1
|
Abdel-Hamid MS, Mansour AM, Hassan MH, Abdelhady R, Elsadek BEM, El-Sayed ESM, Salama SA. Estrogen Attenuates Diethylnitrosamine-Induced Hepatocellular Carcinoma in Female Rats via Modulation of Estrogen Receptor/FASN/CD36/IL-6 Axis. Biol Pharm Bull 2023; 46:1558-1568. [PMID: 37914358 DOI: 10.1248/bpb.b23-00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This study was designed to evaluate the potential protective impact of estrogen and estrogen receptor against diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in rats. The levels of liver injury serum biomarkers, liver content of interleukin-6 (IL-6), relative liver weight and distortion of liver histological pictures were significantly increased in ovariectomized (OVX) rats and SHAM rats that received DEN alone and were further exaggerated when DEN was combined with fulvestrant (F) compared to non-DEN treated rats. The OVX rats showed higher insults than SHAM rats. The tapering impact on these parameters was clear in OVX rats that received estradiol benzoate (EB), silymarin (S) or orlistat (ORS). The immunohistochemistry and/or Western blot analysis of liver tissues showed a prominent increase in fatty acid synthase (FASN) and cluster of differentiation 36 (CD36) expressions in OVX and SHAM rats who received DEN and/ or F compared to SHAM rats. In contrast to S, treatment of OVX rats with EB mitigated DEN-induced expression of FASN and CD36 in liver tissue, while ORS improved DEN-induced expression of FASN. In conclusion, the protective effect against HCC was mediated via estrogen receptor alpha (ER-α) which abrogates its downstream genes involved in lipid metabolism namely FASN and CD36 depriving the tumor from survival vital energy source. In addition, ORS induced similar mitigating effect against DEN-induced HCC which could be attributed to FASN inhibition and anti-inflammatory effect. Furthermore, S alleviated DEN-induced HCC, independent of its estrogenic effect.
Collapse
Affiliation(s)
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Memy H Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Rasha Abdelhady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Fayoum University
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University
| | - El-Sayed M El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University
| |
Collapse
|
2
|
Li Y, Wu D, Wei C, Yang X, Zhou S. [CDK1, CCNB1 and NDC80 are associated with prognosis and progression of hepatitis B virus-associated hepatocellular carcinoma: a bioinformatic analysis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1509-1518. [PMID: 34755666 DOI: 10.12122/j.issn.1673-4254.2021.10.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To identify the key genes involved in the transformation of hepatitis B virus (HBV) into hepatocellular carcinoma (HCC) and explore the underlying molecular mechanisms. METHODS We analyzed the mRNA microarray data of 119 HBV-related HCC tissues and 252 HBV-related non-tumor tissues in GSE55092, GSE84044 and GSE121248 from the GEO database, and the "sva" R package was used to remove the batch effects. Integration analysis was performed to identify the differentially expressed genes (DEGs) in HBV-related liver cancer and liver tissues with HBV infection. The significant DEGs were functionally annotated using GO and KEGG analyses, and the most important modules and hub genes were explored with STRING analysis. Kaplan-Meier and Oncomine databases were used to verify the HCC gene expression data in the TCGA database to explore the correlations of the hub genes with the occurrence, progression and prognosis of HCC. We also examined the expressions of the hub genes in 17 pairs of surgical specimens of HCC and adjacent tissues using RT-qPCR. RESULTS We identified a total of 121 DEGs and 3 genetic markers in HCC (P < 0.01). These DEGs included cyclin1 (CDK1), cyclin B1 (CCNB1), and nuclear division cycle 80 (NDC80), which participated in cell cycle, pyrimidine metabolism and DNA replication and were highly correlated (P < 0.05). Analysis of the UALCAN database confirmed high expressions of these 3 genes in HCC tissues, which were correlated with a low survival rate of the patients, as shown by Kaplan-Meier analysis of the prognostic data from the UALCAN database. CDK1, CCNB1 and NDC80 were all correlated with the clinical grading of HCC (P < 0.05). The results of RT-qPCR on the surgical specimens verified significantly higher expressions of CDK1, CCNB1 and NDC80 mRNA in HCC tissues than in the adjacent tissues. CONCLUSION CDK1, CCNB1 and NDC80 genes can be used as prognostic markers of HBV-related HCC and may serve as potential targets in preclinical studies and clinical treatment of HCC.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning 530021, China.,The Key Laboratory of Longevity and Geriatric-related Diseases of the Ministry of Education, Nanning 530021, China
| | - D Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning 530021, China.,The Key Laboratory of Biomolecular Medicine Research in Guangxi Universities, Nanning 530021, China
| | - C Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning 530021, China.,The Key Laboratory of Biomolecular Medicine Research in Guangxi Universities, Nanning 530021, China
| | - X Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning 530021, China.,The Key Laboratory of Biomolecular Medicine Research in Guangxi Universities, Nanning 530021, China
| | - S Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning 530021, China.,The Key Laboratory of the Ministry of Education for Early Prevention and Treatment of Regional High-incidence Tumors, Nanning 530021, China
| |
Collapse
|
3
|
Sex-dependent dynamics of metabolism in primary mouse hepatocytes. Arch Toxicol 2021; 95:3001-3013. [PMID: 34241659 PMCID: PMC8380230 DOI: 10.1007/s00204-021-03118-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022]
Abstract
The liver is one of the most sexually dimorphic organs. The hepatic metabolic pathways that are subject to sexual dimorphism include xenobiotic, amino acid and lipid metabolism. Non-alcoholic fatty liver disease and hepatocellular carcinoma are among diseases with sex-dependent prevalence, progression and outcome. Although male and female livers differ in their abilities to metabolize foreign compounds, including drugs, sex-dependent treatment and pharmacological dynamics are rarely applied in all relevant cases. Therefore, it is important to consider hepatic sexual dimorphism when developing new treatment strategies and to understand the underlying mechanisms in model systems. We isolated primary hepatocytes from male and female C57BL6/N mice and examined the sex-dependent transcriptome, proteome and extracellular metabolome parameters in the course of culturing them for 96 h. The sex-specific gene expression of the general xenobiotic pathway altered and the female-specific expression of Cyp2b13 and Cyp2b9 was significantly reduced during culture. Sex-dependent differences of several signaling pathways increased, including genes related to serotonin and melatonin degradation. Furthermore, the ratios of male and female gene expression were inversed for other pathways, such as amino acid degradation, beta-oxidation, androgen signaling and hepatic steatosis. Because the primary hepatocytes were cultivated without the influence of known regulators of sexual dimorphism, these results suggest currently unknown modulatory mechanisms of sexual dimorphism in vitro. The large sex-dependent differences in the regulation and dynamics of drug metabolism observed during cultivation can have an immense influence on the evaluation of pharmacodynamic processes when conducting initial preclinical trials to investigate potential new drugs.
Collapse
|
4
|
A highly expressed mRNA signature for predicting survival in patients with stage I/II non-small-cell lung cancer after operation. Sci Rep 2021; 11:5855. [PMID: 33712694 PMCID: PMC7955117 DOI: 10.1038/s41598-021-85246-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
There is an urgent need to identify novel biomarkers that predict the prognosis of patients with NSCLC. In this study,we aim to find out mRNA signature closely related to the prognosis of NSCLC by new algorithm of bioinformatics. Identification of highly expressed mRNA in stage I/II patients with NSCLC was performed with the “Limma” package of R software. Survival analysis of patients with different mRNA expression levels was subsequently calculated by Cox regression analysis, and a multi-RNA signature was obtained by using the training set. Kaplan–Meier estimator, log-rank test and receiver operating characteristic (ROC) curves were used to analyse the predictive ability of the multi-RNA signature. RT-PCR used to verify the expression of the multi-RNA signature, and Westernblot used to verify the expression of proteins related to the multi-RNA signature. We identified fifteen survival-related mRNAs in the training set and classified the patients as high risk or low risk. NSCLC patients with low risk scores had longer disease-free survival than patients with high risk scores. The fifteen-mRNA signature was an independent prognostic factor, as shown by the ROC curve. ROC curve also showed that the combined model of the fifteen-mRNA signature and tumour stage had higher precision than stage alone. The expression of fifteen mRNAs and related proteins were higher in stage II NSCLC than in stage I NSCLC. Multi-gene expression profiles provide a moderate prognostic tool for NSCLC patients with stage I/II disease.
Collapse
|
5
|
Melia T, Waxman DJ. Genetic factors contributing to extensive variability of sex-specific hepatic gene expression in Diversity Outbred mice. PLoS One 2020; 15:e0242665. [PMID: 33264334 PMCID: PMC7710091 DOI: 10.1371/journal.pone.0242665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Sex-specific transcription characterizes hundreds of genes in mouse liver, many implicated in sex-differential drug and lipid metabolism and disease susceptibility. While the regulation of liver sex differences by growth hormone-activated STAT5 is well established, little is known about autosomal genetic factors regulating the sex-specific liver transcriptome. Here we show, using genotyping and expression data from a large population of Diversity Outbred mice, that genetic factors work in tandem with growth hormone to control the individual variability of hundreds of sex-biased genes, including many long non-coding RNA genes. Significant associations between single nucleotide polymorphisms and sex-specific gene expression were identified as expression quantitative trait loci (eQTLs), many of which showed strong sex-dependent associations. Remarkably, autosomal genetic modifiers of sex-specific genes were found to account for more than 200 instances of gain or loss of sex-specificity across eight Diversity Outbred mouse founder strains. Sex-biased STAT5 binding sites and open chromatin regions with strain-specific variants were significantly enriched at eQTL regions regulating correspondingly sex-specific genes, supporting the proposed functional regulatory nature of the eQTL regions identified. Binding of the male-biased, growth hormone-regulated repressor BCL6 was most highly enriched at trans-eQTL regions controlling female-specific genes. Co-regulated gene clusters defined by overlapping eQTLs included sets of highly correlated genes from different chromosomes, further supporting trans-eQTL action. These findings elucidate how an unexpectedly large number of autosomal factors work in tandem with growth hormone signaling pathways to regulate the individual variability associated with sex differences in liver metabolism and disease.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lopes-Ramos CM, Quackenbush J, DeMeo DL. Genome-Wide Sex and Gender Differences in Cancer. Front Oncol 2020; 10:597788. [PMID: 33330090 PMCID: PMC7719817 DOI: 10.3389/fonc.2020.597788] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Despite their known importance in clinical medicine, differences based on sex and gender are among the least studied factors affecting cancer susceptibility, progression, survival, and therapeutic response. In particular, the molecular mechanisms driving sex differences are poorly understood and so most approaches to precision medicine use mutational or other genomic data to assign therapy without considering how the sex of the individual might influence therapeutic efficacy. The mandate by the National Institutes of Health that research studies include sex as a biological variable has begun to expand our understanding on its importance. Sex differences in cancer may arise due to a combination of environmental, genetic, and epigenetic factors, as well as differences in gene regulation, and expression. Extensive sex differences occur genome-wide, and ultimately influence cancer biology and outcomes. In this review, we summarize the current state of knowledge about sex-specific genetic and genome-wide influences in cancer, describe how differences in response to environmental exposures and genetic and epigenetic alterations alter the trajectory of the disease, and provide insights into the importance of integrative analyses in understanding the interplay of sex and genomics in cancer. In particular, we will explore some of the emerging analytical approaches, such as the use of network methods, that are providing a deeper understanding of the drivers of differences based on sex and gender. Better understanding these complex factors and their interactions will improve cancer prevention, treatment, and outcomes for all individuals.
Collapse
Affiliation(s)
- Camila M. Lopes-Ramos
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Kim SY, Song HK, Lee SK, Kim SG, Woo HG, Yang J, Noh HJ, Kim YS, Moon A. Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients. Biomol Ther (Seoul) 2020; 28:491-502. [PMID: 33077700 PMCID: PMC7585639 DOI: 10.4062/biomolther.2020.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hye Kyung Song
- Department of Chemistry, College of Natural Sciences, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Suk Kyeong Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06649, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, Goyang 10326, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Jieun Yang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jin Noh
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - You-Sun Kim
- Department of Biomedical Science, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
8
|
Distribution and clinical relevance of phospholipids in hepatocellular carcinoma. Hepatol Int 2020; 14:544-555. [PMID: 32504407 PMCID: PMC7366576 DOI: 10.1007/s12072-020-10056-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/21/2020] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common liver cancer and featured with prominent disparity in incidence and mortality rate between male and female. It remains unclear whether alterations of phospholipids (PL) in hepatic tissues contribute to the pathogenesis, progression, and disparity of HCC. Methods Using electrospray ionization mass spectrometry (ESI–MS), PL profiles including 320 individual phospholipid species in 13 PL classes were determined in paired samples from HCC and adjacent benign hepatic tissues (BHT). Results (1) Concentrations of PLs in most of individual species, in subgroups and in total were decreased in HCC than in BHT in all studied population; (2) the number of individual PL species significantly different between HCC and BHT, and the number of PLs in six subgroups and in total decreased in HCC were more in male population than in female population; (3) panels of PL parameters (more in male population than in female population) were identified as biomarkers in differentiation of HCC from BHT, and in the prediction of pathological grade and clinical stage of HCC with high sensitivity, specificity, and accuracy. Conclusion It is concluded that alterations of PLs in hepatic tissues play important roles in pathogenesis, progression, and gender disparity of HCC. Electronic supplementary material The online version of this article (10.1007/s12072-020-10056-8) contains supplementary material, which is available to authorized users.
Collapse
|