1
|
Fang HY, Ji LM, Hong CH. An innovative glutamine metabolism-related gene signature for predicting prognosis and immune landscape in cervical cancer. Discov Oncol 2025; 16:368. [PMID: 40113615 PMCID: PMC11926318 DOI: 10.1007/s12672-025-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) is a major global malignancy affecting women. However, the precise mechanisms underlying glutamine's role in CC remain inadequately understood. This study systematically assessed the survival outcomes, immune landscape, and drug sensitivity profiles with CC patients by analyzing genes associated with glutamine metabolism. METHODS Transcriptomic data for the samples were sourced from the TCGA, GTEx, and GEO databases. Prognostic genes were identified through univariate, multivariate, and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses. The predictive accuracy of the model was assessed through the analysis of receiver operating characteristic (ROC) curves. A comprehensive nomogram was developed and evaluated for accuracy using calibration and Decision Curve Analysis (DCA) curves. Kaplan-Meier (K-M) survival curves were employed to estimate overall survival. The relationship between risk scores and immune infiltration was analyzed through Single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT. Functional enrichment analysis and the construction of miRNA and transcription factors networks were conducted to explore the potential molecular mechanisms of the signature genes. RESULTS This investigation identified four signature genes associated with glutamine metabolism, UCP2, LEPR, TFRC, and RNaseH2A. We successfully developed a prognostic model with strong predictive performance. In the training set, the AUC values for 1-, 3-, and 5-year survival were 0.702, 0.719, and 0.721, respectively. In the validation set, the AUC values for these time points were 0.715, 0.696, and 0.739, respectively. Patients categorized as low-risk had notably improved survival rates than those identified as high-risk (P < 0.05). Additionally, a nomogram that combines clinical data and risk scores offered improved clinical net benefits over a broad range of threshold probabilities. Functional enrichment analysis revealed that these signature genes are strongly linked to the regulation of the cell cycle and intracellular oxygen levels. Furthermore, the gene signature displayed a significant negative correlation with the infiltration levels of most immune cell types. CONCLUSION This novel signature demonstrates robust predictive capability for prognostic survival probabilities and immune infiltration in CC patients, providing a fresh perspective for advancing precision treatment strategies in CC.
Collapse
Affiliation(s)
- Hai-Ya Fang
- Department of Obstetrics and Gynecology, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Li-Mei Ji
- Department of Obstetrics and Gynecology, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Cui-Hua Hong
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, No.252 East Baili Road, Wenzhou, 325100, China.
| |
Collapse
|
2
|
Jin M, Ni D, Cai J, Yang J. Identification and validation of immunity- and disulfidptosis-related genes signature for predicting prognosis in ovarian cancer. Heliyon 2024; 10:e32273. [PMID: 38952356 PMCID: PMC11215265 DOI: 10.1016/j.heliyon.2024.e32273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Background Ovarian cancer (OC) ranks as the fifth most prevalent neoplasm in women and exhibits an unfavorable prognosis. To improve the OC patient's prognosis, a pioneering risk signature was formulated by amalgamating disulfidptosis-related genes. Methods A comparative analysis of OC tissues and normal tissues was carried out, and differentially expressed disulfidptosis-related genes (DRGs) were found using the criteria of |log2 (fold change) | > 0.585 and adjusted P-value <0.05. Subsequently, the TCGA training set was utilized to create a prognostic risk signature, which was validated by employing both the TCGA testing set and the GEO dataset. Moreover, the immune cell infiltration, mutational load, response to chemotherapy, and response to immunotherapy were analyzed. To further validate these findings, QRT-PCR analysis was conducted on ovarian tumor cell lines. Results A risk signature was created using fourteen differentially expressed genes (DEGs) associated with disulfidptosis, enabling the classification of ovarian cancer (OC) patients into high-risk group (HRG) and low-risk group (LRG). The HRG exhibited a lower overall survival (OS) compared to the LRG. In addition, the risk score remained an independent predictor even after incorporating clinical factors. Furthermore, the LRG displayed lower stromal, immune, and estimated scores compared to the HRG, suggesting a possible connection between the risk signature, immune cell infiltration, and mutational load. Finally, the QRT-PCR experiments revealed that eight genes were upregulated in the human OC cell line SKOV3 compared with the human normal OC line IOSE80, while six genes were down-regulated. Conclusions A fourteen-biomarker signature composed of disulfidptosis-related genes could serve as a valuable risk stratification tool in OC, facilitating the identification of patients who may benefit from individualized treatment and follow-up management.
Collapse
Affiliation(s)
- Miaojia Jin
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Dan Ni
- Department of Obstetrics and Gynecology, Jinhua Jindong District Maternal and Child Health Hospital, Jinhua, 321000, China
| | - Jianshu Cai
- Nursing Department, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jianhua Yang
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, 310016, China
| |
Collapse
|
3
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
4
|
Catalano R, Altieri B, Angelousi A, Arosio M, Bravi F, Canu L, Croci GA, Detomas M, Esposito E, Ferrante E, Ferrero S, Fuss CT, Kaltsas G, Kimpel O, Landwehr LS, Luconi M, Morelli V, Nesi G, Nozza E, Sbiera S, Serban AL, Ronchi CL, Mantovani G, Peverelli E. High Filamin a Expression in Adrenocortical Carcinomas Is Associated with a Favourable Tumour Behaviour: A European Multicentric Study. Int J Mol Sci 2023; 24:16573. [PMID: 38068896 PMCID: PMC10706064 DOI: 10.3390/ijms242316573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.
Collapse
Affiliation(s)
- Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Anna Angelousi
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Giorgio A. Croci
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Stefano Ferrero
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Gregory Kaltsas
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Valentina Morelli
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Gabriella Nesi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Andreea L. Serban
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Cristina L. Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| |
Collapse
|
5
|
Karolová J, Kazantsev D, Svatoň M, Tušková L, Forsterová K, Maláriková D, Benešová K, Heizer T, Dolníková A, Klánová M, Winkovska L, Svobodová K, Hojný J, Krkavcová E, Froňková E, Zemanová Z, Trněný M, Klener P. Sequencing-based analysis of clonal evolution of 25 mantle cell lymphoma patients at diagnosis and after failure of standard immunochemotherapy. Am J Hematol 2023; 98:1627-1636. [PMID: 37605345 DOI: 10.1002/ajh.27044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023]
Abstract
Our knowledge of genetic aberrations, that is, variants and copy number variations (CNVs), associated with mantle cell lymphoma (MCL) relapse remains limited. A cohort of 25 patients with MCL at diagnosis and the first relapse after the failure of standard immunochemotherapy was analyzed using whole-exome sequencing. The most frequent variants at diagnosis and at relapse comprised six genes: TP53, ATM, KMT2D, CCND1, SP140, and LRP1B. The most frequent CNVs at diagnosis and at relapse included TP53 and CDKN2A/B deletions, and PIK3CA amplifications. The mean count of mutations per patient significantly increased at relapse (n = 34) compared to diagnosis (n = 27). The most frequent newly detected variants at relapse, LRP1B gene mutations, correlated with a higher mutational burden. Variant allele frequencies of TP53 variants increased from 0.35 to 0.76 at relapse. The frequency and length of predicted CNVs significantly increased at relapse with CDKN2A/B deletions being the most frequent. Our data suggest, that the resistant MCL clones detected at relapse were already present at diagnosis and were selected by therapy. We observed enrichment of genetic aberrations of DNA damage response pathway (TP53 and CDKN2A/B), and a significant increase in MCL heterogeneity. We identified LRP1B inactivation as a new potential driver of MCL relapse.
Collapse
Affiliation(s)
- J Karolová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Kazantsev
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Svatoň
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - L Tušková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Forsterová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - D Maláriková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Benešová
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - T Heizer
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Dolníková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Klánová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - L Winkovska
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - K Svobodová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - J Hojný
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Krkavcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - E Froňková
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Z Zemanová
- Center for Oncocytogenetics, Institute of Medical Biochemistry and Laboratory Diagnostics, Charles University and General University Hospital, Prague, Czech Republic
| | - M Trněný
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, University General Hospital Prague and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Lin YH, Sheu SJ, Liu W, Hsu YT, He CX, Wu CY, Chen KJ, Lee PY, Chiu CC, Cheng KC. Retinal protective effect of curcumin metabolite hexahydrocurcumin against blue light-induced RPE damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154606. [PMID: 36584606 DOI: 10.1016/j.phymed.2022.154606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a disease of retinal pigment epithelium (RPE) cells. We have previously demonstrated that blue light can damage RPE cells and their underlying mechanisms. We found that hexahydrocurcumin (HHC), a metabolite of curcumin, had better retinal protection than curcumin. However, the involved mechanisms remain unclear. METHODS By exposing ARPE-19 human RPE cells and mouse primary RPE cells to blue light, the intracellular mechanisms of HHC in cells were investigated, including the proliferation of RPE cells and the effects of HHC on activating intracellular protective mechanisms and related factors. Next-generation sequencing (NGS) RNA sequencing revealed the underlying mechanisms involved in the induction and regulation of HHC treatment following blue light exposure. RESULTS HHC promoted autophagy by enhancing autophagic flux, reduced oxidative stress and endoplasmic reticulum (ER) stress, and effectively reversed blue light-induced cell death. RNA sequencing-based bioinformatics approaches comprehensively analyze HHC-mediated cellular processes. CONCLUSION Our findings elucidate the mechanisms of HHC against blue light damage in RPE cells and are beneficial for the development of natural metabolite-based preventive drugs or functional foods.
Collapse
Affiliation(s)
- Yi-Hsiung Lin
- Center for Lipid Biosciences, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yun-Tzu Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Xi He
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chang-Yi Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Kuo-Jen Chen
- Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan
| | - Po-Yen Lee
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; The Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Kai-Chun Cheng
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 812, Taiwan.
| |
Collapse
|
7
|
Wang Z, Liu M, Lei H, Lei P, Liu X, Zhang J, Xiao S, Zheng Y, Feng YG. Serum Proteomics Combined with Metabolomics Analysis Explore the Molecular Biological Characteristics of Eruptive Syringoma. Clin Cosmet Investig Dermatol 2023; 16:17-26. [PMID: 36636632 PMCID: PMC9830079 DOI: 10.2147/ccid.s393620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Eruptive syringoma (ES) is a clinical variant of the appendageal tumor syringoma. Around 75% of ES arise in the head or neck, which makes them unsightly. ES is common in patients with amyloidosis, diabetes, and Down's syndrome, suggesting that it may be associated with potential systemic effects. ES is a rare tumor with the unclear pathogenesis and no effective treatment. METHODS A PubMed search of ES was conducted. Plasma samples of patients with ES were acquired from the Department of Dermatology at Xi'an Jiaotong University's Second Affiliated Hospital. After removing highly abundant proteins, plasma samples were subjected to proteomics and metabolomics analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS LC-MS/MS revealed 71 differentially expressed proteins and 18 differentially abundant metabolites. The functional analysis highlighted the importance of complement binding, coagulation, secretory granules and vesicle lumen. Further, the study revealed 15 hub genes associated with FGG, GC, APOE, FGA, FGB, C4A, C3, CRP, C4B, FLNA, TAGLN2, ANXA5, MYL6, MYL12B, and TLN1 organized into three clusters. The seed genes in each cluster were GC, FLNA, and MYL6. In addition, glycol metabolism was associated with variable abundance of serum metabolites, which explains the relatively high rate of ES among diabetics. CONCLUSION This study suggests that immunological inflammation and tumor glycol metabolism may play significant role in the pathophysiology of ES.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Meng Liu
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Hao Lei
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Panpan Lei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University School of Life Science and Technology, Xi’an, People’s Republic of China
| | - Xinyi Liu
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Jing Zhang
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yan Zheng
- Department of Dermatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Yi-Guo Feng
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China
| |
Collapse
|
8
|
Liu AR, Liu YN, Shen SX, Yan LR, Lv Z, Ding HX, Wang A, Yuan Y, Xu Q. Comprehensive Analysis and Validation of Solute Carrier Family 25 (SLC25) and Its Correlation with Immune Infiltration in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4009354. [PMID: 36254139 PMCID: PMC9569204 DOI: 10.1155/2022/4009354] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
As the largest gene family functioning in protein transport among human solute carriers, the SLC25 family (mitochondrial carrier family) can participate in development of cancer. However, a comprehensive exploration for the exactly roles of SLC family remains lacking. In the present study, a total of 15 functional SLC25 family genes were retrieved from all current publications. And multidimensional analyses were systematically performed based on the transcriptome and genome data of SLC25 family from a variety of online databases for their expression, immune cell infiltration, and cancer prognosis. Validation by qPCR and immunohistochemistry were further conducted for the expression of partial SLC25 family members in some tumor tissue. We found that the SLC25 family had strong correlation with immune cells, such as macrophages M2, CD8+ T cell, CD4+ T cell memory activated, and memory resting. Among them, SLC25A6 was most correlated with Macrophage M1 in uveal melanoma (r = -0.68, P = 1.9e - 0.5). Expression of mRNA level showed that SLC25A4 was downregulated in stomach adenocarcinoma and colon adenocarcinoma. SLC25A7 was highly expressed in stomach adenocarcinoma and colon adenocarcinoma. SLC25A23 was decreased in colon adenocarcinoma. qPCR and immunohistochemistry validation results were consistent with our bioinformatics prediction. SLC25A8 was associated with the prognosis of cancer. All these findings suggested that the SLC25 family might affects the immune microenvironment of the cancer and then had the potential to be predictive biomarkers for early diagnosis and prognosis as well as novel targets for individualized treatment of cancer.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ying-nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shi-xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Li-rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Han-xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|