1
|
Wang R, Zhu F, Gao G, Gong Z, Yin Z, Ren W, Wang X, Liu Y, Wang S, Wu X. B-cell specific Moloney murine leukemia virus insertion site 1 contributes to invasion, metastasis, and poor prognosis in salivary adenoid cystic carcinoma. J Dent Sci 2024; 19:21-31. [PMID: 38303897 PMCID: PMC10829681 DOI: 10.1016/j.jds.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Upregulation of B-cell specific Moloney murine leukemia virus insertion site 1 (BMI-1) has been involved in the invasion, metastasis, and poor prognosis of many cancers. The aim of this study was to evaluate the levels and clinical significance of BMI-1 in saliva of patients with salivary adenoid cystic carcinoma (SACC), and to analyze biological function and mechanism of BMI-1 in the invasion and metastasis of SACC. Materials and methods The levels of BMI-1 in saliva and tumor tissues of SACC patients were determined. The correlation of salivary BMI-1 levels with clinicopathological parameters and clinical outcomes in patients with SACC was analyzed. Additionally, the effects of BMI-1 on wound-healing, transwell invasion, and epithelial-mesenchymal transition (EMT)-related protein expression in vitro as well as on tumorigenicity and experimental lung metastasis in vivo were investigated through exogenous overexpression and silencing of BMI-1 in SACC cells. Results BMI-1 levels increased in saliva and tumor tissues in SACC patients with invasion or metastasis. High salivary BMI-1 levels were correlated with poor TNM stage, poor overall survival, and disease-free survival. Exogenous expression of BMI-1 in SACC-83 promoted its migration and invasion, while silencing BMI-1 in SACC-LM inhibited its migration and invasion in vitro and suppressed tumorigenesis and lung metastasis in vivo. Furthermore, BMI-1 regulated the expression of EMT-related proteins in SACC. Conclusion Our study shows that BMI-1 can serve as a valuable biomarker to identify tumor invasion and metastasis in SACC, predict its prognosis, and act as a promising therapeutic target for SACC.
Collapse
Affiliation(s)
- Rongyan Wang
- Department of Stomatology, Affiliated Children's Hospital of Jiangnan University, Wuxi, China
| | - Fangyong Zhu
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guilin Gao
- Center of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zhongjian Gong
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhiguo Yin
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Wei Ren
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xin Wang
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yang Liu
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Shigang Wang
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xiangbing Wu
- Department of Stomatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
2
|
Herzog AE, Somayaji R, Nör JE. Bmi-1: A master regulator of head and neck cancer stemness. FRONTIERS IN ORAL HEALTH 2023; 4:1080255. [PMID: 36726797 PMCID: PMC9884974 DOI: 10.3389/froh.2023.1080255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Head and neck cancers are composed of a diverse group of malignancies, many of which exhibit an unacceptably low patient survival, high morbidity and poor treatment outcomes. The cancer stem cell (CSC) hypothesis provides an explanation for the substantial patient morbidity associated with treatment resistance and the high frequency of tumor recurrence/metastasis. Stem cells are a unique population of cells capable of recapitulating a heterogenous organ from a single cell, due to their capacity to self-renew and differentiate into progenitor cells. CSCs share these attributes, in addition to playing a pivotal role in cancer initiation and progression by means of their high tumorigenic potential. CSCs constitute only a small fraction of tumor cells but play a major role in tumor initiation and therapeutic evasion. The shift towards stem-like phenotype fuels many malignant features of a cancer cell and mediates resistance to conventional chemotherapy. Bmi-1 is a master regulator of stem cell self-renewal as part of the polycomb repressive complex 1 (PRC1) and has emerged as a prominent player in cancer stem cell biology. Bmi-1 expression is upregulated in CSCs, which is augmented by tumor-promoting factors and various conventional chemotherapies. Bmi-1+ CSCs mediate chemoresistance and metastasis. On the other hand, inhibiting Bmi-1 rescinds CSC function and re-sensitizes cancer cells to chemotherapy. Therefore, elucidating the functional role of Bmi-1 in CSC-mediated cancer progression may unveil an attractive target for mechanism-based, developmental therapeutics. In this review, we discuss the parallels in the role of Bmi-1 in stem cell biology of health and disease and explore how this can be leveraged to advance clinical treatment strategies for head and neck cancer.
Collapse
Affiliation(s)
- Alexandra E. Herzog
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ritu Somayaji
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Jacques E. Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States,Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School; Ann Arbor, MI, United States,Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, United States,Universityof Michigan Rogel Cancer Center, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Xu J, Li L, Shi P, Cui H, Yang L. The Crucial Roles of Bmi-1 in Cancer: Implications in Pathogenesis, Metastasis, Drug Resistance, and Targeted Therapies. Int J Mol Sci 2022; 23:ijms23158231. [PMID: 35897796 PMCID: PMC9367737 DOI: 10.3390/ijms23158231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
B-cell-specific Moloney murine leukemia virus integration region 1 (Bmi-1, also known as RNF51 or PCGF4) is one of the important members of the PcG gene family, and is involved in regulating cell proliferation, differentiation and senescence, and maintaining the self-renewal of stem cells. Many studies in recent years have emphasized the role of Bmi-1 in the occurrence and development of tumors. In fact, Bmi-1 has multiple functions in cancer biology and is closely related to many classical molecules, including Akt, c-MYC, Pten, etc. This review summarizes the regulatory mechanisms of Bmi-1 in multiple pathways, and the interaction of Bmi-1 with noncoding RNAs. In particular, we focus on the pathological processes of Bmi-1 in cancer, and explore the clinical relevance of Bmi-1 in cancer biomarkers and prognosis, as well as its implications for chemoresistance and radioresistance. In conclusion, we summarize the role of Bmi-1 in tumor progression, reveal the pathophysiological process and molecular mechanism of Bmi-1 in tumors, and provide useful information for tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Lin Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Correspondence: (H.C.); (L.Y.)
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (J.X.); (L.L.); (P.S.)
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China
- Correspondence: (H.C.); (L.Y.)
| |
Collapse
|
4
|
Inhibition of BMI-1 Induces Apoptosis through Downregulation of DUB3-Mediated Mcl-1 Stabilization. Int J Mol Sci 2021; 22:ijms221810107. [PMID: 34576269 PMCID: PMC8472307 DOI: 10.3390/ijms221810107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/11/2023] Open
Abstract
BMI-1, a polycomb ring finger oncogene, is highly expressed in multiple cancer cells and is involved in cancer cell proliferation, invasion, and apoptosis. BMI-1 represents a cancer stemness marker that is associated with the regulation of stem cell self-renewal. In this study, pharmacological inhibition (PTC596) or knockdown (siRNA) of BMI-1 reduced cancer stem-like cells and enhanced cancer cell death. Mechanistically, the inhibition of BMI-1 induced the downregulation of Mcl-1 protein, but not Mcl-1 mRNA. PTC596 downregulated Mcl-1 protein expression at the post-translational level through the proteasome-ubiquitin system. PTC596 and BMI-1 siRNA induced downregulation of DUB3 deubiquitinase, which was strongly linked to Mcl-1 destabilization. Furthermore, overexpression of Mcl-1 or DUB3 inhibited apoptosis by PTC596. Taken together, our findings reveal that the inhibition of BMI-1 induces Mcl-1 destabilization through downregulation of DUB3, resulting in the induction of cancer cell death.
Collapse
|
5
|
Chung Y, Min KW, Kim DH, Son BK, Do SI, Chae SW, Kwon MJ. High BMI1 Expression with Low CD8+ and CD4+ T Cell Activity Could Promote Breast Cancer Cell Survival: A Machine Learning Approach. J Pers Med 2021; 11:739. [PMID: 34442383 PMCID: PMC8399090 DOI: 10.3390/jpm11080739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
BMI1 is known to play a key role in the regulation of stem cell self-renewal in both endogenous and cancer stem cells. High BMI1 expression has been associated with poor prognosis in a variety of human tumors. The aim of this study was to reveal the correlations of BMI1 with survival rates, genetic alterations, and immune activities, and to validate the results using machine learning. We investigated the survival rates according to BMI1 expression in 389 and 789 breast cancer patients from Kangbuk Samsung Medical Center (KBSMC) and The Cancer Genome Atlas, respectively. We performed gene set enrichment analysis (GSEA) with pathway-based network analysis, investigated the immune response, and performed in vitro drug screening assays. The survival prediction model was evaluated through a gradient boosting machine (GBM) approach incorporating BMI1. High BMI1 expression was correlated with poor survival in patients with breast cancer. In GSEA and in in silico flow cytometry, high BMI1 expression was associated with factors indicating a weak immune response, such as decreased CD8+ T cell and CD4+ T cell counts. In pathway-based network analysis, BMI1 was directly linked to transcriptional regulation and indirectly linked to inflammatory response pathways, etc. The GBM model incorporating BMI1 showed improved prognostic performance compared with the model without BMI1. We identified telomerase inhibitor IX, a drug with potent activity against breast cancer cell lines with high BMI1 expression. We suggest that high BMI1 expression could be a therapeutic target in breast cancer. These results could contribute to the design of future experimental research and drug development programs for breast cancer.
Collapse
Affiliation(s)
- Yumin Chung
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Korea; (Y.C.); (S.-I.D.); (S.W.C.)
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Korea; (Y.C.); (S.-I.D.); (S.W.C.)
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu 11749, Korea;
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Korea; (Y.C.); (S.-I.D.); (S.W.C.)
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Korea; (Y.C.); (S.-I.D.); (S.W.C.)
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea;
| |
Collapse
|
6
|
Yang G, Zeng C, Liu Y, Li D, Cui J. ZNRD1-AS1 knockdown alleviates malignant phenotype of retinoblastoma through miR-128-3p/BMI1 axis. Am J Transl Res 2021; 13:5866-5879. [PMID: 34306331 PMCID: PMC8290669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND ZNRD1-AS1 plays an important role in liver cancer, endometrial cancer and other diseases. However, the relationship between ZNRD1-AS1 and retinoblastoma has not been studied in detail. This study aimed to determine the role of ZNRD1-AS1 in retinoblastoma. METHODS Differentially expressed genes in retinoblastoma downloaded from GEO database were identified by Limma package, and the expression and cell location of ZNRD1-AS1 were detected by real-time quantitative PCR (RT-qPCR). The relationships between miR-128-3p and two genes (ZNRD1-AS1 and BMI1) were analyzed by bioinformatics and dual-luciferase assay. After manipulating the expressions of ZNRD1-AS1, miR-128-3p and BMI1, cell viability, tube length, migration, invasion and the protein expressions (PCNA, E-Cadherin, N-Cadherin) of retinoblastoma cells were determined by cell counting kit-8 (CCK-8), tube formation, transwell and Western blot assays, respectively. Subcutaneous transplantation tumor assay, immunohistochemistry, and RT-qPCR were applied to verify the functions of the target gene in vivo. RESULTS ZNRD1-AS1 was up-regulated in the cytoplasm of retinoblastoma and regulated BMI1 via sponging miR-128-3p. ZNRD1-AS1 knockdown alleviated the malignant phenotype (viability, tube length, migration and invasion) of retinoblastoma cells, reduced tumor volume and weight, and inhibited BMI1 and CD34 expressions. Different from miR-128-3p mimic, miR-128-3p inhibitor promoted malignant phenotype of retinoblastoma cells, and partially reversed the inhibitory effect of siZNRD1-AS1. MiR-128-3p mimic down-regulated BMI1, PNCA, N-Cadherin expressions, and up-regulated p16 and E-Cadherin expressions. The regulatory effect of miR-128-3p was partially reversed by BMI1. CONCLUSION ZNRD1-AS1, acting as a "sponge" of miR-128-3p, up-regulates BMI1, thereby promoting the progression of retinoblastoma.
Collapse
Affiliation(s)
- Guanghua Yang
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Chen Zeng
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Yang Liu
- Department of Pediatric Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Dongliang Li
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| | - Juanjuan Cui
- First Department of Oncology, Zhumadian Central HospitalZhumadian, Henan, China
| |
Collapse
|