSE33630, and GSE53157 datasets) was searched for the analysis of differentially expressed genes (DEGs) in THCA tissues v.s. (normal tissues). The enrichment of DEGs was investigated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways using the DAVID database. Screening the hub gene was performed with the STRING database and Cytoscape software. The expression and survival analyses of these hub genes in THCA were studied with the Gene Expression Profiling Interactive Analysis database. LinkedOmics database was searched for the related signaling pathways regulated by FN1 in THCA. Real-time quantitative reverse transcriptase polymerase chain reaction was adopted to detect the mRNA expression of Fibromodulin, microfibril-associated protein 4, Osteoglycin, and FN1. The cell viability, growth, migration and aggressiveness were examined by Cell counting kit-8, 5-Ethynyl-2 '- deoxyuridine assay, scratch assay, and Transwell assay. The expression levels of NF-κB signaling pathway-related proteins (p-IκB-α, p-IKK-β, NF-κB p65) were detected by Western blot. RESULTS FN1 mRNA was up-regulated in THCA tissues and cell lines (MDA-T85 and MDA-T41). The high expression of FN1 is relevant to larger tumor diameters and lymph node metastasis in sufferers with THCA. Functional experiments showed that overexpression of FN1 in the MDA-T85 cell line promoted growth, migration and aggressiveness; knockdown of FN1 in MDA-T41 cells inhibited these malignant behaviors. In mechanism, FN1 promoted the expression levels of proteins related with NF-κB signaling pathway and activated NF-κB signaling pathway. CONCLUSION FN1 is up-regulated in THCA and facilitates cell growth, migration and invasion by activating the NF-κB signaling pathway. FN1 will be a promising biomarker of THCA and may become a molecular target for THCA treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Zhijun Shen
- Department of Clinical Laboratory, Hubei No.3 People's Hospital of Jianghan University, Wuhan 430033, Hubei, China
| |
Collapse
|
5
|
Lee GH, Cheon J, Kim D, Jun HS. Lysophosphatidic Acid Promotes Epithelial-Mesenchymal Transition in Kidney Epithelial Cells via the LPAR1/MAPK-AKT/KLF5 Signaling Pathway in Diabetic Nephropathy. Int J Mol Sci 2022; 23:ijms231810497. [PMID: 36142408 PMCID: PMC9500642 DOI: 10.3390/ijms231810497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is a differentiation process associated with fibrogenesis in diabetic nephropathy (DN). Lysophosphatidic acid (LPA) is a small, naturally occurring glycerophospholipid implicated in the pathogenesis of DN. In this study, we investigated the role of LPA/LPAR1 signaling in the EMT of tubular cells as well as the underlying mechanisms. We observed a decrease in E-cadherin and an increase in vimentin expression levels in the kidney tubules of diabetic db/db mice, and treatment with ki16425 (LPAR1/3 inhibitor) inhibited the expression of these EMT markers. Ki16425 treatment also decreased the expression levels of the fibrotic factors fibronectin and alpha-smooth muscle actin (α-SMA) in db/db mice. Similarly, we found that LPA decreased E-cadherin expression and increased vimentin expression in HK-2 cells, which was reversed by treatment with ki16425 or AM095 (LPAR1 inhibitor). In addition, the expression levels of fibronectin and α-SMA were increased by LPA, and this effect was reversed by treatment with ki16425 and AM095 or by LPAR1 knockdown. Moreover, LPA induced the expression of the transcription factor, Krüppel-like factor 5 (KLF5), which was decreased by AM095 treatment or LPAR1 knockdown. The expression levels of EMT markers and fibrotic factors induced by LPA were decreased upon KLF5 knockdown in HK-2 cells. Inhibition of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and serine-threonine kinase (AKT) pathways decreased LPA-induced expression of KLF5 and EMT markers. In conclusion, these data suggest that LPA contributes to the pathogenesis of diabetic nephropathy by inducing EMT and renal tubular fibrosis via regulation of KLF5 through the LPAR1.
Collapse
Affiliation(s)
- Geon-Ho Lee
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Jayeon Cheon
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
| | - Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Hee-Sook Jun
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-899-6056; Fax: +82-32-899-6057
| |
Collapse
|
6
|
Sun Q, Gong X, Wu J, Hu Z, Zhang Q, Gong J, Zhu X. Effect of lncRNA PVT1/miR186/KLF5 Axis on the Occurrence and Progression of Cholangiocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8893652. [PMID: 34337058 PMCID: PMC8286192 DOI: 10.1155/2021/8893652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/03/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023]
Abstract
This study primarily focused on the effect of the long noncoding RNA (lncRNA) PVT1/miR186/KLF5 axis on the occurrence and progression of cholangiocarcinoma (CCA). miR186 was found both in the lncRNA PVT1 targeting miRNAs and KLF5 targeting miRNAs using bioinformatic analysis. The expression of lncRNA PVT1 and KLF5 in the TFK-1, QBC939, and HuCCT1 cell lines and normal biliary epithelial HIBEpiC cells was detected by RT-qPCR. The significance of lncRNA PVT1 and KLF5 on cell proliferation was analyzed using the MTT assay and clone formation assay in lncRNA PVT1 and KLF5 silencing HuCCT1 cell lines and lncRNA PVT1and KLF5 overexpressing TFK-1 and QBC939 cell lines, respectively. The potential role of lncRNA PVT1 and KLF5 in cell migration was detected using the transwell invasion assay in CCA cell lines and tumor formation assay. Additionally, lncRNA PVT1 and KLF5 were proved to be highly expressed in CCA tissues and cell lines. Silencing and overexpressing of lncRNA PVT1 or KLF5 markedly inhibited or increased the cell proliferation and cell invasion in CCA cell lines, respectively. Silencing and overexpressing of lncRNA PVT1 significantly inhibited and increased the expression of KLF5 in CCA cell lines, respectively. Silencing of lncRNA PVT1 increased the expression of miR186, and silencing of miR186 increased the expression of KLF5 in CCA cell lines. Cotransfection of lncRNA PVT1 and miR186 increased the expression of KLF5 compared with controls. Overall, these results demonstrated that the lncRNA PVT1/miR186/KLF5 axis might exert a key role in the occurrence and progression of CCA, and this axis might provide a new target for treating CCA.
Collapse
Affiliation(s)
- Qiang Sun
- General Surgery Department, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Xueyi Gong
- General Surgery Department, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Jianlong Wu
- General Surgery Department, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Zhipeng Hu
- General Surgery Department, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Qiao Zhang
- General Surgery Department, Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, China
| | - Jingling Gong
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Ren H, Liu X, Li F, He X, Zhao N. Identification of a Six Gene Prognosis Signature for Papillary Thyroid Cancer Using Multi-Omics Methods and Bioinformatics Analysis. Front Oncol 2021; 11:624421. [PMID: 33816258 PMCID: PMC8012734 DOI: 10.3389/fonc.2021.624421] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid cancer. PTC is typically curable with an excellent survival rate; however, some patients experience disease recurrence or death. This study aimed to discover potential key genes and signaling pathways of PTC, which could provide new insights for thyroid lesions. Four GEO microarray datasets were integrated to screen for candidate genes involved in PTC progression. A total of 164 upregulated and 168 downregulated differentially expressed genes (DEGs) were screened. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes were used in pathway enrichment analyses for DEGs. A protein-protein interaction network was then built and analyzed utilizing STRING and Cytoscape, followed by the identification of 13 hub genes by cytoHubba. CDH3, CTGF, CYR61, OGN, FGF13, and CHRDL1 were selected through survival analyses. Furthermore, immune infiltration, mutations and methylation analysis indicated that these six hub genes played vital roles in immune surveillance and tumor progression. ROC and K-M plots showed that these genes had good prognostic values for PTC which was validated by TCGA dataset. Finally, GSEA for a single hub gene revealed that each candidate hub gene had close associations with PTC development. These findings provided new insights into PTC pathogenesis and identified six candidate gene prognosis signature for PTC.
Collapse
Affiliation(s)
| | | | | | | | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Pratheeshkumar P, Siraj AK, Divya SP, Parvathareddy SK, Siraj S, Diaz R, Begum R, Al-Sobhi SS, Al-Dayel F, Al-Kuraya KS. Prognostic Value and Function of KLF5 in Papillary Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13020185. [PMID: 33430300 PMCID: PMC7825749 DOI: 10.3390/cancers13020185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This study was conducted to investigate the clinical significance and prognostic value of KLF5 in a large cohort of Middle Eastern PTC patients and explore its functional role and mechanism in PTC cell lines in vitro and in vivo. We found KLF5 over-expression in PTC patient cases and this was significantly associated with aggressive clinico-pathological parameters and worse outcome. We also found a significant association between KLF5 and HIF-1α in PTC patients and cell lines. Functionally, KLF5 promoted cell growth, stemness, invasion, migration, and angiogenesis, while its inhibition reverses its action in PTC cell lines. Finally, the depletion of KLF5 regressed PTC tumor growth in nude mice. These data suggest that KLF5 may potentially be a suitable therapeutic target in PTC, and pharmacological inhibition of KLF5 might be a viable therapeutic option for the treatment of patients with an aggressive subtype of PTC. Abstract The Krüppel-like factor 5 (KLF5), a zinc-finger transcriptional factor, is highly expressed in several solid tumors, but its role in PTC remains unclear. We investigated the expression of KLF5 protein in a large cohort of PTC patient samples and explored its functional role and mechanism in PTC cell lines in vitro and in vivo. KLF5 overexpression was observed in 65.1% of all PTC cases and it was significantly associated with aggressive clinico-pathological parameters and poor outcome. Given the significant association between KLF5 and HIF-1α overexpression in PTC patients, we investigated the functional correlation between KLF5 and HIF-1α in PTC cells. Indeed, the analysis revealed the co-immunoprecipitation of KLF5 with HIF-1α in PTC cells. We also identified KLF5-binding sites in the HIF-1α promoter that specifically bound to KLF5 protein. Mechanistically, KLF5 promoted PTC cell growth, invasion, migration, and angiogenesis, while KLF5 downregulation via specific inhibitor or siRNA reverses its action in vitro. Importantly, the silencing of KLF5 decreases the self-renewal ability of spheroids generated from PTC cells. In addition, the depletion of KLF5 reduces PTC xenograft growth in vivo. These findings suggest KLF5 can be a possible new molecular therapeutic target for a subset of PTC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Abdul K. Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Sarah Siraj
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Roxanne Diaz
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Rafia Begum
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
| | - Saif S. Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211, Saudi Arabia;
| | - Khawla S. Al-Kuraya
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia; (P.P.); (A.K.S.); (S.P.D.); (S.K.P.); (S.S.); (R.D.); (R.B.)
- Correspondence: ; Tel.: +966-1-205-5167
| |
Collapse
|
10
|
Ngowi EE, Afzal A, Sarfraz M, Khattak S, Zaman SU, Khan NH, Li T, Jiang QY, Zhang X, Duan SF, Ji XY, Wu DD. Role of hydrogen sulfide donors in cancer development and progression. Int J Biol Sci 2021; 17:73-88. [PMID: 33390834 PMCID: PMC7757040 DOI: 10.7150/ijbs.47850] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Attia Afzal
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Muhammad Sarfraz
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Faculty of Pharmacy, The University of Lahore, Lahore, Punjab 56400, Pakistan
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shams Uz Zaman
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
11
|
Siraj AK, Pratheeshkumar P, Divya SP, Parvathareddy SK, Alobaisi KA, Thangavel S, Siraj S, Al-Badawi IA, Al-Dayel F, Al-Kuraya KS. Krupple-Like Factor 5 is a Potential Therapeutic Target and Prognostic Marker in Epithelial Ovarian Cancer. Front Pharmacol 2020; 11:598880. [PMID: 33424607 PMCID: PMC7793801 DOI: 10.3389/fphar.2020.598880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy. Despite current therapeutic and surgical options, advanced EOC shows poor prognosis. Identifying novel molecular therapeutic targets is highly needed in the management of EOC. Krupple-like factor 5 (KLF5), a zinc-finger transcriptional factor, is highly expressed in a variety of cancer types. However, its role and expression in EOC is not fully illustrated. Immunohistochemical analysis was performed to assess KLF5 protein expression in 425 primary EOC samples using tissue microarray. We also addressed the function of KLF5 in EOC and its interaction with signal transducer and activator of transcription 3 (STAT3) signaling pathway. We found that KLF5 overexpressed in 53% (229/425) of EOC samples, and is associated with aggressive markers. Forced expression of KLF5 enhanced cell growth in low expressing EOC cell line, MDAH2774. Conversely, knockdown of KLF5 reduced cell growth, migration, invasion and progression of epithelial to mesenchymal transition in KLF5 expressing cell lines, OVISE and OVSAHO. Importantly, silencing of KLF5 decreased the self-renewal ability of spheroids generated from OVISE and OVSAHO cell lines. In addition, downregulation of KLF5 potentiated the effect of cisplatin to induce apoptosis in these cell lines. These data reveals the pro-tumorigenic role of KLF5 in EOC and uncover its role in activation of STAT3 signaling pathway, suggesting the importance of KLF5 as a potential therapeutic target for EOC therapy.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Khadija A Alobaisi
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saravanan Thangavel
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sarah Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ismail A Al-Badawi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg 2020; 7:43. [PMID: 32766274 PMCID: PMC7378741 DOI: 10.3389/fsurg.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy worldwide. Primary treatment with surgery and radioactive iodine is usually successful, however, there remains a small proportion of thyroid cancers that are resistant to these treatments, and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid culture systems have been used in thyroid cancer research. In vitro culture models have evolved from 2-dimensional thyrocyte monolayers into physiologically functional 3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer models to identify numerous genetic and epigenetic factors that are involved with tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and identify cancer stem cells within thyroid tumors. Objective of Review: The objective of this literature review is to summarize how thyroid in vitro culture models have evolved and highlight how in vitro models have been fundamental to thyroid cancer research. Type of Review: Systematic literature review. Search Strategy: The National Institute for Health and Care Excellence (NICE) Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE, Medline and PubMed databases. The following terms were included in the search: “in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until June 2019. A manual search of the references of review articles and other key articles was also performed using Google Scholar. Evaluation Method: All experimental studies and review articles that explicitly mentioned the use of in vitro models for thyroid cancer research in the title and/or abstract were considered. Full-text versions of all selected articles were evaluated. Experimental studies were reviewed and grouped according to topic: genetics/epigenetics, drug testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME). Results: Three thousand three hundred and seventy three articles were identified through database and manual searches. One thousand two hundred and sixteen articles remained after duplicates were removed. Five hundred and eighty nine articles were excluded based on title and/or abstract. Of the remaining 627 full-text articles: 24 were review articles, 332 related to genetic/epigenetics, 240 related to drug testing/treatments, and 31 related to SP/TME. Conclusion:In vitro cell culture models have been fundamental in thyroid cancer research. There have been many advances in culture techniques- developing complex cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic factors that have been identified using in vitro culture models can be used as targets for novel drug therapies. In the future, in vitro systems will facilitate personalized medicine, offering bespoke treatments to patients.
Collapse
Affiliation(s)
- Dylan Chew
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom
| | - Victoria Green
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Andrew Riley
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Richard James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom.,Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
13
|
Takagi Y, Sakai N, Yoshitomi H, Furukawa K, Takayashiki T, Kuboki S, Takano S, Suzuki D, Kagawa S, Mishima T, Nakadai E, Miyauchi H, Matsubara H, Ohtsuka M. High expression of Krüppel-like factor 5 is associated with poor prognosis in patients with colorectal cancer. Cancer Sci 2020; 111:2078-2092. [PMID: 32279400 PMCID: PMC7293098 DOI: 10.1111/cas.14411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel‐like factor 5 (KLF5) plays an oncogenic role and has diverse functions in cancer cells. However, correlation between KLF5 and clinical outcome has not been determined in patients with colorectal cancer and colorectal liver metastasis. Herein, we analyzed 65 patients with colorectal cancer who developed colorectal liver metastasis. Clinical effects were assessed through immunohistochemical analysis of primary colorectal cancer lesions and metastatic liver lesions. High expression of KLF5 in these tissues correlated with the presence of vascular invasion, elevated serum carbohydrate antigen 19‐9 levels, large diameters of metastatic liver tumors, and poor prognosis following surgery. Multivariate analyses revealed that high expression of KLF5 was an independent prognostic factor. Increased expression of KLF5 in both colorectal cancer primaries and colorectal liver metastasis was significantly associated with shorter overall survival time and time to surgical failure. Krüppel‐like factor 5 expression positively correlated with Ki‐67 and c‐Myc expression in colorectal cancer tissues. In vitro experiments with colon cancer cell lines showed that siRNA knockdown of KLF5 inhibited cell proliferation. Western blot analyses revealed that knockdown of KLF5 expression reduced cyclin D1 and c‐Myc expression. It also impaired the stem cell‐like properties of cancer cells in tumorsphere formation assays. Furthermore, anoikis assay indicated that KLF5 contributed to anoikis resistance. High KLF5 expression is associated with poor prognosis in patients with colorectal cancer and liver metastasis by promoting cell proliferation and cancer stem cell‐like properties.
Collapse
Affiliation(s)
- Yutaka Takagi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nozomu Sakai
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daisuke Suzuki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Mishima
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Eri Nakadai
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Miyauchi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
MicroRNA-21 promotes proliferation in acute myeloid leukemia by targeting Krüppel-like factor 5. Oncol Lett 2019; 18:3367-3372. [PMID: 31452816 DOI: 10.3892/ol.2019.10667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 12/17/2022] Open
Abstract
Abnormal expression of microRNA (miR)-21 has been reported in various types of cancers. However, the role and mechanism of miR-21 remain to be elucidated in acute myeloid leukemia (AML). In the present study, it was observed that miR-21 was upregulated and Krüppel-like factor 5 (KLF5) was downregulated in AML cells compared with normal bone marrow cells. Dual luciferase reporter assays revealed that KLF5 was a direct target of miR-21. Indeed, miR-21 overexpression resulted in a downregulation of KLF5 expression, while miR-21 inhibition had the opposite effect in AML cells. In addition, miR-21 overexpression promoted the proliferation of AML cells in vitro. Notably, using a mouse xenograft model, miR-21 overexpression was demonstrated to result in enhanced tumor growth and suppressed KLF5 expression in the xenograft tumors in vivo. In conclusion, the present results indicated that miR-21 promoted proliferation through directly regulating KLF5 expression in AML cells. miR-21 may thus serve as an oncogene in AML, providing a potential target for AML therapy.
Collapse
|
15
|
Zhang Z, Zhu X. Clinical Significance of Lysophosphatidic Acid Receptor-2 (LPA2) and Krüppel-Like Factor 5 (KLF5) Protein Expression Detected by Tissue Microarray in Gastric Adenocarcinoma. Med Sci Monit 2019; 25:4705-4715. [PMID: 31235682 PMCID: PMC6607942 DOI: 10.12659/msm.916336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background The aim of this study was to evaluate lysophosphatidic acid receptor-2 (LPA2) and Krüppel-like factor 5 (KLF5) protein expression in gastric adenocarcinoma and their correlation with patient clinicopathological characteristics and prognosis. Material/Methods Fifty-one gastric adenocarcinoma tissue samples, 21 gastric intraepithelial neoplasia (GIN) samples, and 13 normal gastric tissue samples were collected to test for LPA2 and KLF5 expression by tissue microarray and immunohistochemistry assay. LPA2 and KLF5 positive expression rate between gastric adenocarcinoma, GIN, and normal gastric tissue were compared. The relationship between LPA2 expression, KLF5 expression, and patients’ clinicopathological characteristics and prognosis were evaluated. Results The positive expression rate of LPA2 and KLF5 were statistical different in gastric adenocarcinoma, GIN, and normal gastric tissue (P<0.05). LPA2 positive expression was associated with tumor invasion depth, Lauren type, vascular invasion, local lymph node metastasis, and clinical stage (P<0.05). There was no correlation between LPA2 expression (hazard ratio [HR]=1.84, 95% confidence interval [CI]: 0.89–3.80, P>0.05), KLF5 expression (HR=1.13, 95% CI: 0.53–2.36, P>0.05), and gastric cancer patients’ overall survival. Conclusions LPA2 and KLF5 protein expressions were differently expressed in gastric adenocarcinoma, GIN, and normal gastric tissue, and differences were correlated with patients’ clinical characteristic. However, LPA2 and KLF5 expressions were not correlated with the patients’ prognosis.
Collapse
Affiliation(s)
- Zhili Zhang
- Department of Pathology, The Second People's Hospital of Jiuquan, Jiuquan, Gansu, China (mainland)
| | - Xiaoyong Zhu
- Departments of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China (mainland)
| |
Collapse
|
16
|
Huang XW, Xu Y, Sui X, Lin H, Xu JM, Han D, Ye DD, Lv GF, Liu YX, Qu XB, Duan MH. Scutellarein suppresses Aβ-induced memory impairment via inhibition of the NF-κB pathway in vivo and in vitro. Oncol Lett 2019; 17:5581-5589. [PMID: 31186780 PMCID: PMC6507344 DOI: 10.3892/ol.2019.10274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid β (Aβ)-induced AD-like pathology were investigated. An in vitro model of inflammation and an aged rat model were used to confirm the effects of Scue. In vitro MTT assays and flow cytometry were used to assess the effects of Scue on cell viability and apoptosis, respectively. A Morris water maze was used to evaluate spatial learning and memory, and the levels of Aβ deposition, superoxide dismutase, malondialdehyde, apoptosis, neuro-inflammatory factors and nuclear factor-κB (NF-κB) activation in hippocampal tissues in vivo were measured to determine the effect of Scue in AD. Scue may be protective, as it decreased the apoptosis of hippocampal cells in vitro, inhibited Aβ-induced cognitive impairment, suppressed hippocampal neuro-inflammation and suppressed activation of NF-κB in vivo. Therefore, Scue may be a useful agent for the treatment of Aβ-associated pathology in the central nervous system through inhibition of the protein kinase B/NF-κB signaling pathway and thus, future studies are required to investigate the efficacy of Scue in patients with AD.
Collapse
Affiliation(s)
- Xiao-Wei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yan Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xin Sui
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - He Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Jia-Ming Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dong Han
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dou-Dan Ye
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Guang-Fu Lv
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yue-Xin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xiao-Bo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Ming-Hua Duan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| |
Collapse
|